1
|
Xie W, Shao Y, Bo Q, Li Z, Yu Q, Wang L, Wu G. FTO promotes the progression of retinoblastoma through YTHDF2-dependent N6-methyladenosine modification in E2F3. Mol Carcinog 2024; 63:926-937. [PMID: 38380957 DOI: 10.1002/mc.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Early treatment of retinoblastoma (RB) has significantly improved clinical outcomes. N6-methyladenosine (m6A) methylation is crucial for cancer progression. Thus, we investigated the role of FTO-dependent demethylation in RB and its underlying mechanisms. The biological behavior of RB cells was analyzed using cell counting kit-8, colony formation analysis, transwell assay, flow cytometry, and western blot analysis. m6A modification was evaluated using methylated RNA immunoprecipitation and dual-luciferase reporter assays, and E2F3 stability was assessed using Actinomycin D. The roles of FTO and E2F3 were also elucidated in vivo. These results indicated that FTO was highly expressed in RB cells with low m6A levels. FTO knockdown inhibited RB cell growth, migration, invasion, and epithelial-mesenchymal transition and arrested the cell cycle at the G0/G1 phase. Mechanistically, FTO interference promoted m6A methylation of E2F3, which was recognized by YTHDF2, thereby reducing mRNA stability. E2F3 overexpression partially rescued the effects of FTO knockdown on biological behavior. Moreover, FTO knockdown reduced tumor weight, tumor volume, ki67 expression, and tumor cell infiltration by mediating E2F3. Taken together, FTO silencing inhibited the malignant processes of RB by suppressing E2F3 in an m6A-YTHD2-dependent manner. These findings suggest that FTO is a novel therapeutic target for RB.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Yongqing Shao
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Qingyun Bo
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Zhen Li
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Qihua Yu
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Layi Wang
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Guohai Wu
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
2
|
Gan Z, Abudurexiti A, Hu X, Chen W, Zhang N, Sang W. E2F3/5/8 serve as potential prognostic biomarkers and new therapeutic direction for human bladder cancer. Medicine (Baltimore) 2024; 103:e35722. [PMID: 38215110 PMCID: PMC10783276 DOI: 10.1097/md.0000000000035722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTS Human bladder cancer (BC) is the most common urogenital system malignancy. E2F transcription factors (E2Fs) have been reported to be involved in the growth of various cancers. However, the expression patterns, prognostic value and immune infiltration in the tumor microenvironment of the 8 E2Fs in BC have yet fully to be explored. METHODS AND STRATEGY We investigated the differential expression of E2Fs in BC patients, the prognostic value and correlation with immune infiltration by analyzing a range of databases. RESULTS We found that the mRNA expression levels of E2F1/2/3/4/5/7/8 were significantly higher in BC patients than that of control tissues. And the increased mRNA expression levels of all E2Fs were associated with tumor stage of BC. The survival analysis revealed that the elevated mRNA expression levels of E2F3/5/8 were significantly correlated with the overall survival (OS) of BC patients. And the genetic changes of E2Fs in BC patients were associated with shorter overall survival (OS) and progression-free survival (PFS). In addition, we revealed that the E2F3/5/8 expressions were closely correlated with tumor-infiltrating lymphocytes (TILs). CONCLUSIONS E2F3/5/8 might serve as promising prognostic biomarkers and new therapeutic direction for BC patients.
Collapse
Affiliation(s)
- Zhilu Gan
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Alimujiang Abudurexiti
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Xiaogang Hu
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Wenxin Chen
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Ning Zhang
- Surgery Department of Urology, The Third People’s Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, P.R. China
| | - Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, P.R. China
| |
Collapse
|
3
|
Xin R, Cheng Q, Chi X, Feng X, Zhang H, Wang Y, Duan M, Xie T, Song X, Yu Q, Fan Y, Huang L, Zhou F. Computational Characterization of Undifferentially Expressed Genes with Altered Transcription Regulation in Lung Cancer. Genes (Basel) 2023; 14:2169. [PMID: 38136991 PMCID: PMC10742656 DOI: 10.3390/genes14122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
A transcriptome profiles the expression levels of genes in cells and has accumulated a huge amount of public data. Most of the existing biomarker-related studies investigated the differential expression of individual transcriptomic features under the assumption of inter-feature independence. Many transcriptomic features without differential expression were ignored from the biomarker lists. This study proposed a computational analysis protocol (mqTrans) to analyze transcriptomes from the view of high-dimensional inter-feature correlations. The mqTrans protocol trained a regression model to predict the expression of an mRNA feature from those of the transcription factors (TFs). The difference between the predicted and real expression of an mRNA feature in a query sample was defined as the mqTrans feature. The new mqTrans view facilitated the detection of thirteen transcriptomic features with differentially expressed mqTrans features, but without differential expression in the original transcriptomic values in three independent datasets of lung cancer. These features were called dark biomarkers because they would have been ignored in a conventional differential analysis. The detailed discussion of one dark biomarker, GBP5, and additional validation experiments suggested that the overlapping long non-coding RNAs might have contributed to this interesting phenomenon. In summary, this study aimed to find undifferentially expressed genes with significantly changed mqTrans values in lung cancer. These genes were usually ignored in most biomarker detection studies of undifferential expression. However, their differentially expressed mqTrans values in three independent datasets suggested their strong associations with lung cancer.
Collapse
Affiliation(s)
- Ruihao Xin
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (R.X.); (Y.W.); (M.D.); (L.H.)
- Jilin Institute of Chemical Technology, College of Information and Control Engineering, Jilin 132000, China; (Q.C.); (X.C.); (H.Z.)
| | - Qian Cheng
- Jilin Institute of Chemical Technology, College of Information and Control Engineering, Jilin 132000, China; (Q.C.); (X.C.); (H.Z.)
| | - Xiaohang Chi
- Jilin Institute of Chemical Technology, College of Information and Control Engineering, Jilin 132000, China; (Q.C.); (X.C.); (H.Z.)
| | - Xin Feng
- School of Science, Jilin Institute of Chemical Technology, Jilin 132000, China;
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130012, China;
| | - Hang Zhang
- Jilin Institute of Chemical Technology, College of Information and Control Engineering, Jilin 132000, China; (Q.C.); (X.C.); (H.Z.)
| | - Yueying Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (R.X.); (Y.W.); (M.D.); (L.H.)
| | - Meiyu Duan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (R.X.); (Y.W.); (M.D.); (L.H.)
| | - Tunyang Xie
- Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK;
| | - Xiaonan Song
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun 130012, China;
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130012, China;
| | - Yusi Fan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun 130012, China;
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (R.X.); (Y.W.); (M.D.); (L.H.)
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (R.X.); (Y.W.); (M.D.); (L.H.)
