1
|
Saktiawati AMI, Vasiliu A, Saluzzo F, Akkerman OW. Strategies to Enhance Diagnostic Capabilities for the New Drug-Resistant Tuberculosis (DR-TB) Drugs. Pathogens 2024; 13:1045. [PMID: 39770305 PMCID: PMC11840284 DOI: 10.3390/pathogens13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
The global burden of drug-resistant tuberculosis (DR-TB) continues to challenge healthcare systems worldwide. There is a critical need to tackle DR-TB by enhancing diagnostics and drug susceptibility testing (DST) capabilities, particularly for emerging DR-TB drugs. This endeavor is crucial to optimize the efficacy of new therapeutic regimens and prevent the resistance and overuse of these invaluable weapons. Despite this urgency, there remains a lack of comprehensive review of public health measures aimed at improving the diagnostics and DST capabilities. In this review, we outline strategies to enhance the capabilities, especially tailored to address the challenges posed by resistance to new DR-TB drugs. We discuss the current landscape of DR-TB drugs, existing diagnostic and susceptibility testing methods, and notable gaps and challenges in these methods and explore strategies for ensuring fair access to DST while narrowing these disparities. The strategies include public health interventions aimed at strengthening laboratory infrastructure, workforce training, and quality assurance programs, technology transfer initiatives, involving drug developers in the DST development, establishing national or regional referral hubs, fostering collaboration and resources pooling with other infection control efforts, extending testing access in underserved areas through public-private partnerships, advocating for lowering costs or loans at low interest, remote technical support, and implementing mandatory molecular surveillance monitoring. This review underscores the urgent need to enhance DST capacities for new DR-TB drugs and identifies opportunities for innovation and improvement. Assessing the extent of the global health impact of these measures is crucial to ensure their effectiveness in combating DR-TB.
Collapse
Affiliation(s)
- Antonia Morita Iswari Saktiawati
- Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55584, Indonesia
- Center for Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55584, Indonesia
| | - Anca Vasiliu
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
- Clinical Tuberculosis Unit, German Center for Infection Research (DZIF), Ham-burg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | | | - Onno W. Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Tuberculosis Center Beatrixoord, University Medical Center Groningen, University of Groningen, 9751 ND Haren, The Netherlands
| |
Collapse
|
2
|
Sanchini A, Lanni A, Giannoni F, Mustazzolu A. Exploring diagnostic methods for drug-resistant tuberculosis: A comprehensive overview. Tuberculosis (Edinb) 2024; 148:102522. [PMID: 38850839 DOI: 10.1016/j.tube.2024.102522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Despite available global efforts and funding, Tuberculosis (TB) continues to affect a considerable number of patients worldwide. Policy makers and stakeholders set clear goals to reduce TB incidence and mortality, but the emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) complicate the reach of these goals. Drug-resistance TB needs to be diagnosed rapidly and accurately to effectively treat patients, prevent the transmission of MDR-TB, minimise mortality, reduce treatment costs and avoid unnecessary hospitalisations. In this narrative review, we provide a comprehensive overview of laboratory methods for detecting drug resistance in MTB, focusing on phenotypic, molecular and other drug susceptibility testing (DST) techniques. We found a large variety of methods used, with the BACTEC MGIT 960 being the most common phenotypic DST and the Xpert MTB/RIF being the most common molecular DST. We emphasise the importance of integrating phenotypic and molecular DST to address issues like resistance to new drugs, heteroresistance, mixed infections and low-level resistance mutations. Notably, most of the analysed studies adhered to the outdated definition of XDR-TB and did not consider the pre-XDR definition, thus posing challenges in aligning diagnostic methods with the current landscape of TB resistance.
