1
|
Almulhim M, Ghasemian A, Memariani M, Karami F, Yassen ASA, Alexiou A, Papadakis M, Batiha GES. Drug repositioning as a promising approach for the eradication of emerging and re-emerging viral agents. Mol Divers 2025:10.1007/s11030-025-11131-8. [PMID: 40100484 DOI: 10.1007/s11030-025-11131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/08/2025] [Indexed: 03/20/2025]
Abstract
The global impact of emerging and re-emerging viral agents during epidemics and pandemics leads to serious health and economic burdens. Among the major emerging or re-emerging viruses include SARS-CoV-2, Ebola virus (EBOV), Monkeypox virus (Mpox), Hepatitis viruses, Zika virus, Avian flu, Influenza virus, Chikungunya virus (CHIKV), Dengue fever virus (DENV), West Nile virus, Rhabdovirus, Sandfly fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, and Rift Valley fever virus (RVFV). A comprehensive literature search was performed to identify existing studies, clinical trials, and reviews that discuss drug repositioning strategies for the treatment of emerging and re-emerging viral infections using databases, such as PubMed, Scholar Google, Scopus, and Web of Science. By utilizing drug repositioning, pharmaceutical companies can take advantage of a cost-effective, accelerated, and effective strategy, which in turn leads to the discovery of innovative treatment options for patients. In light of antiviral drug resistance and the high costs of developing novel antivirals, drug repositioning holds great promise for more rapid substitution of approved drugs. Main repositioned drugs have included chloroquine, ivermectin, dexamethasone, Baricitinib, tocilizumab, Mab114 (Ebanga™), ZMapp (pharming), Artesunate, imiquimod, saquinavir, capmatinib, naldemedine, Trametinib, statins, celecoxib, naproxen, metformin, ruxolitinib, nitazoxanide, gemcitabine, Dorzolamide, Midodrine, Diltiazem, zinc acetate, suramin, 5-fluorouracil, quinine, minocycline, trifluoperazine, paracetamol, berbamine, Nifedipine, and chlorpromazine. This succinct review will delve into the topic of repositioned drugs that have been utilized to combat emerging and re-emerging viral pathogens.
Collapse
Affiliation(s)
- Marwa Almulhim
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mojtaba Memariani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Karami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Asmaa S A Yassen
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
2
|
Wang H. Practical updates in clinical antiviral resistance testing. J Clin Microbiol 2024; 62:e0072823. [PMID: 39051778 PMCID: PMC11323466 DOI: 10.1128/jcm.00728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
The laboratory diagnosis of antiviral resistance is a quickly changing field due to new drug availability, the sunsetting of older drugs, the development of novel technologies, rapid viral evolution, and the financial/logistic pressures of the clinical laboratory. This mini-review summarizes the current state of clinically available antiviral resistance testing in the United States in 2024, covering the most commonly used test methods, mechanisms, and clinical indications for herpes simplex virus, cytomegalovirus, human immunodeficiency virus, influenza, hepatitis B virus, and hepatitis C virus drug resistance testing. Common themes include the move away from phenotypic to genotypic methods for first-line clinical testing, as well as uncertainty surrounding the clinical meaningfulness of minority variant detection as next-generation sequencing methods have become more commonplace.
Collapse
Affiliation(s)
- Hannah Wang
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Li X, Dong Z, Li J, Dou C, Tian D, Ma Z, Liu W, Gao GF, Bi Y. Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023. Virol Sin 2024; 39:520-523. [PMID: 38768710 PMCID: PMC11280127 DOI: 10.1016/j.virs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
•H1N1 strains were collected from Hunan and Jiangsu provinces in early 2023 following the optimized COVID-19 strategy. •Phylogenic analysis revealed that the epidemic H1N1 viruses fell into different HA clades compared to vaccine strains. •Mutations on HA antigenic sites suggest antigenic drift in the epidemic H1N1 viruses versus vaccine strains. •A potential mismatch was found between recommended vaccine strains and the epidemic H1N1 viruses. •The expeditious, precise, and personalized vaccine update program for influenza virus may need to be put on the agenda.