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
4
|
Li X, Zhao X, Li J, Zhang X. Circ_001422 aggravates osteosarcoma progression through targeting miR-497-5p/E2F3 axis. J Biochem Mol Toxicol 2023; 37:e23392. [PMID: 37287369 DOI: 10.1002/jbt.23392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Circular RNAs exert vital functions in the pathogenesis of osteosarcoma (OS). Circ_001422 has been confirmed to be involved in regulating OS progression, but its specific mechanism has not been clearly studied. This work aimed to analyze circ_001422's role in OS cell biological behaviors and the possible molecular mechanisms. This work carried out reverse transcription-quantitative polymerase chain reaction for detecting circ_001422, E2F3 and miR-497-5p levels, whereas Cell counting kit-8 together with Transwell assays for measuring cell growth, migration as well as invasion abilities. Relation of miR-497-5p with E2F3, as well as circ_001422 with miR-497-5p was analyzed through dual-luciferase reporter gene assay. Protein level was identified by western blot. According to our results, circ_001422 expression within OS tissue significantly increased compared with corresponding healthy samples. Inhibition of circ_001422 significantly decreased OS cell growth, invasion and migration. From mechanism research, miR-497-5p was proved as circ_001422's target, and E2F3 was miR-497-5p's target. Besides, miR-497-5p downregulation or E2F3 overexpression abolished circ_001422 inhibition-mediated inhibition on OS cell proliferation, invasion and migration. Collectively, this study has first suggested circ_001422's role in enhancing OS proliferation, migration as well as invasion via miR-497-5p/E2F3 axis. Our results will offer new ideas and new anti-OS targets.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaozhan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Yang H, Feng X, Tong X. Long noncoding RNA POU6F2-AS2 contributes to the aggressiveness of nonsmall-cell lung cancer via microRNA-125b-5p-mediated E2F3 upregulation. Aging (Albany NY) 2023; 15:2689-2704. [PMID: 37053020 PMCID: PMC10120888 DOI: 10.18632/aging.204639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
The role of the majority of long noncoding RNAs (lncRNAs) in the progression of nonsmall-cell lung cancer (NSCLC) remains elusive, despite their potential value, thus warranting in-depth studies. For example, detailed functions of the lncRNA POU6F2 antisense RNA 2 (POU6F2-AS2) in NSCLC are unknown. Herein, we investigated the expression status of POU6F2-AS2 in NSCLC. Furthermore, we systematically delineated the biological roles of POU6F2-AS2 in NSCLC alongside its downstream molecular events. We measured the expression levels of POU6F2-AS2 using quantitative real-time polymerase chain reaction and performed a series of functional experiments to address its regulatory effects in NSCLC cells. Using bioinformatic platforms, RNA immunoprecipitation, luciferase reporter assays, and rescue experiments, we investigated the potential mechanisms of POU6F2-AS2 in NSCLC. Subsequently, we confirmed the remarkable overexpression of POU6F2-AS2 in NSCLC using The Cancer Genome Atlas database and our own cohort. Functionally, inhibiting POU6F2-AS2 decreased NSCLC cell proliferation, colony formation, and motility, whereas POU6F2-AS2 overexpression exhibited contrasting effects. Mechanistically, POU6F2-AS2 acts as an endogenous decoy for microRNA-125b-5p (miR-125b-5p) in NSCLC that causes the overexpression of the E2F transcription factor 3 (E2F3). Moreover, suppressing miR-125b-5p or increasing E2F3 expression levels sufficiently recovered the anticarcinostatic activities in NSCLC induced by POU6F2-AS2 silencing. Thus, POU6F2-AS2 aggravates the oncogenicity of NSCLC by targeting the miR-125b-5p/E2F3 axis. Our findings suggest that POU6F2-AS2 is a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Haitao Yang
- Department of Thoracic Surgery, The People’s Hospital of Liaoning Province, Liaoning 110016, P.R. China
| | - Xiao Feng
- Department of Thoracic Surgery, The People’s Hospital of Liaoning Province, Liaoning 110016, P.R. China
| | - Xiangdong Tong
- Department of Thoracic Surgery, The People’s Hospital of Liaoning Province, Liaoning 110016, P.R. China
| |
Collapse
|
6
|
Comparative Transcriptional Signature Analysis of Peripheral Blood Mononuclear Cells in Early Stage of Hepatitis B-related Hepatocellular Carcinoma. HEPATITIS MONTHLY 2023. [DOI: 10.5812/hepatmon-130862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Hepatocellular carcinoma (HCC) is a prevalent and life-threatening tumor with high morbidity and mortality. Proper prediction and prognosis are incredibly stressed to diagnose HCC and increase patient survival. Objectives: This research aims to evaluate gene expression levels of pre-differentiated transcripts for those suffering from chronic hepatitis B (CHB) and HCC. Methods: To examine the previously analyzed peripheral blood mononuclear cells (PBMCs) transcriptomic array data, we selected seven differentially expressed genes (DEGs) in normal versus CHB and CHB versus HCC (CD44, SP3, USP8, E2F2, UFM1, IFN regulative factor binding protein 2 (IRF2BP2), and T-cell intracellular antigen 1 (TIA1)). The study included individuals with treatment-naïve CHB (n = 30) and primary HCC (n = 25) and healthy controls (n = 15). Subsequently, the expression of genes was assayed using qRT-PCR. A phylogenetic evaluation was performed using direct sequencing of HBsAg. Results: In HCC patients, 60% (n = 15) were HBeAg-positive. HBeAg was negative in all CHB patients, but all were anti-HBe-positive. The hepatitis B virus (HBV) load of HCC patients was more than that of CHB subjects. All patients were of the Iranian race and HBV D genotype. The expression of five transcriptional markers (CD44, SP3, USP8, E2F2, and UFM1) was higher in HCC patients than in CHB and healthy subjects, which was similar to the initial microarray data analysis. Conclusions: Transcriptional signatures may be related to the pathogenesis of HCC and used as diagnostic biological markers for the initial monitoring and prediction of HCC.
Collapse
|
7
|
Guan X, Lan T, Wang Y, Cui Y, Duan J, Xu H. CircKRT14 upregulates E2F3 by interacting with miR-1256 to act as an oncogenic factor in esophageal cancer. Hum Exp Toxicol 2023; 42:9603271231155093. [PMID: 36738282 DOI: 10.1177/09603271231155093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND A growing number of studies have focused on the regulatory role of circular RNAs (circRNAs) in a variety of cancers. The purpose of this study was to investigate the effect of circRNA Keratin 14 (circKRT14) on the progression of esophageal cancer (EC). METHODS The levels of circKRT14, miR-1256 and E2F transcription factor 3 (E2F3) were analyzed by real-time quantitative polymerase chain reaction (qRT-PCR) and western blot. The circular structure of circKRT14 was confirmed by RNase R digestion assay. Cell apoptosis, migration and invasion were detected by flow cytometry and transwell assay. The protein levels of related factors were determined by western blot. The relationship between miR-1256 and circKRT14 or E2F3 was verified by dual-luciferase reporter assay. The in vivo function of circKRT14 was studied by xenograft tumor assay. RESULTS CircKRT14 was significantly increased in EC tissues and cells. CircKRT14 silencing inhibited EC cell proliferation, migration, and invasion, but promoted EC cell apoptosis in vitro. CircKRT1 acted as a sponge for miR-1256 in EC, and in-miR-1256 abolished the inhibitory effect of circKRT14 suppression on EC cell progression. E2F3 was a target of miR-1256 and functioned as an oncogene in EC cells. MiR-1256 curbed EC progression by downregulating E2F3. CircKRT14 could affect E2F3 expression by targeting miR-1256. CircKRT14 regulated EC progression in vivo through miR-1256/E2F3 axis. CONCLUSIONS These results uncovered that circKRT14 up-regulated the expression of E2F3 and promoted the malignant development of EC through sponging miR-1256.
