1
|
Li A, Zheng X, Liu D, Huang R, Ge H, Cheng L, Zhang M, Cheng H. Physical Activity and Depression in Breast Cancer Patients: Mechanisms and Therapeutic Potential. Curr Oncol 2025; 32:77. [PMID: 39996878 PMCID: PMC11854877 DOI: 10.3390/curroncol32020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a significant traumatic experience that often leads to chronic stress and mental health challenges. Research has consistently shown that physical activity-especially exercise-can alleviate depressive symptoms; however, the specific biological mechanisms underlying these antidepressant effects remain unclear. In this review, we comprehensively summarize the biological mechanisms of depression and the antidepressant mechanisms of physical activity and explore the biological processes through which exercise exerts its antidepressant effects in breast cancer patients. We focus on the impact of physical activity on inflammation, the endocrine system, glutamate, and other aspects, all of which play crucial roles in the pathophysiology of depression. Moreover, we discuss the heterogeneity of depression in breast cancer patients and the complex interactions between its underlying mechanisms. Additionally, we propose that a deeper understanding of these mechanisms in the breast cancer population can guide the design and implementation of exercise-based interventions that maximize the antidepressant benefits of physical activity. Finally, we summarize the current research and propose future research directions.
Collapse
Affiliation(s)
- Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xinyi Zheng
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| | - Dajie Liu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Ling Cheng
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China;
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| |
Collapse
|
2
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
3
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
4
|
Kirby ED, Andrushko JW, Rinat S, D'Arcy RCN, Boyd LA. Investigating female versus male differences in white matter neuroplasticity associated with complex visuo-motor learning. Sci Rep 2024; 14:5951. [PMID: 38467763 PMCID: PMC10928090 DOI: 10.1038/s41598-024-56453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Magnetic resonance imaging (MRI) has increasingly been used to characterize structure-function relationships during white matter neuroplasticity. Biological sex differences may be an important factor that affects patterns of neuroplasticity, and therefore impacts learning and rehabilitation. The current study examined a participant cohort before and after visuo-motor training to characterize sex differences in microstructural measures. The participants (N = 27) completed a 10-session (4 week) complex visuo-motor training task with their non-dominant hand. All participants significantly improved movement speed and their movement speed variability over the training period. White matter neuroplasticity in females and males was examined using fractional anisotropy (FA) and myelin water fraction (MWF) along the cortico-spinal tract (CST) and the corpus callosum (CC). FA values showed significant differences in the middle portion of the CST tract (nodes 38-51) across the training period. MWF showed a similar cluster in the inferior portion of the tract (nodes 18-29) but did not reach significance. Additionally, at baseline, males showed significantly higher levels of MWF measures in the middle body of the CC. Combining data from females and males would have resulted in reduced sensitivity, making it harder to detect differences in neuroplasticity. These findings offer initial insights into possible female versus male differences in white matter neuroplasticity during motor learning. This warrants investigations into specific patterns of white matter neuroplasticity for females versus males across the lifespan. Understanding biological sex-specific differences in white matter neuroplasticity may have significant implications for the interpretation of change associated with learning or rehabilitation.
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Vancouver, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Vancouver, BC, Canada.
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Lara A Boyd
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Rosario MA, Kern KL, Mumtaz S, Storer TW, Schon K. Cardiorespiratory fitness is associated with cortical thickness of medial temporal brain areas associated with spatial cognition in young but not older adults. Eur J Neurosci 2024; 59:82-100. [PMID: 38056827 PMCID: PMC10979765 DOI: 10.1111/ejn.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Cardiorespiratory fitness has a potent effect on neurocognitive health, especially regarding the hippocampal memory system. However, less is known about the impact of cardiorespiratory fitness on medial temporal lobe extrahippocampal neocortical regions. Specifically, it is unclear how cardiorespiratory fitness modulates these brain regions in young adulthood and if these regions are differentially related to cardiorespiratory fitness in young versus older adults. The primary goal of this study was to investigate if cardiorespiratory fitness predicted medial temporal lobe cortical thickness which, with the hippocampus, are critical for spatial learning and memory. Additionally, given the established role of these cortices in spatial navigation, we sought to determine if cardiorespiratory fitness and medial temporal lobe cortical thickness would predict greater subjective sense of direction in both young and older adults. Cross-sectional data from 56 young adults (20-35 years) and 44 older adults (55-85 years) were included. FreeSurfer 6.0 was used to automatically segment participants' 3T T1-weighted images. Using hierarchical multiple regression analyses, we confirmed significant associations between greater cardiorespiratory fitness and greater left entorhinal, left parahippocampal, and left perirhinal cortical thickness in young, but not older, adults. Left parahippocampal cortical thickness interacted with age group to differentially predict subjective sense of direction in young and older adults. Young adults displayed a positive, and older adults a negative, correlation between left parahippocampal cortical thickness and sense of direction. Our findings extend previous work on the association between cardiorespiratory fitness and hippocampal subfield structure in young adults to left medial temporal lobe neocortical regions.