Collapse
Affiliation(s)
| | - Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | | |
Collapse
|
3
|
Moe S, Azamat I, Allamuratova S, Oluya M, Khristusev A, Rekart ML, Mamitova K, Bidwell G, Gomez-Restrepo C, Kalmuratov B, Tigay Z, Parpieva N, Safaev K, Sitali N, Gomez D, Mikhail A, Sinha A. Second-line drug-resistant TB and associated risk factors in Karakalpakstan, Uzbekistan. IJTLD OPEN 2024; 1:391-397. [PMID: 39301133 PMCID: PMC11409172 DOI: 10.5588/ijtldopen.24.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Drug-resistant TB (DR-TB) remains a major public health threat. In 2022, Uzbekistan reported 2,117 cases of DR-TB, with 69% tested for fluoroquinolone resistance. Limited information is available on the prevalence of resistance to bedaquiline, linezolid, and fluoroquinolone, which are key components of the all-oral treatment regimen for rifampicin-resistant TB in Uzbekistan. METHODS A retrospective study was conducted using extensive programmatic data from 2019 to 2023 in Uzbekistan. We assessed second-line drug-resistant TB (SLDR-TB) rates using phenotypic drug susceptibility testing (pDST). Demographic and clinical characteristics associated with SLDR-TB were analysed using multivariable logistic regression models based on the Allen-Cady approach. RESULTS In total, 2,405 patients with TB who had undergone pDST were included (median age 40 years, 47% female). The overall SLDR-TB resistance rate was 24% (95% CI 22-26). Prevalence of resistance to bedaquiline, linezolid, moxifloxacin, levofloxacin, and amikacin were respectively 3.1%, 0.8%, 15%, 13%, and 12%. Risk factors for SLDR-TB were resistance to rifampicin and/or isoniazid, exposure to clofazimine, retreatment status, contact with drug-susceptible TB case or DR-TB case, and diabetes. CONCLUSIONS The high prevalence of SLDR-TB is of major concern, emphasising the need for baseline pDST in RR-TB treatment. Identified risk factors can aid early detection of at-risk individuals and inform clinical practice.
Collapse
Affiliation(s)
- S Moe
- Médecins Sans Frontières (MSF), Nukus, Uzbekistan
| | - I Azamat
- Médecins Sans Frontières (MSF), Nukus, Uzbekistan
| | | | - M Oluya
- Médecins Sans Frontières (MSF), Nukus, Uzbekistan
| | - A Khristusev
- Médecins Sans Frontières (MSF), Nukus, Uzbekistan
| | - M L Rekart
- Médecins Sans Frontières (MSF), Nukus, Uzbekistan
| | - K Mamitova
- Médecins Sans Frontières (MSF), Nukus, Uzbekistan
| | - G Bidwell
- Médecins Sans Frontières (MSF), Nukus, Uzbekistan
| | | | - B Kalmuratov
- Republican Center of Tuberculosis and Pulmonology, Nukus, Uzbekistan
| | - Z Tigay
- Republican Center of Tuberculosis and Pulmonology, Nukus, Uzbekistan
| | - N Parpieva
- Republican Specialised Scientific and Practical Medical Center of Tuberculosis and Pulmonology, Tashkent, Uzbekistan
| | - K Safaev
- Republican Specialised Scientific and Practical Medical Center of Tuberculosis and Pulmonology, Tashkent, Uzbekistan
| | | | | | | | | |
Collapse
|
4
|
Duffey M, Shafer RW, Timm J, Burrows JN, Fotouhi N, Cockett M, Leroy D. Combating antimicrobial resistance in malaria, HIV and tuberculosis. Nat Rev Drug Discov 2024; 23:461-479. [PMID: 38750260 DOI: 10.1038/s41573-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 06/07/2024]
Abstract
Antimicrobial resistance poses a significant threat to the sustainability of effective treatments against the three most prevalent infectious diseases: malaria, human immunodeficiency virus (HIV) infection and tuberculosis. Therefore, there is an urgent need to develop novel drugs and treatment protocols capable of reducing the emergence of resistance and combating it when it does occur. In this Review, we present an overview of the status and underlying molecular mechanisms of drug resistance in these three diseases. We also discuss current strategies to address resistance during the research and development of next-generation therapies. These strategies vary depending on the infectious agent and the array of resistance mechanisms involved. Furthermore, we explore the potential for cross-fertilization of knowledge and technology among these diseases to create innovative approaches for minimizing drug resistance and advancing the discovery and development of new anti-infective treatments. In conclusion, we advocate for the implementation of well-defined strategies to effectively mitigate and manage resistance in all interventions against infectious diseases.