Collapse
Affiliation(s)
- Xuanxuan Li
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Zefeng Dong
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Jiaming Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Deyu Tian
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenghai Ma
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; D. H. Chen School of Universal Health, Zhejiang University, Hangzhou 310058, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Morimoto R, Isegawa Y. Anti-Influenza Virus Activity of Citrullus lanatus var. citroides as a Functional Food: A Review. Foods 2023; 12:3866. [PMID: 37893759 PMCID: PMC10606521 DOI: 10.3390/foods12203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza is an acute respiratory illness caused by the influenza virus, in response to which vaccines and antiviral drugs are administered. In recent years, the antiviral effects of plants and foods have garnered attention. This review is the first to summarize the therapeutic properties of wild watermelon (Citrullus lanatus var. citroides) against influenza from a phytochemical viewpoint. Wild watermelon is a wild plant with significant potential as a therapeutic candidate in antiviral strategies, when focused on its multiple anti-influenza functionalities. Wild watermelon juice inhibits viral growth, entry, and replication. Hence, we highlight the possibility of utilizing wild watermelon for the prevention and treatment of influenza with stronger antiviral activity. Phytochemicals and phytoestrogen (polyphenol, flavonoids, and prenylated compounds) in wild watermelon juice contribute to this activity and inhibit various stages of viral replication, depending on the molecular structure. Wild plants and foods closely related to the original species contain many natural compounds such as phytochemicals, and exhibit various viral growth inhibitory effects. These natural products provide useful information for future antiviral strategies.
Collapse
Affiliation(s)
- Ryosuke Morimoto
- Department of Health and Nutrition, Faculty of Human Life Science, Shikoku University, Tokushima 771-1192, Japan;
| | - Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
5
|
Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu H, Fenstermacher K, Rothman R, Pekosz A. 2019-2020 H1N1 clade A5a.1 viruses have better in vitro fitness compared with the co-circulating A5a.2 clade. Sci Rep 2023; 13:10223. [PMID: 37353648 PMCID: PMC10290074 DOI: 10.1038/s41598-023-37122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-2020 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-2020 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-2020 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
Collapse
Affiliation(s)
- Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA.
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Cui X, Guo Y, Liu Q. Qingfei Jiedu Granules fight influenza by regulating inflammation, immunity, metabolism, and gut microbiota. J Tradit Complement Med 2023; 13:170-182. [PMID: 36970461 PMCID: PMC10037062 DOI: 10.1016/j.jtcme.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022] Open
Abstract
Background and aim Qingfei Jiedu Granules (QFJD) are a new Traditional Chinese Medicine (TCM) which has been clinically used against coronavirus pneumonia in China. In this study, the therapeutic effect and the underlying mechanisms of QFJD against influenza were investigated. Experimental procedure Pneumonia mice were induced by influenza A virus. Survival rate, weight loss, lung index and lung pathology were measured to evaluate the therapeutic effect of QFJD. The expression of inflammatory factors and lymphocytes was used to assess anti-inflammatory and immunomodulatory effect of QFJD. Gut microbiome analysis was performed to decipher the potential effect of QFJD on intestinal microbiota. Metabolomics approach was conducted to explore the overall metabolic regulation of QFJD. Result and conclusion QFJD shows a significant therapeutic effect on the treatment of influenza and the expression of many pro-inflammatory cytokines were obviously inhibited. QFJD also markedly modulates the level of T and B lymphocytes. The high-dose QFJD has shown similar therapeutic efficiency compared to positive drugs. QFJD profoundly enriched Verrucomicrobia and maintained the balance between Bacteroides and Firmicutes. QFJD associated with 12 signaling pathways in metabolomics study, 9 of which were the same as the model group and were closely related to citrate cycle and amino acid metabolism.To sum up, QFJD is a novel and promising drug against influenza. It can regulate inflammation, immunity, metabolism, and gut microbiota to fight influenza. Verrucomicrobia shows great potential to improve influenza infection and may be an important target.