Collapse
Affiliation(s)
- Xingzhuo Guan
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin, China
| | - Tingzhu Lan
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin, China
| | - Yuanshi Wang
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin, China
| | - Yan Cui
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin, China
| | - Jinyu Duan
- Department of Gastroenterology, Affiliated Hospital of Beihua University, Jilin, China
| | - Hongjun Xu
- Department of Gastroenterology, 604073The People's Hospital of Suzhou New District, Suzhou, China
| |
Collapse
|
8
|
Luo C, Zhao X, Wang Y, Li Y, Wang T, Li S. A novel circ_0000654/miR-375/E2F3 ceRNA network in esophageal squamous cell carcinoma. Thorac Cancer 2022; 13:2223-2234. [PMID: 35790503 PMCID: PMC9346169 DOI: 10.1111/1759-7714.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background The competing endogenous RNA (ceRNA) activity of circular RNAs (circRNAs) has been implicated in the pathogenesis of cancers, including esophageal squamous cell carcinoma (ESCC). Here, we identified the ceRNA mechanism of circ_0000654 regulation in ESCC. Methods The levels of circ_0000654, E2F transcription factor 3 (E2F3), and microRNA (miR)‐375 were gauged by quantitative real‐time PCR (qRT‐PCR) and western blot. Cell proliferation was assessed by 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) and 5‐ethynyl‐2′‐deoxyuridine (EdU) assays. Cell apoptosis was detected by flow cytometry. Cell colony formation was tested by colony formation assay. Dual‐luciferase reporter, RNA pull‐down and RNA immunoprecipitation (RIP) assays were performed to confirm the direct relationship between miR‐375 and circ_0000654 or E2F3. Xenograft model assays were used to evaluate the effect of circ_0000654 in vivo. Results Circ_0000654 and E2F3 were upregulated in ESCC. Circ_0000654 depletion enhanced cell apoptosis and hindered cell proliferation and glycolysis in vitro, as well as weakened tumor growth in vivo. Increased expression of E2F3 counteracted the effects of circ_0000654 depletion. Mechanistically, E2F3 was a target of miR‐375, and circ_0000654 modulated E2F3 expression through sequestering miR‐375. Furthermore, miR‐375 upregulation phenocopied circ_0000654 knockdown in inhibiting ESCC progression. Conclusion Our findings identify a new circ_0000654/miR‐375/E2F3 ceRNA crosstalk for the oncogenic role of circ_0000654 in ESCC and establish a notion that targeting circ_0000654 and its pathways may have the potential to improve ESCC outcome.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiaowei Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Yuan Wang
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Yanqiu Li
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Tuo Wang
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Shumin Li
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, China
| |
Collapse
|
9
|
Wei W, Xu T, Zhang Y, Huang Y, Wang X. Upregulation of long noncoding RNA linc02544 and its association with overall survival rate and the influence on cell proliferation and migration in lung squamous cell carcinoma. Discov Oncol 2022; 13:41. [PMID: 35635595 PMCID: PMC9151984 DOI: 10.1007/s12672-022-00501-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) exert crucial biological functions by regulating miRNAs, which are implicated in cancer progression and tumorigenesis. A previous study has indicated that lncRNA linc02544 expression is upregulated in lung adenocarcinoma, whereas, the role of linc02544 in LUSC is elusive. METHODS The differential linc02544 expression in LUSC tissues and adjacent non-tumor tissues were evaluated with RT-qPCR. Kaplan-Meier curve was conducted to evaluate the clinical prognostic significance of linc02544. Then cellular experiments were performed to assess the influence of linc02544 in LUSC proliferation, invasion, and migration, and a western blot assay was used to measure the metastasis-related protein levels. The downstream miRNAs were verified using the LncBase Experimental v.2 database and dual-luciferase reporter assay. RESULTS Linc02544 was overexpressed in LUSC tissues from positive lymph node metastasis-positive and TNM high-stage patients. Low linc02544 expression was associated with a longer survival rate. Downregulation of linc02544 by si-linc02544 restrained cell growth capacities, migration, and invasion abilities. Expression of MMP-2, MMP-9, and vimentin was decreased while E-cadherin was increased in si-linc02544 cells compared with that in untreated cells. Mechanistically, we identified that linc02544 acted as a sponge of miR-138-5p, which expression had a negative correlation. E2F3 was a potential target of miR-138-5p, CONCLUSIONS: Notably, high linc02544 expression was associated with severe clinical parameters and was a putative prognostic predictor for patients with LUSC. Downregulation of linc02544 may weaken the LUSC cell proliferation, migration, and invasion by regulating miR-138-5p/E2F3, which maybe serve as a biomarker for the prognosis and target treatment of LUSC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Jiangsu, 210002, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221000, China
| | - Ying Zhang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Yong Huang
- Department of Medical Oncology, Cancer Center of Jinling Hospital, No. 34, 34 Biao, Yanggongjing Street, Nanjing, 210002, Jiangsu, China.
| | - Xiang Wang
- Department of Medical Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, China.