Collapse
Affiliation(s)
- Maëlle Duffey
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland
- The Global Antibiotic Research & Development Partnership, Geneva, Switzerland
| | - Robert W Shafer
- Department of Medicine/Infectious Diseases, Stanford University, Palo Alto, CA, USA
| | | | - Jeremy N Burrows
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland
| | | | | | - Didier Leroy
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland.
| |
Collapse
|
5
|
Huang C, Zhang S, Ha X, Cui Y, Zhang H. The value of lung ultrasound score in neonatal respiratory distress syndrome: a prospective diagnostic cohort study. Front Med (Lausanne) 2024; 11:1357944. [PMID: 38390571 PMCID: PMC10881781 DOI: 10.3389/fmed.2024.1357944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale The accurate diagnosis of critically ill patients with respiratory failure can be achieved through lung ultrasound (LUS) score. Considering its characteristics, it is speculated that this technique might also be useful for patients with neonatal respiratory distress syndrome (NRDS). Thus, there is a need for precise imaging tools to monitor such patients. Objectives This double-blind randomized cohort study aims to investigate the impact of LUS and related scores on the severity of NRDS patients. Methods This study was conducted as a prospective double-blind randomized study. Bivariate correlation analysis was conducted to investigate the relationship between LUS score and Oxygenation Index (OI), Respiratory Index (RI), and Sequential Organ Failure Assessment (SOFA) score. Spearman's correlation coefficient was used to generate correlation heat maps, elucidating the associations between LUS and respective parameters in different cohorts. Receiver Operating Characteristic (ROC) curves were employed to calculate the predictive values, sensitivity, and specificity of different scores in determining the severity of NRDS. Results This study ultimately included 134 patients admitted to the intensive care unit (ICU) between December 2020 and June 2022. Among these patients, 72 were included in the NRDS cohort, while 62 were included in the Non-NRDS (N-NRDS) cohort. There were significant differences in the mean LUS scores between NRDS and N-NRDS patients (p < 0.01). The LUS score was significantly negatively correlated with the OI (p < 0.01), while it was significantly positively correlated with the RI and SOFA scores (p < 0.01). The correlation heatmap revealed the highest positive correlation coefficient between LUS and RI (0.82), while the highest negative correlation coefficient was observed between LUS and OI (-0.8). ROC curves for different scores demonstrated that LUS score had the highest area under the curve (0.91, 95% CI: 0.84-0.98) in predicting the severity of patients' conditions. The combination of LUS and other scores can more accurately predict the severity of NRDS patients, with the highest AUC value of 0.93, significantly higher than using a single indicator alone (p < 0.01). Conclusion Our double-blind randomized cohort study demonstrates that LUS, RI, OI, and SOFA scores can effectively monitor the lung ventilation and function in NRDS. Moreover, these parameters and their combination have significant predictive value in evaluating the severity and prognosis of NRDS patients. Therefore, these results provide crucial insights for future research endeavors.