Collapse
Affiliation(s)
- Michael A. Rosario
- Graduate Program for Neuroscience, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Kathryn L. Kern
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Shiraz Mumtaz
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thomas W. Storer
- Men’s Health, Aging, and Metabolism Unit, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Karin Schon
- Graduate Program for Neuroscience, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
- Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Mueller C, Goodman AM, Nenert R, Allendorfer JB, Philip NS, Correia S, Oster RA, LaFrance WC, Szaflarski JP. Repeatability of neurite orientation dispersion and density imaging in patients with traumatic brain injury. J Neuroimaging 2023; 33:802-824. [PMID: 37210714 PMCID: PMC10524628 DOI: 10.1111/jon.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to assess the repeatability of neurite orientation dispersion and density imaging in healthy controls (HCs) and traumatic brain injury (TBI). METHODS Seventeen HCs and 48 TBI patients were scanned twice over 18 weeks with diffusion imaging. Orientation dispersion (ODI), neurite density (NDI), and the fraction of isotropic diffusion (F-ISO) were quantified in regions of interest (ROIs) from a gray matter, subcortical, and white matter atlas and compared using the coefficient of variation for repeated measures (CVrep ), which quantifies the expected percent change on repeated measurement. We used a modified signed likelihood ratio test (M-SLRT) to compare the CVrep between groups in each ROI while correcting for multiple comparisons. RESULTS NDI exhibited excellent repeatability in both groups; the only group difference was found in the fusiform gyrus, where HCs exhibited better repeatability (M-SLRT = 9.463, p = .0021). ODI also had excellent repeatability in both groups, although repeatability was significantly better in HCs in 16 cortical ROIs (p < .0022) and in the bilateral white matter and bilateral cortex (p < .0027). F-ISO exhibited relatively poor repeatability in both groups, with few group differences. CONCLUSION Overall, the repeatability of the NDI, ODI, and F-ISO metrics over an 18-week period is acceptable for assessing the effects of behavioral or pharmacological interventions, though caution is advised when assessing F-ISO changes over time.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Adam M. Goodman
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Rodolphe Nenert
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Jane B. Allendorfer
- Departments of Neurology and Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Noah S. Philip
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI
| | - Stephen Correia
- Department of Psychiatry, Butler Hospital / Brown University, Providence, RI
| | - Robert A. Oster
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - W. Curt LaFrance
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI
- Departments of Psychiatry and Neurology, Rhode Island Hospital / Brown University, Providence, RI
| | - Jerzy P. Szaflarski
- Departments of Neurology, Neurobiology and Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
Khoury R, Nagy C. Running from stress: a perspective on the potential benefits of exercise-induced small extracellular vesicles for individuals with major depressive disorder. Front Mol Biosci 2023; 10:1154872. [PMID: 37398548 PMCID: PMC10309045 DOI: 10.3389/fmolb.2023.1154872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Aerobic exercise promotes beneficial effects in the brain including increased synaptic plasticity and neurogenesis and regulates neuroinflammation and stress response via the hypothalamic-pituitary-adrenal axis. Exercise can have therapeutic effects for numerous brain-related pathologies, including major depressive disorder (MDD). Beneficial effects of aerobic exercise are thought to be mediated through the release of "exerkines" including metabolites, proteins, nucleic acids, and hormones that communicate between the brain and periphery. While the specific mechanisms underlying the positive effects of aerobic exercise on MDD have not been fully elucidated, the evidence suggests that exercise may exert a direct or indirect influence on the brain via small extracellular vesicles which have been shown to transport signaling molecules including "exerkines" between cells and across the blood-brain barrier (BBB). sEVs are released by most cell types, found in numerous biofluids, and capable of crossing the BBB. sEVs have been associated with numerous brain-related functions including neuronal stress response, cell-cell communication, as well as those affected by exercise like synaptic plasticity and neurogenesis. In addition to known exerkines, they are loaded with other modulatory cargo such as microRNA (miRNA), an epigenetic regulator that regulates gene expression levels. How exercise-induced sEVs mediate exercise dependent improvements in MDD is unknown. Here, we perform a thorough survey of the current literature to elucidate the potential role of sEVs in the context of neurobiological changes seen with exercise and depression by summarizing studies on exercise and MDD, exercise and sEVs, and finally, sEVs as they relate to MDD. Moreover, we describe the links between peripheral sEV levels and their potential for infiltration into the brain. While literature suggests that aerobic exercise is protective against the development of mood disorders, there remains a scarcity of data on the therapeutic effects of exercise. Recent studies have shown that aerobic exercise does not appear to influence sEV size, but rather influence their concentration and cargo. These molecules have been independently implicated in numerous neuropsychiatric disorders. Taken together, these studies suggest that concentration of sEVs are increased post exercise, and they may contain specifically packaged protective cargo representing a novel therapeutic for MDD.
