1
|
Akorful RAA, Odoom A, Awere-Duodu A, Donkor ES. The Global Burden of Clostridioides difficile Infections, 2016-2024: A Systematic Review and Meta-Analysis. Infect Dis Rep 2025; 17:31. [PMID: 40277958 PMCID: PMC12026862 DOI: 10.3390/idr17020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 04/26/2025] Open
Abstract
Background: Clostridioides difficile infection (CDI) is a major cause of healthcare-associated infections globally. Understanding variations in CDI incidence and outcomes across settings, populations, and regions is important for guiding prevention strategies. Aim: The aim of this study was to determine the global epidemiology of CDI to better understand disease burden across settings and geographic regions. Methods: Relevant publications were identified through searches of major databases, including PubMed, Scopus, and Web of Science, published from 1 January 2016 through 24 July 2024. Random effects models were used to pool estimates, and 95% confidence intervals (CIs) were calculated. Results: A total of 59 studies, representing 24 countries across North America, Europe, the Asia-Pacific region, Latin America, and the Middle East, met the inclusion criteria. The incidence of CDI was highest in hospital-onset healthcare facility settings, with 5.31 cases/1000 admissions (95% CI 3.76-7.12) and 5.00 cases/10,000 patient-days (95% CI 3.96-6.15). Long-term care facilities reported 44.24 cases/10,000 patient-days (95% CI 39.57-49.17). Pediatric populations faced a greater risk, with 4.52 cases/1000 admissions (95% CI 0.55-12.17), than adults did at 2.13 (95% CI 1.69-2.61). Recurrence rates were highest for community-acquired CDI at 16.22%. The death rates for the CDI cases tracked for 30 days and of unspecified duration were 8.32% and 16.05%, respectively. Conclusions: This comprehensive review identified healthcare facilities, long-term care, pediatric populations, and North America as disproportionately burdened. This finding provides guidance on priority areas and populations for targeted prevention through antimicrobial stewardship, infection control, and surveillance.
Collapse
Affiliation(s)
| | | | | | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (R.A.A.A.); (A.O.); (A.A.-D.)
| |
Collapse
|
2
|
Calderón-Ezquerro MC, Ponce de León A. A, Brunner-Mendoza C, Guerrero-Guerra C. C, Sanchez-Flores A, Salinas-Peralta I, López Jacome LE, Colín Castro C. CA, Martínez Zavaleta MG. Assessment of airborne bacteria from a public health institution in Mexico City. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003672. [PMID: 39509382 PMCID: PMC11542838 DOI: 10.1371/journal.pgph.0003672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024]
Abstract
In this work, the composition of the bacterial community in the air of a hospital in Mexico City was evaluated using metabarcoding and proteomics approaches, along with the assessment of environmental factors such as temperature, humidity, and suspended particles. Two types of aerobiological samplers were used: Andersen One-Stage Viable Particle Sampler (AVPS) and Coriolis μ sampler (CμS-Sampler). Sampling was performed in four areas of the hospital: Floor 1 (F1), Floor 2 (F2), and Emergency Unit (EU), as well as outdoors (OH). The use of both samplers showed variations in diversity and composition. Bacterial abundance was 89.55% with the CμS-Sampler and 74.00% with the AVPS. The predominant phyla with the AVPS were Firmicutes, Proteobacteria and Actinobacteria, while with the CμS-Sampler, the main phyla were Proteobacteria, followed by Actinobacteria and Firmicutes. The highest diversity and richness of bacteria was recorded in F1 and F2, with 32 species identified, with a greater number within the hospital. Potentially pathogenic bacteria such as Bacillus spp., B. cereus, B. pumilus, Clostridium spp., Enterococcus gallinarum, Micrococcus luteus and Staphylococcus spp. were detected. Furthermore, a high concentration of particles between 2.5 μm and 10 μm, and Total Particulate Matter (TPM) was observed, with values of TPM, 303 μg/m3 in F1, 195 μg/m3 in F2, 235 μg/m3 in EU and 188 μg/m3 in OH. Temperatures averaged between 26 and 27°C, and relative humidity ranged between 39.8 and 43.5%. These environmental conditions and particulate matter can promote bacterial growth and their dispersion in the air, constituting a continuous risk of exposure to pathogens, mainly in indoor areas of the hospital. This study provides a framework for air monitoring, where the results of different samplers complement the detection of potential pathogens.