Collapse
Affiliation(s)
- Chunyan Huang
- Department of Ultrasound, Yantaishan Hospital, Yantai, China
- Medical Impact and Nuclear Medicine Program, Binzhou Medical University, Yantai, China
| | - Shaoqin Zhang
- Department of Ultrasound, Yantaishan Hospital, Yantai, China
| | - Xiaoming Ha
- Department of Ultrasound, Yantaishan Hospital, Yantai, China
| | - Yanfang Cui
- Department of Ultrasound, Yantaishan Hospital, Yantai, China
| | - Hongxia Zhang
- Department of Ultrasound, Yantaishan Hospital, Yantai, China
| |
Collapse
|
6
|
Mok S, Roycroft E, Flanagan PR, Wagener J, Fitzgibbon MM. Investigation of genomic mutations and their association with phenotypic resistance to new and repurposed drugs in Mycobacterium tuberculosis complex clinical isolates. J Antimicrob Chemother 2023; 78:2637-2644. [PMID: 37740935 PMCID: PMC10683940 DOI: 10.1093/jac/dkad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND WGS has the potential to detect resistance-associated mutations and guide treatment of MDR TB. However, the knowledge base to confidently interpret mutations associated with the new and repurposed drugs is sparse, and phenotypic drug susceptibility testing is required to detect resistance. METHODS We screened 900 Mycobacterium tuberculosis complex genomes from Ireland, a low TB incidence country, for mutations in 13 candidate genes and assessed their association with phenotypic resistance to bedaquiline, clofazimine, linezolid, delamanid and pretomanid. RESULTS We identified a large diversity of mutations in the candidate genes of 195 clinical isolates, with very few isolates associated with phenotypic resistance to bedaquiline (n = 4), delamanid (n = 4) and pretomanid (n = 2). We identified bedaquiline resistance among two drug-susceptible TB isolates that harboured mutations in Rv0678. Bedaquiline resistance was also identified in two MDR-TB isolates harbouring Met146Thr in Rv0678, which dated back to 2007, prior to the introduction of bedaquiline. High-level delamanid resistance was observed in two isolates with deletions in ddn, which were also resistant to pretomanid. Delamanid resistance was detected in two further isolates that harboured mutations in fbiA, but did not show cross-resistance to pretomanid. All isolates were susceptible to linezolid and clofazimine, and no mutations found were associated with resistance. CONCLUSIONS More studies that correlate genotypic and phenotypic drug susceptibility data are needed to increase the knowledge base of mutations associated with resistance, in particular for pretomanid. Overall, this study contributes to the development of future mutation catalogues for M. tuberculosis complex isolates.
Collapse
Affiliation(s)
- Simone Mok
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Emma Roycroft
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Peter R Flanagan
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Johannes Wagener
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| | - Margaret M Fitzgibbon
- Irish Mycobacteria Reference Laboratory, St James’s Hospital, Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James’s Hospital Campus, Dublin, Ireland
| |
Collapse
|
7
|
Timm J, Bateson A, Solanki P, Paleckyte A, Witney AA, Rofael SAD, Fabiane S, Olugbosi M, McHugh TD, Sun E. Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002283. [PMID: 37851685 PMCID: PMC10584172 DOI: 10.1371/journal.pgph.0002283] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials-STAND, Nix-TB, ZeNix and SimpliciTB-were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0-2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2-6.3% vs. 0-0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5-57%) participants with vs. 6/185 (3.2%, 1.2-6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs.
Collapse
Affiliation(s)
- Juliano Timm
- TB Alliance, New York City, New York, United States of America
| | - Anna Bateson
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Priya Solanki
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Ana Paleckyte
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Adam A. Witney
- Institute of Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Sylvia A. D. Rofael
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
- Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Stella Fabiane
- MRC Clinical Trials Unit at University College London, London, United Kingdom
| | | | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, United Kingdom
| | - Eugene Sun
- TB Alliance, New York City, New York, United States of America
| |
Collapse
|
8
|
Cesilia C, Tirtosudiro MA, Nataprawira HM. Bedaquiline (BDQ) resistance in an adolescent with multidrug-resistant tuberculosis (MDR-TB): An alarm for pediatricians. IDCases 2023; 34:e01880. [PMID: 37736021 PMCID: PMC10509653 DOI: 10.1016/j.idcr.2023.e01880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
Bedaquiline (BDQ) use for all age groups in drug-resistant (DR) tuberculosis (TB) regimens for children may be shorter, safer, and more effective. However, the emergence of BDQ resistance reports soon after its introduction is alarming. We report the case of a 17-year-old boy, initially diagnosed with Rifampicin-resistant (RR)-TB and developed BDQ resistance during the treatment. To the best of our knowledge, this is the first report of BDQ resistance in pediatric.