| |
Collapse
|
10
|
Ren S, Jin Y, Chen Y, Shen B. CRPMKB: a knowledge base of cancer risk prediction models for systematic comparison and personalized applications. Bioinformatics 2022; 38:1669-1676. [PMID: 34927675 DOI: 10.1093/bioinformatics/btab850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
MOTIVATION In the era of big data and precision medicine, accurate risk assessment is a prerequisite for the implementation of risk screening and preventive treatment. A large number of studies have focused on the risk of cancer, and related risk prediction models have been constructed, but there is a lack of effective resource integration for systematic comparison and personalized applications. Therefore, the establishment and analysis of the cancer risk prediction model knowledge base (CRPMKB) is of great significance. RESULTS The current knowledge base contains 802 model data. The model comparison indicates that the accuracy of cancer risk prediction was greatly affected by regional differences, cancer types and model types. We divided the model variables into four categories: environment, behavioral lifestyle, biological genetics and clinical examination, and found that there are differences in the distribution of various variables among different cancer types. Taking 50 genes involved in the lung cancer risk prediction models as an example to perform pathway enrichment analyses and the results showed that these genes were significantly enriched in p53 Signaling and Aryl Hydrocarbon Receptor Signaling pathways which are associated with cancer and specific diseases. In addition, we verified the biological significance of overlapping lung cancer genes via STRING database. CRPMKB was established to provide researchers an online tool for the future personalized model application and developing. This study of CRPMKB suggests that developing more targeted models based on specific demographic characteristics and cancer types will further improve the accuracy of cancer risk model predictions. AVAILABILITY AND IMPLEMENTATION CRPMKB is freely available at http://www.sysbio.org.cn/CRPMKB/. The data underlying this article are available in the article and in its online supplementary material. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shumin Ren
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China
| | - Yanwen Jin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yalan Chen
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong 226001, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China
| |
Collapse
|
11
|
Li Y, Li D, Yang Y, Wang J. miR-15a-5p regulates liver cancer cell migration, apoptosis and cell cycle progression by targeting transcription factor E2F3. Crit Rev Eukaryot Gene Expr 2022; 32:1-10. [DOI: 10.1615/critreveukaryotgeneexpr.2022042503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Wang Y, Liu X, Wang L, Zhang Z, Li Z, Li M. Circ_PGPEP1 Serves as a Sponge of miR-1297 to Promote Gastric Cancer Progression via Regulating E2F3. Dig Dis Sci 2021; 66:4302-4313. [PMID: 33386518 DOI: 10.1007/s10620-020-06783-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Circular RNA (circRNA) is a special kind of noncoding RNA that plays a vital function in the progression of gastric cancer (GC). However, the role of a new circRNA, circ_PGPEP1, in GC is unclear. AIMS Exploring the role and mechanism of circ_PGPEP1 in GC progression. METHODS The expression levels of circ_PGPEP1, miR-1297, and E2F transcription factor 3 (E2F3) were determined using quantitative real-time PCR. Flow cytometry, colony formation assay, MTT assay, and transwell assay were used to evaluate cell cycle, apoptosis, proliferation, migration, and invasion. The protein levels of apoptosis-related markers and E2F3 were measured by western blot analysis. The interaction between circ_PGPEP1 and miR-1297 or miR-1297 and E2F3 was confirmed by dual-luciferase reporter assay. In addition, animal experiments were performed to assess the effect of circ_PGPEP1 on GC tumor growth in vivo. RESULTS Circ_PGPEP1 was a highly expressed circRNA in GC. Loss-of-function experiment indicated that circ_PGPEP1 silencing could induce cell cycle arrest and apoptosis, while inhibit proliferation, migration, and invasion in GC cells. MiR-1297 could be sponged by circ_PGPEP1, and its expression was downregulated in GC. MiR-1297 inhibitor could reverse the negatively regulation of circ_PGPEP1 knockdown on GC progression. Furthermore, we also found that E2F3 could be targeted by miR-1297, and its expression was positively regulated by circ_PGPEP1. Overexpression of E2F3 could invert the inhibitory effect of miR-1297 on GC progression. Animal experiments suggested that silenced circ_PGPEP1 could reduce GC tumor growth. CONCLUSION Our research showed that circ_PGPEP1 might serve as a potential biomarker for GC.
Collapse
Affiliation(s)
- Yingxin Wang
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China
| | - Xia Liu
- Department of Forensic Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Liwei Wang
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China
| | - Zhenduo Zhang
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China
| | - Zhong Li
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China
| | - Ming Li
- Department of General Surgery, Shijiazhuang People's Hospital, No. 365 Jianhuanan Street, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
13
|
Zhou H, Long C, Liu P, Chen Y, Luo L, Xiao Z. Long non-coding RNA TUG1 accelerates abnormal growth of airway smooth muscle cells in asthma by targeting the miR-138-5p/E2F3 axis. Exp Ther Med 2021; 22:1229. [PMID: 34539825 DOI: 10.3892/etm.2021.10663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease. The present study aimed to explore the effect of the long non-coding RNA taurine-upregulated gene 1 (TUG1) on the viability and migration of airway smooth muscle cells (ASMCs) in asthma. Rat asthma models were constructed with ovalbumin sensitization and challenge and the level of serum immunoglobulin E (IgE) and the rates of inspiratory and expiratory resistance were measured. Reverse transcription-quantitative PCR was also performed to determine the expression levels of TUG1. Platelet-derived growth factor-BB (PDGF-BB)-treated ASMCs were then used as a cell model of asthma. The viability and migratory abilities of ASMCs were analysed with the MTT and Transwell assays. Additionally, a dual-luciferase reporter assay was used to confirm the relationship between TUG1 and microRNA (miR)-138-5p and between transcription factor E2F3 and miR-138-5p. The expression of TUG1, level of serum IgE, inspiratory resistance and expiratory resistance were clearly increased in the rat asthma model in comparison with controls. Knockdown of TUG1 the viability and migration of PDGF-BB-induced ASMCs and reduced the inspiratory and expiratory resistances. In addition, TUG1 functioned as a bait of miR-138-5p, and miR-138-5p modulated E2F3 expression. Knockdown of E2F3 hindered the abnormal growth of ASMCs. Moreover, miR-138-5p inhibition or E2F3 overexpression reversed the inhibitory effects of TUG1 knockdown on viability and migration of PDGF-BB-induced ASMCs. The TUG1/miR-138-5p/E2F3 regulatory axis appeared to play a critical role in accelerating the viability and migration of ASMCs and may therefore have a role in asthma.
Collapse
Affiliation(s)
- Haiyin Zhou
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Caixia Long
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Pingping Liu
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Yanying Chen
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Lan Luo
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Zhenghui Xiao
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
14
|
Cui F, Gu S, Gu Y, Yin J, Fang C, Liu L. Alteration in the mRNA expression profile of the autophagy-related mTOR pathway in schizophrenia patients treated with olanzapine. BMC Psychiatry 2021; 21:388. [PMID: 34348681 PMCID: PMC8335969 DOI: 10.1186/s12888-021-03394-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin protein (mTOR) signaling pathway is involved in the pathogenesis of schizophrenia and the mechanism of extrapyramidal adverse reactions to antipsychotic drugs, which might be mediated by an mTOR-dependent autophagy impairment. This study aimed to examine the expression of mTOR pathway genes in patients with schizophrenia treated with olanzapine, which is considered an mTOR inhibitor and autophagy inducer. METHODS Thirty-two patients with acute schizophrenia who had been treated with olanzapine for four weeks (average dose 14.24 ± 4.35 mg/d) and 32 healthy volunteers were recruited. Before and after olanzapine treatment, the Positive and Negative Syndrome Scale (PANSS) was used to evaluate the symptoms of patients with schizophrenia, and the mRNA expression levels of mTOR pathway-related genes, including MTOR, RICTOR, RAPTOR, and DEPTOR, were detected in fasting venous blood samples from all subjects using real-time quantitative PCR. RESULTS The MTOR and RICTOR mRNA expression levels in patients with acute schizophrenia were significantly decreased compared with those of healthy controls and further significantly decreased after four weeks of olanzapine treatment. The DEPTOR mRNA expression levels in patients with acute schizophrenia were not significantly different from those of healthy controls but were significantly increased after treatment. The expression levels of the RAPTOR mRNA were not significantly different among the three groups. The pairwise correlations of MTOR, DEPTOR, RAPTOR, and RICTOR mRNA expression levels in patients with acute schizophrenia and healthy controls were significant. After olanzapine treatment, the correlations between the expression levels of the DEPTOR and MTOR mRNAs and between the DEPTOR and RICTOR mRNAs disappeared. CONCLUSIONS Abnormalities in the mTOR pathway, especially DEPTOR and mTORC2, might play important roles in the autophagy mechanism underlying the pathophysiology of schizophrenia and effects of olanzapine treatment.