Collapse
Affiliation(s)
- Reine Khoury
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Franco-O´Byrne D, Gonzalez-Gomez R, Morales Sepúlveda JP, Vergara M, Ibañez A, Huepe D. The impact of loneliness and social adaptation on depressive symptoms: Behavioral and brain measures evidence from a brain health perspective. Front Psychol 2023; 14:1096178. [PMID: 37077845 PMCID: PMC10108715 DOI: 10.3389/fpsyg.2023.1096178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction Early detection of depression is a cost-effective way to prevent adverse outcomes on brain physiology, cognition, and health. Here we propose that loneliness and social adaptation are key factors that can anticipate depressive symptoms. Methods We analyzed data from two separate samples to evaluate the associations between loneliness, social adaptation, depressive symptoms, and their neural correlates. Results For both samples, hierarchical regression models on self-reported data showed that loneliness and social adaptation have negative and positive effects on depressive symptoms. Moreover, social adaptation reduces the impact of loneliness on depressive symptoms. Structural connectivity analysis showed that depressive symptoms, loneliness, and social adaptation share a common neural substrate. Furthermore, functional connectivity analysis demonstrated that only social adaptation was associated with connectivity in parietal areas. Discussion Altogether, our results suggest that loneliness is a strong risk factor for depressive symptoms while social adaptation acts as a buffer against the ill effects of loneliness. At the neuroanatomical level, loneliness and depression may affect the integrity of white matter structures known to be associated to emotion dysregulation and cognitive impairment. On the other hand, socio-adaptive processes may protect against the harmful effects of loneliness and depression. Structural and functional correlates of social adaptation could indicate a protective role through long and short-term effects, respectively. These findings may aid approaches to preserve brain health via social participation and adaptive social behavior.
Collapse
Affiliation(s)
- Daniel Franco-O´Byrne
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Raul Gonzalez-Gomez
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Juan Pablo Morales Sepúlveda
- Pontificia Universidad Católica de Chile Programa de Doctorado en Neurociencias Centro Interdisciplinario de Neurocienciass, Santiago, Chile
- Facultad de Educación Psicología y Familia, Universidad Finis Terrae, Santiago, Chile
| | - Mayte Vergara
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustin Ibañez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| |
Collapse
|
9
|
Fakhoury M, Eid F, El Ahmad P, Khoury R, Mezher A, El Masri D, Haddad Z, Zoghbi Y, Ghayad LM, Sleiman SF, Stephan JS. Exercise and Dietary Factors Mediate Neural Plasticity Through Modulation of BDNF Signaling. Brain Plast 2022; 8:121-128. [DOI: 10.3233/bpl-220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
The term “neural plasticity” was first used to describe non-pathological changes in neuronal structure. Today, it is generally accepted that the brain is a dynamic system whose morphology and function is influenced by a variety of factors including stress, diet, and exercise. Neural plasticity involves learning and memory, the synthesis of new neurons, the repair of damaged connections, and several other compensatory mechanisms. It is altered in neurodegenerative disorders and following damage to the central or peripheral nervous system. Understanding the mechanisms that regulate neural plasticity in both healthy and diseased states is of significant importance to promote cognition and develop rehabilitation techniques for functional recovery after injury. In this minireview, we will discuss the mechanisms by which environmental factors promote neural plasticity with a focus on exercise- and diet-induced factors. We will highlight the known circulatory factors that are released in response to exercise and discuss how all factors activate pathways that converge in part on the activation of BDNF signaling. We propose to harness the therapeutic potential of exercise by using BDNF as a biomarker to identify novel endogenous factors that promote neural plasticity. We also discuss the importance of combining exercise factors with dietary factors to develop a lifestyle pill for patients afflicted by CNS disorders.