Collapse
Affiliation(s)
- Maria Carmen Calderón-Ezquerro
- Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM, Mexico City, México
| | - Alfredo Ponce de León A.
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | | - César Guerrero-Guerra C.
- Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM, Mexico City, México
| | - Alejandro Sanchez-Flores
- Instituto de Biotecnología, Unidad Universitaria de Secuenciación Masiva y Bioinformática, UNAM, Morelos, México
| | - Ilse Salinas-Peralta
- Instituto de Biotecnología, Unidad Universitaria de Secuenciación Masiva y Bioinformática, UNAM, Morelos, México
| | - Luis Esau López Jacome
- Laboratorio de Microbiología Clínica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, México
- Facultad de Química, Laboratorio, UNAM, Mexico City, México
| | - Claudia Adriana Colín Castro C.
- Laboratorio de Microbiología Clínica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, México
| | | |
Collapse
|
3
|
Hulme JP. Emerging Diagnostics in Clostridioides difficile Infection. Int J Mol Sci 2024; 25:8672. [PMID: 39201359 PMCID: PMC11354687 DOI: 10.3390/ijms25168672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Clostridioides difficile detection in community settings is time-intensive, resulting in delays in diagnosing and quarantining infected individuals. However, with the advent of semi-automated devices and improved algorithms in recent decades, the ability to discern CDI infection from asymptomatic carriage has significantly improved. This, in turn, has led to efficiently regulated monitoring systems, further reducing endemic risk, with recent concerns regarding a possible surge in hospital-acquired Clostridioides difficile infections post-COVID failing to materialize. This review highlights established and emerging technologies used to detect community-acquired Clostridioides difficile in research and clinical settings.
Collapse
Affiliation(s)
- John P Hulme
- Department of Bio-Nano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
4
|
Stămăteanu LO, Pleşca CE, Miftode IL, Bădescu AC, Manciuc DC, Hurmuzache ME, Roșu MF, Miftode RȘ, Obreja M, Miftode EG. " Primum, non nocere": The Epidemiology of Toxigenic Clostridioides difficile Strains in the Antibiotic Era-Insights from a Prospective Study at a Regional Infectious Diseases Hospital in Eastern Europe. Antibiotics (Basel) 2024; 13:461. [PMID: 38786189 PMCID: PMC11117487 DOI: 10.3390/antibiotics13050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Clostridioides difficile infection (CDI), though identified nearly five decades ago, still remains a major challenge, being associated with significant mortality rates. The strains classified as hypervirulent, notably 027/NAP1/BI, have garnered substantial attention from researchers and clinicians due to their direct correlation with the severity of the disease. Our study aims to elucidate the significance of toxigenic Clostridioides difficile (CD) strains in the clinical and therapeutic aspects of managing patients diagnosed with CDI. We conducted a single-center prospective study, including patients with CDI from north-eastern Romania. We subsequently conducted molecular biology testing to ascertain the prevalence of the presumptive 027/NAP1/BI strain within aforementioned geographic region. The patients were systematically compared and assessed both clinically and biologically, employing standardized and comparative methodologies. The study enrolled fifty patients with CDI admitted between January 2020 and June 2020. Among the investigated patients, 43 (86%) exhibited infection with toxigenic CD strains positive for toxin B genes (tcdB), binary toxin genes (cdtA and cdtB), and deletion 117 in regulatory genes (tcdC), while the remaining 7 (14%) tested negative for binary toxin genes (cdtA and cdtB) and deletion 117 in tcdC. The presence of the presumptive 027/NAP1/BI strains was linked to a higher recurrence rate (35.56%, p = 0.025), cardiovascular comorbidities (65.1% vs. 14.2%, p = 0.016), and vancomycin treatment (55.8% vs. 14.3%, p = 0.049). The findings of our investigation revealed an elevated incidence of colitis attributed to presumptive 027/NAP1/BI. Despite the prevalence of the presumptive 027 strain and its associated heightened inflammation among the patients studied, no significant differences were observed regarding the clinical course or mortality outcomes.
Collapse
Affiliation(s)
- Lidia Oana Stămăteanu
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Claudia Elena Pleşca
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Ionela Larisa Miftode
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Aida Corina Bădescu
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Doina Carmen Manciuc
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Mihnea Eudoxiu Hurmuzache
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Manuel Florin Roșu
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
- Surgical (Dentoalveolar and Maxillofacial Surgery) Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Radu Ștefan Miftode
- Department of Internal Medicine I (Cardiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maria Obreja
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| | - Egidia Gabriela Miftode
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.O.S.); (D.C.M.); (M.E.H.); (M.O.); (E.G.M.)