Collapse
Affiliation(s)
- Citra Cesilia
- Division of Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Muh Akbar Tirtosudiro
- Division of Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Heda Melinda Nataprawira
- Division of Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| |
Collapse
|
9
|
Domínguez J, Boeree MJ, Cambau E, Chesov D, Conradie F, Cox V, Dheda K, Dudnyk A, Farhat MR, Gagneux S, Grobusch MP, Gröschel MI, Guglielmetti L, Kontsevaya I, Lange B, van Leth F, Lienhardt C, Mandalakas AM, Maurer FP, Merker M, Miotto P, Molina-Moya B, Morel F, Niemann S, Veziris N, Whitelaw A, Horsburgh CR, Lange C. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement. THE LANCET. INFECTIOUS DISEASES 2023; 23:e122-e137. [PMID: 36868253 PMCID: PMC11460057 DOI: 10.1016/s1473-3099(22)00875-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 03/05/2023]
Abstract
Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.
Collapse
Affiliation(s)
- José Domínguez
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain.
| | - Martin J Boeree
- Department of Lung Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emmanuelle Cambau
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France, APHP-Hôpital Bichat, Mycobacteriology Laboratory, INSERM, University Paris Cite, IAME UMR1137, Paris, France
| | - Dumitru Chesov
- Department of Pneumology and Allergology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova; Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Francesca Conradie
- Department of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Vivian Cox
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrii Dudnyk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine; Public Health Center, Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias I Gröschel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Berit Lange
- Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research, TI BBD, Braunschweig, Germany
| | - Frank van Leth
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Christian Lienhardt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; UMI 233 IRD-U1175 INSERM - Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Anna M Mandalakas
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Merker
- Division of Evolution of the Resistome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Department of Human, Biological and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Andrew Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charles R Horsburgh
- Departments of Epidemiology, Biostatistics, Global Health and Medicine, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
10
|
MacLean ELH, Miotto P, González Angulo L, Chiacchiaretta M, Walker TM, Casenghi M, Rodrigues C, Rodwell TC, Supply P, André E, Kohli M, Ruhwald M, Cirillo DM, Ismail N, Zignol M. Updating the WHO target product profile for next-generation Mycobacterium tuberculosis drug susceptibility testing at peripheral centres. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001754. [PMID: 37000774 PMCID: PMC10065236 DOI: 10.1371/journal.pgph.0001754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/04/2023] [Indexed: 04/01/2023]
Abstract
There were approximately 10 million tuberculosis (TB) cases in 2020, of which 500,000 were drug-resistant. Only one third of drug-resistant TB cases were diagnosed and enrolled on appropriate treatment, an issue partly driven by a lack of rapid, accurate drug-susceptibility testing (DST) tools deployable in peripheral settings. In 2014, World Health Organization (WHO) published target product profiles (TPPs) which detailed minimal and optimal criteria to address high-priority TB diagnostic needs, including DST. Since then, the TB community's needs have evolved; new treatment regimens, changes in TB definitions, further emergence of drug resistance, technological advances, and changing end-users requirements have necessitated an update. The DST TPP's revision was therefore undertaken by WHO with the Stop TB Partnership New Diagnostics Working Group. We describe the process of updating the TPP for next-generation TB DST for use at peripheral centres, highlight key updates, and discuss guidance regarding technical and operational specifications.