Collapse
Affiliation(s)
- Marc Fakhoury
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Fady Eid
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Perla El Ahmad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Reine Khoury
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Amar Mezher
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Diala El Masri
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Zena Haddad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Yara Zoghbi
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Litsa Maria Ghayad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Sama F. Sleiman
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | | |
Collapse
|
10
|
Milbocker KA, Campbell TS, Collins N, Kim S, Smith IF, Roth TL, Klintsova AY. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Front Behav Neurosci 2021; 15:786234. [PMID: 34924972 PMCID: PMC8678604 DOI: 10.3389/fnbeh.2021.786234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews. However, a comprehensive review of the mechanisms affecting adolescent neurodevelopment (i.e., synaptic pruning and myelination) is lacking. Synaptic pruning and myelination are glia-driven processes that are imperative for brain circuit refinement during the transition from adolescence to adulthood. Failure to optimize brain circuitry between key brain structures involved in learning and memory, such as the hippocampus and prefrontal cortex, leads to the emergence of maladaptive behaviors including increased anxiety or reduced executive function. As such, we review preclinical and clinical literature to explore the immediate and lasting effects of ELA on brain circuit development and refinement. Finally, we describe a number of therapeutic interventions best-suited to support adolescent neurodevelopment in children with a history of ELA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
11
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
12
|
Lohkamp KJ, Kiliaan AJ, Shenk J, Verweij V, Wiesmann M. The Impact of Voluntary Exercise on Stroke Recovery. Front Neurosci 2021; 15:695138. [PMID: 34321996 PMCID: PMC8311567 DOI: 10.3389/fnins.2021.695138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022] Open
Abstract
Stroke treatment is limited to time-critical thrombectomy and rehabilitation by physiotherapy. Studies report beneficial effects of exercise; however, a knowledge gap exists regarding underlying mechanisms that benefit recovery of brain networks and cognition. This study aims to unravel therapeutic effects of voluntary exercise in stroke-induced mice to develop better personalized treatments. Male C57Bl6/JOlaHsd mice were subjected to transient middle cerebral artery occlusion. After surgery, the animals were divided in a voluntary exercise group with access to running wheels (RW), and a control group without running wheels (NRW). During 6 days post-stroke, activity/walking patterns were measured 24/7 in digital ventilated cages. Day 7 post-surgery, animals underwent MRI scanning (11.7T) to investigate functional connectivity (rsfMRI) and white matter (WM) integrity (DTI). Additionally, postmortem polarized light imaging (PLI) was performed to quantify WM fiber density and orientation. After MRI the animals were sacrificed and neuroinflammation and cerebral vascularisation studied. Voluntary exercise promoted myelin density recovery corresponding to higher fractional anisotropy. The deteriorating impact of stroke on WM dispersion was detected only in NRW mice. Moreover, rsfMRI revealed increased functional connectivity, cerebral blood flow and vascular quality leading to improved motor skills in the RW group. Furthermore, voluntary exercise showed immunomodulatory properties post-stroke. This study not only helped determining the therapeutic value of voluntary exercise, but also provided understanding of pathological mechanisms involved in stroke.
Collapse
Affiliation(s)
- Klara J Lohkamp
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Justin Shenk
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Preclinical Imaging Center - PRIME, Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| |
Collapse
|