Collapse
Affiliation(s)
- Xuran Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| |
Collapse
|
7
|
Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu H, Fenstermacher K, Rothman R, Pekosz A. 2019-20 H1N1 clade A5a.1 viruses have better in vitro replication compared with the co-circulating A5a.2 clade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530085. [PMID: 36865250 PMCID: PMC9980287 DOI: 10.1101/2023.02.26.530085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-20 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-20 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-20 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
Collapse
Affiliation(s)
- Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Patel MC, Flanigan D, Feng C, Chesnokov A, Nguyen HT, Elal AA, Steel J, Kondor RJ, Wentworth DE, Gubareva LV, Mishin VP. An optimized cell-based assay to assess influenza virus replication by measuring neuraminidase activity and its applications for virological surveillance. Antiviral Res 2022; 208:105457. [PMID: 36332755 PMCID: PMC10149149 DOI: 10.1016/j.antiviral.2022.105457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Year-round virological characterization of circulating epidemic influenza viruses is conducted worldwide to detect the emergence of viruses that may escape pre-existing immunity or acquire resistance to antivirals. High throughput phenotypic assays are needed to complement the sequence-based analysis of circulating viruses and improve pandemic preparedness. The recent entry of a polymerase inhibitor, baloxavir, into the global market further highlighted this need. Here, we optimized a cell-based assay that considerably streamlines antiviral and antigenic testing by replacing lengthy immunostaining and imaging procedures used in current assay with measuring the enzymatic activity of nascent neuraminidase (NA) molecules expressed on the surface of virus-infected cells. For convenience, this new assay was named IRINA (Influenza Replication Inhibition Neuraminidase-based Assay). IRINA was successfully validated to assess inhibitory activity of baloxavir on virus replication by testing a large set (>150) of influenza A and B viruses, including drug resistant strains and viruses collected during 2017-2022. To test its versatility, IRINA was utilized to evaluate neutralization activity of a broadly reactive human anti-HA monoclonal antibody, FI6, and post-infection ferret antisera, as well as the inhibition of NA enzyme activity by NA inhibitors. Performance of IRINA was tested in parallel using respective conventional assays. IRINA offers an attractive alternative to current phenotypic assays, while maintaining reproducibility and high throughput capacity. Additionally, the improved turnaround time may prove to be advantageous when conducting time sensitive studies, such as investigating a new virus outbreak. This assay can meet the needs of surveillance laboratories by providing a streamlined and cost-effective approach for virus characterization.
Collapse
Affiliation(s)
- Mira C Patel
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniel Flanigan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; General Dynamics Information Technology, Atlanta, GA, USA
| | - Chenchen Feng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Anton Chesnokov
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ha T Nguyen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anwar Abd Elal
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Cherokee Nation Integrated Health, L.L.C., Atlanta, GA, USA
| | - John Steel
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rebecca J Kondor
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Vasiliy P Mishin
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
9
|
In Vitro Anti-Influenza A Virus H1N1 Effect of Sesquiterpene-Rich Extracts of Carpesium abrotanoides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238313. [PMID: 36500406 PMCID: PMC9739900 DOI: 10.3390/molecules27238313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Due to a high content of sesquiterpenes, Carpesium abrotanoides has been investigated to fully explore its health-promoting properties. Therefore, this work aimed to assess, for the first time, the anti-influenza A virus H1N1 potential of sesquiterpene-targeted fractions of the herb derived from C. abrotanoides. Five compounds, including four sesquiterpenes and one aldehyde, were isolated and identified from the sesquiterpene-rich extracts of C. abrotanoides (SECA), and the contents of three main sesquiterpenes in the SECA were determined. Furthermore, SECA showed a significant protective effect in the MDCK cells infected with influenza A virus (H1N1) in three different conditions: premixed administration, prophylactic administration, and therapeutic administration. SECA can significantly decrease the mRNA expressions of TLR4, MyD88, NF-κB, TNF-α, and IL-6, as well as the protein expressions of TLR4, MyD88, and NF-κB. This result suggests that SECA can resist the influenza A virus H1N1 through the TLR4/MyD88/NF-κB signal pathway.
Collapse
|
10
|
Stannard HL, Mifsud EJ, Wildum S, Brown SK, Koszalka P, Shishido T, Kojima S, Omoto S, Baba K, Kuhlbusch K, Hurt AC, Barr IG. Assessing the fitness of a dual-antiviral drug resistant human influenza virus in the ferret model. Commun Biol 2022; 5:1026. [PMID: 36171475 PMCID: PMC9517990 DOI: 10.1038/s42003-022-04005-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
Influenza antivirals are important tools in our fight against annual influenza epidemics and future influenza pandemics. Combinations of antivirals may reduce the likelihood of drug resistance and improve clinical outcomes. Previously, two hospitalised immunocompromised influenza patients, who received a combination of a neuraminidase inhibitor and baloxavir marboxil, shed influenza viruses resistant to both drugs. Here-in, the replicative fitness of one of these A(H1N1)pdm09 virus isolates with dual resistance mutations (NA-H275Y and PA-I38T) was similar to wild type virus (WT) in vitro, but reduced in the upper respiratory tracts of challenged ferrets. The dual-mutant virus transmitted well between ferrets in an airborne transmission model, but was outcompeted by the WT when the two viruses were co-administered. These results indicate the dual-mutant virus had a moderate loss of viral fitness compared to the WT virus, suggesting that while person-to-person transmission of the dual-resistant virus may be possible, widespread community transmission is unlikely.