Collapse
Affiliation(s)
- Emily Lai-Ho MacLean
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Matteo Chiacchiaretta
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Martina Casenghi
- Department of Innovation and New Technology, Elizabeth Glaser Paediatric AIDS Foundation, Geneva, Switzerland
| | - Camilla Rodrigues
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Timothy C. Rodwell
- FIND, Geneva, Switzerland
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Philip Supply
- Univ. de Lille, CNRS, INSERM, CHU Lille; Institut Pasteur de Lille, U1019-UMR 9017-CIIL (Center for Infection and Immunity of Lille), Lille, France
| | - Emmanuel André
- Laboratory of Clinical Bacteriology and Mycology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, UZ Leuven Hospitals, Leuven, Belgium
| | | | | | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nazir Ismail
- Global TB Programme, World Health Organization, Geneva, Switzerland
| | - Matteo Zignol
- Global TB Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
11
|
Tu PHT, Anlay DZ, Dippenaar A, Conceição EC, Loos J, Van Rie A. Bedaquiline resistance probability to guide treatment decision making for rifampicin-resistant tuberculosis: insights from a qualitative study. BMC Infect Dis 2022; 22:876. [PMID: 36418994 PMCID: PMC9682818 DOI: 10.1186/s12879-022-07865-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bedaquiline (BDQ) is a core drug for rifampicin-resistant tuberculosis (RR-TB) treatment. Accurate prediction of a BDQ-resistant phenotype from genomic data is not yet possible. A Bayesian method to predict BDQ resistance probability from next-generation sequencing data has been proposed as an alternative. METHODS We performed a qualitative study to investigate the decision-making of physicians when facing different levels of BDQ resistance probability. Fourteen semi-structured interviews were conducted with physicians experienced in treating RR-TB, sampled purposefully from eight countries with varying income levels and burden of RR-TB. Five simulated patient scenarios were used as a trigger for discussion. Factors influencing the decision of physicians to prescribe BDQ at macro-, meso- and micro levels were explored using thematic analysis. RESULTS The perception and interpretation of BDQ resistance probability values varied widely between physicians. The limited availability of other RR-TB drugs and the high cost of BDQ hindered physicians from altering the BDQ-containing regimen and incorporating BDQ resistance probability in their decision-making. The little experience with BDQ susceptibility testing and whole-genome sequencing results, and the discordance between phenotypic susceptibility and resistance probability were other barriers for physicians to interpret the resistance probability estimates. Especially for BDQ resistance probabilities between 25% and 70%, physicians interpreted the resistance probability value dynamically, and other factors such as clinical and bacteriological treatment response, history of exposure to BDQ, and resistance profile were often considered more important than the BDQ probability value for the decision to continue or stop BDQ. In this grey zone, some physicians opted to continue BDQ but added other drugs to strengthen the regimen. CONCLUSIONS This study highlights the complexity of physicians' decision-making regarding the use of BDQ in RR-TB regimens for different levels of BDQ resistance probability.. Ensuring sufficient access to BDQ and companion drugs, improving knowledge of the genotype-phenotype association for BDQ resistance, availability of a rapid molecular test, building next-generation sequencing capacity, and developing a clinical decision support system incorporating BDQ resistance probability will all be essential to facilitate the implementation of BDQ resistance probability in personalizing treatment for patients with RR-TB.
Collapse
Affiliation(s)
- Pham Hien Trang Tu
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Doornstraat 331, 2610, Antwerp, Belgium.