Collapse
Affiliation(s)
- Fengwei Cui
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151 Jiangsu China
| | - Shuguang Gu
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151 Jiangsu China
| | - Yue Gu
- grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166 Jiangsu China
| | - Jiajun Yin
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151 Jiangsu China
| | - Chunxia Fang
- Combined TCM & Western Medicine Department, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| | - Liang Liu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
15
|
Ahmed Z, Mal C. Functional role of hub molecules in miRNA and transcription factor mediated gene regulatory network of colorectal and lung cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Gu S, Cui F, Yin J, Fang C, Liu L. Altered mRNA expression levels of autophagy- and apoptosis-related genes in the FOXO pathway in schizophrenia patients treated with olanzapine. Neurosci Lett 2021; 746:135669. [PMID: 33485989 DOI: 10.1016/j.neulet.2021.135669] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
This study attempted to analyze the alterations in the mRNA expression levels of autophagy- and apoptosis-related genes in the forkhead box transcription factor O (FOXO) pathway in schizophrenia patients before and after olanzapine treatment. For a total of 32 acute schizophrenic inpatients, clinical data with PANSS were obtained before and after four weeks of olanzapine treatment (mean dose 14.24 ± 4.35 mg/d) along with data from 32 healthy volunteers. The mRNA expression levels of the FOXO pathway genes were measured by real-time qPCR after fasting venous blood was collected and analyzed. The mRNA expression levels of FOXO1, FOXO3A, FASLG, and BCL2L11 were observed to be significantly decreased in acute schizophrenia patients. After four weeks of olanzapine treatment, the expression levels of the first three genes were further reduced, but BCL2L11 expression levels were not significantly changed. The pairwise correlations between the mRNA expression level of FASLG and those of the other three genes were not observed in acute schizophrenia patients, while these relationships were observed in healthy controls. After olanzapine treatment, the FASLG mRNA expression level was restored and exhibited a pairwise correlation with the FOXO3A and BCL2L11 mRNA expression levels but not with the FOXO1 mRNA expression level, and FASLG mRNA expression was also correlated with the duration of the disease. The statuses and correlations of the mRNA expression levels of FOXO pathway-related genes were altered in schizophrenia patients and were affected by olanzapine treatment and the duration of the disease.
Collapse
Affiliation(s)
- Shuguang Gu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China
| | - Fengwei Cui
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China
| | - Jiajun Yin
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China
| | - Chunxia Fang
- Combined TCM & Western Medicine Department, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China.
| | - Liang Liu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
17
|
Duan M, Song H, Wang C, Zheng J, Xie H, He Y, Huang L, Zhou F. Detection and Independent Validation of Model-Based Quantitative Transcriptional Regulation Relationships Altered in Lung Cancers. Front Bioeng Biotechnol 2020; 8:582. [PMID: 32656193 PMCID: PMC7325891 DOI: 10.3389/fbioe.2020.00582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Differential expressions of genes are widely evaluated for the diagnosis and prognosis correlations with diseases. But limited studies investigate how transcriptional regulations are quantitatively altered in diseases. This study proposes a novel model-based quantitative measurement of transcriptional regulatory relationships between mRNA genes and Transcription Factor (TF) genes (mqTrans features). This study didn't consider the regulatory relationships between TF genes, so the mRNA genes were the protein-coding genes excluding the TF genes. The models are trained in the control samples in a lung cancer dataset and evaluated in two independent datasets and the hold-out testing samples from the third dataset. Twenty-nine mRNA genes are detected with transcriptional regulations quantitatively altered in lung cancers. The transcriptional modification technologies like RNA interference (RNAi) may be utilized to restore the altered transcriptional regulations in lung cancers.
Collapse
Affiliation(s)
- Meiyu Duan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Haoqiu Song
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.,College of Computer Science, Hubei University of Technology, Wuhan, China
| | - Chaoyu Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun, China
| | - Jiaxin Zheng
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun, China
| | - Hui Xie
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yupeng He
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| |
Collapse
|
18
|
Chen H, Tan X, Ding Y. Knockdown SNHG20 Suppresses Nonsmall Cell Lung Cancer Development by Repressing Proliferation, Migration and Invasion, and Inducing Apoptosis by Regulating miR-2467-3p/E2F3. Cancer Biother Radiopharm 2020; 36:360-370. [PMID: 32456448 DOI: 10.1089/cbr.2019.3430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Lung cancer was one of the most common malignant tumors worldwide. In China, lung cancer has become the leading reason of malignant tumors-related mortality in urban population, whereas nonsmall cell lung cancer (NSCLC) represented at least 80% of all lung cancers with poor 5-year survival rate. Long noncoding RNA (lncRNA) small nucleolar RNA host gene 20 (SNHG20) was reported to be associated with NSCLC, but the regulatory mechanisms of SNHG20 in NSCLC needed further investigation. Methods: The abundances of SNHG20 and E2F transcription factor 3 (E2F3) in NSCLC tissues and cells were measured with real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assays. 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) was applied to detect cells proliferation, whereas flow cytometry analysis was used to monitor cell apoptosis. In addition, cells capabilities of migratory and invasion were assessed with transwell assay. The association among miR-2467-3p, SNHG20, and E2F3 was analyzed by dual-luciferase reporter assay. The related protein expression levels were determined by Western blot. Results: SNHG20 and E2F3 was upregulation in NSCLC tissues and cell lines. Mechanical experiment displayed that knockdown of SNHG20 or E2F3 silencing could inhibit proliferation, motility, and improve apoptosis in NSCLC cell lines. Restored expression of E2F3 could effectively reverse reduction of proliferation, motility, and promotion of apoptosis caused by SNHG20 silencing in NSCLC cells. Besides, SNHG20 activated protein kinase B (AKT) signaling pathway and increased E2F3 level in NSCLC cells through targeting miR-2467-3p. Conclusion: SNHG20 contributed to NSCLC development through mediating AKT signaling pathway and sponging miR-2467-3p to elevate E2F3 expression in NSCLC cells.