- “St. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania; (A.C.B.); (M.F.R.)
| |
Collapse
|
5
|
Donskey CJ. Empowering patients to prevent healthcare-associated infections. Am J Infect Control 2023; 51:A107-A113. [PMID: 37890939 DOI: 10.1016/j.ajic.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 10/29/2023]
Abstract
In recent years there has been increasing interest in the empowerment of patients to serve as partners in efforts to prevent healthcare-associated infections. However, patients often have limited awareness of the risk for acquisition and dissemination of healthcare-associated pathogens and have received limited information on how they might participate in infection prevention efforts. This review highlights some of the areas where patient empowerment initiatives in infection control and antimicrobial stewardship may be useful and reviews available evidence that such initiatives can be beneficial. Although patients are the primary focus of these initiatives, inclusion of family members should be considered in many situations because they often play a major role in healthcare decision-making.
Collapse
Affiliation(s)
- Curtis J Donskey
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine, Cleveland, OH.
| |
Collapse
|
6
|
Bi X, Zheng L, Yang Z, Lv T, Tong X, Chen Y. Retrospective Study of the Epidemiology of Clostridioides difficile Infection in the Neurosurgery Department of a Tertiary Hospital in China. Infect Drug Resist 2023; 16:545-554. [PMID: 36726387 PMCID: PMC9885874 DOI: 10.2147/idr.s397544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Background Although the epidemiology of Clostridioides difficile is important, few studies examining transmission of C. difficile have been reported, especially in wards with low detection rates, such as neurosurgery departments. Purpose This retrospective study investigated the epidemiology of C. difficile infection in a neurosurgery department over a 24-month period, particularly examining the transmission of C. difficile using whole-genome sequencing (WGS). Methods Clostridioides difficile strains were isolated and identified from fecal samples of neurosurgical patients. Toxigenic strains were typed using multilocus sequence typing, PCR ribotyping and using capillary gel electrophoresis. WGS was used to characterize C. difficile ST-37/RT017 isolates, and comparative genomic analyses were performed to compare genomic differences between all ST-37 strains from other wards. The susceptibility to 8 antimicrobial agents was examined using the E-test. Results Comparative genomic analyses revealed that isolates obtained from neurosurgical patients clustered into two lineages. Only strains s11052403 and s10090304, respectively, isolated from a patient on the 8th floor of the neurosurgery ward and a patient on the 9th floor, were highly similar, exhibiting differences of only two single-nucleotide polymorphisms. All C. difficile ST-37/RT017 strains isolated from neurosurgical patients were resistant to multiple classes of antibiotics. Conclusion There is an urgent need to raise awareness of C. difficile infection, and epidemiologic surveillance is required to detect clustering and transmission of C. difficile cases in China. Strict disinfection of the environment is essential to reduce transmission of C. difficile and achieve effective infection control in the hospital setting.
Collapse
Affiliation(s)
- Xiajing Bi
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lisi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhi Yang
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Tao Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaofei Tong
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China,Correspondence: Xiaofei Tong; Yunbo Chen, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People’s Republic of China, Tel/Fax +86 571 87236459, Email ;
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China,Microbiology Laboratory, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Lanzas C, Jara M, Tucker R, Curtis S. A review of epidemiological models of Clostridioides difficile transmission and control (2009-2021). Anaerobe 2022; 74:102541. [PMID: 35217149 DOI: 10.1016/j.anaerobe.2022.102541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile is the leading cause of infectious diarrhea and one of the most common healthcare-acquired infections worldwide. We performed a systematic search and a bibliometric analysis of mathematical and computational models for Clostridioides difficile transmission. We identified 33 publications from 2009 to 2021. Models have underscored the importance of asymptomatic colonized patients in maintaining transmission in health-care settings. Infection control, antimicrobial stewardship, active testing, and vaccination have often been evaluated in models. Despite active testing and vaccination being not currently implemented, they are the most commonly evaluated interventions. Some aspects of C. difficile transmission, such community transmission and interventions in health-care settings other than in acute-care hospitals, remained less evaluated through modeling.
Collapse
Affiliation(s)
- Cristina Lanzas
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA.
| | - Manuel Jara
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Rachel Tucker
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Savannah Curtis
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | -
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|