| | - Degefaye Zelalem Anlay
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Doornstraat 331, 2610, Antwerp, Belgium
- Department of Community Health Nursing, School of Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Anzaan Dippenaar
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Doornstraat 331, 2610, Antwerp, Belgium
| | - Emilyn Costa Conceição
- Department of Science and Innovation, National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jasna Loos
- Dean's Office, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Annelies Van Rie
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Doornstraat 331, 2610, Antwerp, Belgium
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Diagnosis and treatment of drug-resistant tuberculosis (DR-TB) is undergoing substantial changes, owing availability of new diagnostic tools and drugs, coupled with global underdiagnosis and undertreatment. Recent developments are reviewed. RECENT FINDINGS Molecular diagnostics, for Mycobacterium tuberculosis complex detection and prediction of drug resistance, implemented in the last decade, accelerated TB diagnosis with improved case detection. Nevertheless, access and coverage of drug-resistance testing remain insufficient. Genome sequencing-technologies, based on targeted next-generation sequencing show early potential to mitigate some of the challenges in the future. The recommendation to use an all oral, bedaquiline based regimen for treatment of multidrug-resistant/rifampicin-resistant TB is major advancement in DR-TB care. TB regimen using new and repurposed TB drugs demonstrate in recent clinical trials like, NIX-TB, ZeNIX and TB PRACTECAL considerable treatment success, shorten treatment duration and reduce toxicity. Their optimal use is threatened by the rapid occurrence and spread of strains, resistant to new drugs. Children benefit only very slowly from the progress. SUMMARY There is notable progress in improved diagnosis and treatment of drug-resistant TB, but complicated by the COVID-19 pandemic the majority of TB patients worldwide don't have (yet) access to the advances.
Collapse
|
13
|
Kamada K, Mitarai S. Anti-Mycobacterial Drug Resistance in Japan: How to Approach This Problem? Antibiotics (Basel) 2021; 11:antibiotics11010019. [PMID: 35052896 PMCID: PMC8773147 DOI: 10.3390/antibiotics11010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Mycobacteriosis is mainly caused by two groups of species: Mycobacterium tuberculosis and non-tuberculosis mycobacteria (NTM). The pathogens cause not only respiratory infections, but also general diseases. The common problem in these pathogens as of today is drug resistance. Tuberculosis (TB) is a major public health concern. A major challenge in the treatment of TB is anti-mycobacterial drug resistance (AMR), including multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Recently, the success rate of the treatment of drug-resistant tuberculosis (DR-TB) has improved significantly with the introduction of new and repurposed drugs, especially in industrialized countries such as Japan. However, long-term treatment and the adverse events associated with the treatment of DR-TB are still problematic. To solve these problems, optimal treatment regimens designed/tailor-made for each patient are necessary, regardless of the location in the world. In contrast to TB, NTM infections are environmentally oriented. Mycobacterium avium-intracellulare complex (MAC) and Mycobacterium abscessus species (MABS) are the major causes of NTM infections in Japan. These bacteria are naturally resistant to a wide variation of antimicrobial agents. Macrolides, represented by clarithromycin (CLR) and amikacin (AMK), show relatively good correlation with treatment success. However, the efficacies of potential drugs for the treatment of macrolide-resistant MAC and MABS are currently under evaluation. Thus, it is particularly difficult to construct an effective treatment regimen for macrolide-resistant MAC and MABS. AMR in NTM infections are rather serious in Japan, even when compared with challenges associated with DR-TB. Given the AMR problems in TB and NTM, the appropriate use of drugs based on accurate drug susceptibility testing and the development of new compounds/regimens that are strongly bactericidal in a short-time course will be highly expected.
Collapse
Affiliation(s)
| | - Satoshi Mitarai
- Correspondence: ; Tel.: +81-42-493-5711 (ext. 395); Fax: +81-42-492-4600
| |
Collapse
|
14
|
Alagna R, Cabibbe AM, Miotto P, Saluzzo F, Köser CU, Niemann S, Gagneux S, Rodrigues C, Rancoita PVM, Cirillo DM. Is the new WHO definition of extensively drug-resistant tuberculosis easy to apply in practice? Eur Respir J 2021; 58:58/1/2100959. [PMID: 34215664 DOI: 10.1183/13993003.00959-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/22/2021] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Paolo Miotto
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Camilla Rodrigues
- Dept of Microbiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | | | | |
Collapse
|