Collapse
Affiliation(s)
- Hang Chen
- Department of Thoracic Surgery, The First People's Hospital of Guiyang, Guiyang, China
| | - Xin Tan
- Department of Thoracic Surgery, The First People's Hospital of Guiyang, Guiyang, China
| | - Yi Ding
- Department of Thoracic Surgery, The First People's Hospital of Guiyang, Guiyang, China
| |
Collapse
|
19
|
Wang H, Wang L, Zhang S, Xu Z, Zhang G. Downregulation of LINC00665 confers decreased cell proliferation and invasion via the miR-138-5p/E2F3 signaling pathway in NSCLC. Biomed Pharmacother 2020; 127:110214. [PMID: 32403047 DOI: 10.1016/j.biopha.2020.110214] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a type of malignant tumor which threatens human health and life. Recently, some researches on long non-coding RNAs (lncRNAs) in NSCLC has elucidated critical regulatory roles in cell proliferation, migration, and invasion, the relative clinical significance and mechanisms of action are still unclear. This study focuses on the important role of a novel lncRNA LINC00665 in the development of NSCLC. Long intergenic non-protein coding RNA 665 gene (LINC00665) was found through microarray analysis and was measured by real-time quantitative PCR (RT-qPCR). The interactions between LINC00665 and miR-138-5p as well as the interactions between miR-138-5p and E2F3 (E2F transcription factor 3) were explored by bioinformatics analysis and dual-luciferase assays. CCK-8, transwell and mouse xenograft assays were performed to investigate the effects of LINC00665 and miR-138-5p on NSCLC proliferation and invasion. As a result, LINC00665 expression was upregulated in NSCLC lung tissues and cells. Downregulated LINC00665 could arrest A549 and H1299 cell proliferation and invasion in vitro, and this finding was recapitulated in vivo. LINC00665 directly regulated the expression of miR-138-5p. Additionally, E2F3 was one of the targets of miR-138-5p; E2F3 without 3'UTR could reverse the inhibitory effects of downregulated LINC00665 on proliferation and invasion in A549 and H1299 cells. In conclusion, dysregulation of LINC00665 plays a vital role in NSCLC progression, indicating that its downregulation may confer decreased cell proliferation and invasion via the miR-138-5p/E2F3 signaling pathway.
Collapse
Affiliation(s)
- Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lei Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shijie Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhexuan Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
20
|
Gao W, Zhou X, Lin R. miR-378a-5p and miR-630 induce lens epithelial cell apoptosis in cataract via suppression of E2F3. ACTA ACUST UNITED AC 2020; 53:e9608. [PMID: 32348429 PMCID: PMC7197652 DOI: 10.1590/1414-431x20209608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Cataract, an eye disease that threatens the health of millions of people, brings about severe economic burden for patients and society. MicroRNA (miR)-378a-5p and miR-630 were recognized as essential regulators in multiple cancers. However, the exact functions of miR-378a-5p and miR-630 in cataract are still unclear. The expression of miR-378a-5p, miR-630, and E2F transcription factor 3 (E2F3) in tissues and cells was measured by quantitative real-time polymerase chain reaction. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was used to evaluate cell viability. Flow cytometry was conducted to analyze cell apoptosis. The interaction between E2F3 and miR-378a-5p or miR-630 was confirmed by dual-luciferase reporter assay. The expression of proteins E2F3, B cell lymphoma (Bcl-2), Bcl-2 associated X (Bax), and cleaved caspase 3 was detected by western blot assay. The expression of miR-378a-5p and miR-630 was up-regulated whereas E2F3 was down-regulated in human cataract lens tissues compared with normal lens tissues. Depletion of miR-378a-5p or miR-630 enhanced proliferation and reduced apoptosis of human lens epithelial cells. Interestingly, up-regulation of E2F3 exhibited the same trend. Next, dual-luciferase reporter assay validated the interaction between E2F3 and miR-378a-5p or miR-630. The rescue experiments further revealed that E2F3 knockdown could recover miR-378a-5p, and miR-630 inhibitor induced promotion of cell proliferation and inhibition of apoptosis in cataract. miR-378a-5p and miR-630 repressed proliferation and induced apoptosis of lens epithelial cells by targeting E2F3 in cataract, representing a prospective alternative therapy for cataract.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Ophthalmology, People's Hospital of Zhaoyuan City, Zhaoyuan, Shandong, China
| | - Xiaoqing Zhou
- Department of Ophthalmology, Shanghai Changzheng Hospital, China Naval Medical University, Shanghai, China
| | - Ruihua Lin
- Department of Ophthalmology, People's Hospital of Zhaoyuan City, Zhaoyuan, Shandong, China
| |
Collapse
|
21
|
Han B, Sun Y, Yang D, Zhang H, Mo S, Chen X, Lu H, Mao X, Hu J. USP22 promotes development of lung adenocarcinoma through ubiquitination and immunosuppression. Aging (Albany NY) 2020; 12:6990-7005. [PMID: 32294625 PMCID: PMC7202522 DOI: 10.18632/aging.103056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Ubiquitin-specific protease 22 (USP22) expresses highly in lung adenocarcinoma (LUAD), which are associated with poor overall survival (OS). Microarray processing was performed to determine gene expression profiling, in which it was found that knocking down USP22 resulted in abnormal expression of a large number of genes. Differentially expressed genes (DEGs)-based protein-protein interaction (PPI) network was organized into 9 functional modules. These functional modules participated significantly in protein modification-related biological process and were involved in cancer-related pathways. The network was constructed to describe the global regulation of USP22-TF/pivot-module-pathway. It suggested that knocking down USP22 may up-regulate the expression of UBC to promote the pathways of cell cycle and ubiquitin-mediated proteolysis in the development of LUAD. More than that, knocking down USP22 can up-regulate STAT1 to activate JAK1-STAT1-caspase pathway, and promote apoptosis of tumor cell. Receiver operating characteristic (ROC) curve analysis suggested that E2F3, H2AFX, TFAP2A, PITX1, IRF7, and FOXM1 may be the potential diagnosis biomarkers for LUAD. On the other hand, BRCA1, FOXM1 and TFAP2A may be prognostic biomarkers of LUAD. In conclusion, we constructed a global regulation network to show that USP22 may promote the development of LUAD through ubiquitination and immunosuppression.
Collapse
Affiliation(s)
- Bing Han
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Sun
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Dongdong Yang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huijuan Zhang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Steven Mo
- Nanning Life-Ontology Biotechnology Co., Ltd., Nanning, Guangxi, China
| | - Xuesong Chen
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hailing Lu
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xueyan Mao
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Hu
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
22
|
Wang H, Wang M, Xiao K, Zhang X, Wang P, Xiao S, Qi H, Meng L, Zhang X, Shen F. Bioinformatics analysis on differentially expressed genes of alveolar macrophage in IPF. Exp Lung Res 2019; 45:288-296. [PMID: 31762326 DOI: 10.1080/01902148.2019.1680765] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: This study aimed to explore the differentially expressed genes (DEGs) of pulmonary macrophages in human idiopathic pulmonary fibrosis (IPF) by bioinformatics, and elaborate on IPF on the gene level. Methods: The gene expression profile GSE49072 was downloaded from the gene expression omnibus (GEO) database. Genes of alveolar macrophages between normal volunteers and patients diagnosed as IPF were analyzed by GEO2R tools. Gene ontology (GO) and pathway enrichment analyses of genes were performed in the database for annotation, visualization and integrated discovery (DAVID) database, followed by functional annotation and protein-protein interaction (PPI) network construction in String website. Finally, the results were analyzed in a comprehensive way. Results: A total of 551 DEGs, including 205 down-regulated and 346 up-regulated were identified. The expression of 209875_s_at (secreted phosphoprotein 1, SPP1) and 214146_s_at (pro-platelet basic protein, PPBP) genes are the most significant in upregulated genes. DEGs in the MAPK(mitogen-activated protein kinase) signaling pathway and chemokine signaling pathway play important roles in the development of IPF. Conclusions: The up-regulation of genes such as SPP1 and PPBP affect the secretion of alveolar macrophages, thereby speeding up the process of fibrosis.