Collapse
Affiliation(s)
- Harry L Stannard
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Sook Kwan Brown
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | | | | | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Gholami A, Shafiei-Jandaghi NZ, Ghavami N, Tavakoli F, Yavarian J, Mokhtari-Azad T. Assessment of influenza A (H1N1, H3N2) oseltamivir resistance during 2017-2019 in Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:545-553. [PMID: 36721506 PMCID: PMC9867638 DOI: 10.18502/ijm.v14i4.10241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Neuraminidase inhibitors (NAIs) as an imperative antiviral for influenza prophylaxis and treatment are being consumed worldwide. Increasing use of these antivirals might be associated with drug resistance. Regarding the significance of these variations, this study aimed to investigate the mutations occurring in the NA gene of influenza A viruses leading to oseltamivir resistance during 2017-2019 in Iran. Materials and Methods In this cross-sectional study, 40 influenza A (H1N1, H3N2) strains, isolated in National Influenza Center (NIC) from patients with Severe Acute Respiratory Infection (SARI) during 2017-2019 were subjected to RT-PCR and sequencing of NA complete gene. The frequency of oseltamivir resistance and variation of NA amino acids in these strains were investigated. Results No significant mutation conferring oseltamivir resistance was detected. However, NA antigenic sites in these strains depicted minor changes compared to the vaccine strains. Among H3N2 isolates, mutations at 329, 344, 346 and 385 and among H1N1 isolates mutations at 143 and 188 residues occurred in NA antigenic regions. Conclusion Evaluation of NA gene sequences, showed no resistant viruses to oseltamivir. Given that the viruses in the present study were the last viruses circulating in Iran before COVID-19 pandemic, the results will be beneficial to have a worthy comparison with the strains circulating after the pandemic. Constant monitoring for the emergence of drug-resistant variants and antigenic changes are crucial for all countries.
Collapse
Affiliation(s)
- Amytis Gholami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nastaran Ghavami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Tavakoli
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Talat Mokhtari-Azad, Ph.D, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Telefax: +98-21-88962343
| |
Collapse
|
12
|
Govorkova EA, Takashita E, Daniels RS, Fujisaki S, Presser LD, Patel MC, Huang W, Lackenby A, Nguyen HT, Pereyaslov D, Rattigan A, Brown SK, Samaan M, Subbarao K, Wong S, Wang D, Webby RJ, Yen HL, Zhang W, Meijer A, Gubareva LV. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antiviral Res 2022; 200:105281. [PMID: 35292289 PMCID: PMC9254721 DOI: 10.1016/j.antiviral.2022.105281] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
Abstract
Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health Organization Collaborating Centres for Reference and Research on Influenza during two periods (May 2018–May 2019 and May 2019–May 2020). Combined phenotypic and NA sequence-based analysis revealed that the global frequency of viruses displaying reduced or highly reduced inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045) and 0.6% (159/26010) for the 2018–2019 and 2019–2020 periods, respectively. The most common amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and peramivir in A(H1N1)pdm09 viruses. Combined phenotypic and PA sequence-based analysis showed that the global frequency of viruses showing reduced susceptibility to baloxavir or carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1% (18/15692) for the 2018–2019 and 2019–2020 periods, respectively. Most (n = 61) of these viruses had I38→T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest, the rate was 4.5% (41/919) in the 2018–2019 period and most of the viruses (n = 32) had PA-I38T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual substitution PA-I38V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAIs and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close monitoring of antiviral susceptibility is warranted.
Collapse
Affiliation(s)
- Elena A Govorkova
- WHO Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA.
| | - Emi Takashita
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Rod S Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, The Francis Crick Institute, Worldwide Influenza Centre, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Seiichiro Fujisaki
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Lance D Presser
- National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Mira C Patel
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| | - Weijuan Huang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Angie Lackenby
- National Infection Service, Public Health England, London, NW9 5HT, United Kingdom
| | - Ha T Nguyen
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| | - Dmitriy Pereyaslov
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Aine Rattigan
- WHO Collaborating Centre for Reference and Research on Influenza, The Francis Crick Institute, Worldwide Influenza Centre, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Sook Kwan Brown
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Magdi Samaan
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Sun Wong
- Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong, China
| | - Dayan Wang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Richard J Webby
- WHO Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenqing Zhang
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Adam Meijer
- National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Larisa V Gubareva
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| |
Collapse
|