Collapse
Affiliation(s)
- Huaibin Wang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Miaomiao Wang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Kun Xiao
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Xu Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Peng Wang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Shuyu Xiao
- Tangshan Center of Disease Control and Prevention, Tangshan, Hebei, P.R. China
| | - Huisheng Qi
- Tangshan Gongren Hospital, Tangshan, Hebei, P.R. China
| | - Lijun Meng
- Department of Environmental and Chemical Engineering, Tangshan College, Tangshan, Hebei, P.R. China
| | - Xiujun Zhang
- College of Psychology, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Fuhai Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| |
Collapse
|
23
|
Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma. Aging (Albany NY) 2019; 10:973-987. [PMID: 29754146 PMCID: PMC5990399 DOI: 10.18632/aging.101441] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/28/2018] [Indexed: 12/20/2022]
Abstract
E2F is a group of genes that encode a family of transcription factors (TFs) in higher eukaryotes and participate in cell cycle regulation and DNA synthesis in mammalian cells. Evidence from cell lines, mouse models, and human tissues indicates that TFs are implicated in lung cancer (LC) tumorigenesis. However, the diverse expression patterns and prognostic values of eight E2Fs have yet to be elucidated. In the current study, we examined the transcriptional and survival data of E2Fs in patients with LC from ONCOMINE, GEPIA, Kaplan-Meier Plotter, and cBioPortal databases. We found that the expression levels of E2F1/2/3/5/6/7/8 were higher in lung adenocarcinoma and squamous cell lung carcinoma tissues than in lung tissues, whereas the expression level of E2F4 was lower in the former than in the latter. The expression levels of E2F2/4/5/7/8 were correlated with advanced tumor stage. Survival analysis using the Kaplan-Meier Plotter database revealed that the high transcription levels of E2F1/2/4/5/7/8 were associated with low relapse-free survival (RFS) in all of the patients with LC. Conversely, high E2F3/6 levels predicted high RFS in these patients. This study implied that E2F3/6/7 are potential targets of precision therapy for patients with LC and that E2F1/2/4/5/8 are new biomarkers for the prognosis of LC.
Collapse
|
24
|
Bagheri A, Khorshid HRK, Tavallaie M, Mowla SJ, Sherafatian M, Rashidi M, Zargari M, Boroujeni ME, Hosseini SM. A panel of noncoding RNAs in non-small-cell lung cancer. J Cell Biochem 2019; 120:8280-8290. [PMID: 30485511 DOI: 10.1002/jcb.28111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Non-small-lung cancer (NSCLC) is the leading cause of cancer death. Early detection of NSCLC could pave the way for effective therapies. Analysis of molecular genetic biomarkers in biological fluids has been proposed as a useful tool for cancer diagnosis. Here, we aimed to develop a panel of noncoding RNAs (ncRNAs) in sputum for NSCLC early detection. Expression of 11 ncRNAs were analyzed by real-time polymerase chain reaction in sputum samples of 30 NSCLC patients and 30 sex- and age-matched cancer-free controls. Stability of endogenous microRNAs (miRNAs) in sputum was evaluated after 3 and 6 days at 4°C, 6 months, and 1 year at -80°C. Nine ncRNAs showed significant differences of their expression in sputum between NSCLC patients and controls. A logistic regression model with the best prediction was built based on miR-145, miR-126, and miR-7. The composite of the three miRNAs produced 90% sensitivity and specificity in distinguishing NSCLC patients from the controls. Results indicate that miRNAs could be useful biomarkers based on their stability under various storage conditions and maintain differential changes between cancer and control groups. Moreover, measurement of miRNAs in sputum could be a noninvasive approach for detection of lung cancer.
Collapse
Affiliation(s)
- Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mahmood Tavallaie
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masih Sherafatian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Eskandarian Boroujeni
- Department Of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Zhou Q, Zhang F, He Z, Zuo MZ. E2F2/5/8 Serve as Potential Prognostic Biomarkers and Targets for Human Ovarian Cancer. Front Oncol 2019; 9:161. [PMID: 30967995 PMCID: PMC6439355 DOI: 10.3389/fonc.2019.00161] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
E2Fs are a family of pivotal transcription factors. Accumulative evidence indicates that aberrant expression or activation of E2Fs is a common phenomenon in malignances, and significant associations have been noted between E2Fs and tumorigenesis or progression in a wide range of cancers. However, the expression patterns and exact roles of each E2F contributing to tumorigenesis and progression of ovarian cancer (OC) have not yet been elucidated. In this study, we investigated the distinct expression and prognostic value of E2Fs in patients with OC by analyzing a series of databases, including ONCOMINE, GEPIA, cBioPortal, Metascape, and Kaplan–Meier plotter. The mRNA expression levels of E2F1/3/5/8 were found to be significantly upregulated in patients with OC and were obviously associated with tumor stage for OC. Aberrant expression of E2F2/5/7/8 was found to be associated with the clinical outcomes of patients with OC. These results suggest that E2F2/5/8 might serve as potential prognostic biomarkers and targets for OC. However, future studies are required to validate our findings and promote the clinical utility of E2Fs in OC.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| | - Fan Zhang
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| | - Ze He
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| | - Man-Zhen Zuo
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| |
Collapse
|
26
|
Huang YL, Ning G, Chen LB, Lian YF, Gu YR, Wang JL, Chen DM, Wei H, Huang YH. Promising diagnostic and prognostic value of E2Fs in human hepatocellular carcinoma. Cancer Manag Res 2019; 11:1725-1740. [PMID: 30863181 PMCID: PMC6388971 DOI: 10.2147/cmar.s182001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A growing body of evidence suggests that E2Fs, by regulating gene expression related to cell cycle progression and other cellular processes, play a pivotal role in human cancer. However, the distinct roles of each E2F in the development and treatment of hepatocellular carcinoma (HCC) remain unknown. In the present study, the mRNA expression and prognostic value of different E2Fs in HCC are analyzed. MATERIALS AND METHODS Transcriptional and survival data related to E2F expression in patients with HCC were obtained through ONCOMINE and UALCAN databases. Survival analysis plots were drawn with Kaplan-Meier Plotter. The sequence alteration data for E2Fs were obtained from The Cancer Genome Atlas and c-BioPortal. Gene functional enrichment analyses were performed in Database for Annotation, Visualization and Integrated Discovery. RESULTS The mRNA expression levels of E2F1-E2F8 were all significantly upregulated in HCC patients, and high expression of each E2F was obviously related to poor prognosis. Similarly, the expression of E2Fs showed prognostic prediction value in HCC patients with different cancer stages and pathological grades. Moreover, the mutation rate of E2Fs was relatively high in HCC patients, and the DNA sequence alterations primarily occurred in E2F5, E2F3, and E2F6, which were associated with worse overall survival and disease-free survival in HCC patients. Network analysis confirmed that the expression levels of cell cycle-related genes were mostly affected by E2F mutations. CONCLUSION High expression of individual E2Fs was associated with poor prognosis in all liver cancer patients. E2Fs may be exploited as good prognostic targets for comprehensive management of HCC patients, but this notion should be further evaluated in clinical studies.
Collapse
Affiliation(s)
- Yan-Lin Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Gang Ning
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Lu-Biao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Yu-Rong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Jia-Liang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Dong-Mei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Huan Wei
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| | - Yue-Hua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,
| |
Collapse
|
27
|
Kim HR, Rahman FU, Kim KS, Kim EK, Cho SM, Lee K, Moon OS, Seo YW, Yoon WK, Won YS, Kang H, Kim HC, Nam KH. Critical Roles of E2F3 in Growth and Musculo-skeletal Phenotype in Mice. Int J Med Sci 2019; 16:1557-1563. [PMID: 31839743 PMCID: PMC6909802 DOI: 10.7150/ijms.39068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
E2F3, a member of the E2F family, plays a critical role in cell cycle and proliferation by targeting downstream, retinoblastoma (RB) a tumor suppressor family protein. The purpose of this study, was to investigate the role and function of E2F3 in vivo. We examined phenotypic abnormalities, by deletion of the E2f3 gene in mice. Complete ablation of the E2F3 was fully penetrant, in the pure C57BL/6N background. The E2f3+/ - mouse embryo developed normally without fatal disorder. However, they exhibited reduced body weight, growth retardation, skeletal imperfection, and poor grip strength ability. Findings suggest that E2F3 has a pivotal role in muscle and bone development, and affect normal mouse growth.
Collapse
Affiliation(s)
- Hae-Rim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Faiz Ur Rahman
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Kwang-Soo Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea.,Department of Animal Science and Technology, Chung-Ang University, Seodong-daero 4726, Gyeonggi 17546, Korea
| | - Eun-Kyeung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Ok-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Young-Won Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Won-Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Hoyoung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| |
Collapse
|
28
|
Liu N, Liu Z, Zhang W, Li Y, Cao J, Yang H, Li X. MicroRNA‑433 reduces cell proliferation and invasion in non‑small cell lung cancer via directly targeting E2F transcription factor 3. Mol Med Rep 2018; 18:1155-1164. [PMID: 29767254 DOI: 10.3892/mmr.2018.9020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/05/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNA/miRs) have been associated with the initiation and progression of non‑small‑cell lung cancer (NSCLC). Hence, a comprehensive understanding of the association between dysregulated miRNAs and NSCLC may contribute to the identification of novel therapeutic methods for patients with NSCLC. MiRNA‑433 (miR‑433) has been reported to be dysregulated in numerous types of human cancers; however, its expression pattern, biological roles and associated mechanisms in NSCLC require further investigation. The present study aimed to detect miR‑433 expression and determine its roles and underlying molecular mechanisms in NSCLC. In the present study, reverse transcription‑quantitative polymerase chain reaction revealed that miR‑433 was significantly downregulated in NSCLC tissues and cell lines. This decreased miR‑433 expression was strongly associated with the tumor node metastasis stage and lymph node metastasis of patients with NSCLC. Cell Counting kit‑8 and cell invasion assays revealed that the resumption of miR‑433 expression decreased the proliferation and invasion of NSCLC cells. Bioinformatics analysis predicted E2F transcription factor 3 (E2F3) as a potential target of miR‑433. Luciferase reporter assay, RT‑qPCR and western blot analysis further demonstrated that E2F3 was a direct target of miR‑433 in NSCLC. E2F3 downregulation induced by small interfering RNA exhibited inhibitory effects similar to those of miR‑433 overexpression in NSCLC cells, and the restored E2F3 expression counteracted the suppressive effects on NSCLC cells induced by miR‑433 overexpression. Therefore, miR‑433 may inhibit the progression of NSCLC, at least in part, by targeting E2F3. The present study indicated that miR‑433 may be investigated as an innovative candidate target for the therapy of patients with this fatal disease.
Collapse
Affiliation(s)
- Nian Liu
- Department of Respiration, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Zhiguang Liu
- Department of Respiration, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Weidong Zhang
- Department of Respiration, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yang Li
- Department of Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jun Cao
- Department of Respiration, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Huan Yang
- Department of Respiration, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Xiuying Li
- Department of Respiration, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
29
|
Wan J, Liu H, Feng Q, Liu J, Ming L. HOXB9 promotes endometrial cancer progression by targeting E2F3. Cell Death Dis 2018; 9:509. [PMID: 29724991 PMCID: PMC5938704 DOI: 10.1038/s41419-018-0556-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022]
Abstract
HOXB9, as a HOX family transcription factor, playing a significant role in embryonic development and cancer progression. However, the function of HOXB9 and its precise mechanism in regulating endometrial cancer progression remains unknown. Here, we demonstrated that the expression of HOXB9 was increased in endometrial cancer, and associated with histological grade and lymph node metastasis. In addition, elevated HOXB9 predicts a poor prognosis in endometrial cancer patients. Interestingly, bioinformatics analysis of TCGA cancer database showed that HOXB9 expression is positively correlated with E2F3 expression. Moreover, HOXB9 promoted E2F3 expression by directly targeting to its promoter. Furthermore, we found that knocking down E2F3 abolished the ability of HOXB9 in enhancing cell migration. Taken together, for the first, we demonstrated the function and mechanism of HOXB9 in regulating endometrial cancer progression, and indicated HOXB9 may be a novel prognostic marker of endometrial cancer.
Collapse
Affiliation(s)
- Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quanling Feng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Jun Liu
- Department of General Surgery, Zhecheng People's Hospital, 476000, Shangqiu, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
30
|
Gao X, Tang RX, Xie QN, Lin JY, Shi HL, Chen G, Li ZY. The clinical value of miR-193a-3p in non-small cell lung cancer and its potential molecular mechanism explored in silico using RNA-sequencing and microarray data. FEBS Open Bio 2018; 8:94-109. [PMID: 29321960 PMCID: PMC5757172 DOI: 10.1002/2211-5463.12354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/21/2017] [Accepted: 11/10/2017] [Indexed: 12/01/2022] Open
Abstract
miR‐193a‐3p is a tumor‐related miRNA playing an essential role in tumorigenesis and progression of non‐small cell lung cancer (NSCLC). The objective of the present study was to investigate the relationship between miR‐193a‐3p expression and clinical value and to further explore the potential signaling of miR‐193a‐3p in the carcinogenesis of NSCLC. RNA‐sequencing and microarray data were collected from the databases GEO, ArrayExpress and The Cancer Genome Atlas (TCGA). Furthermore, in silico assessments were performed to analyze the prospective pathways and networks of the target genes of miR‐193a‐3p. In total, 453 cases of NSCLC patients and 476 normal controls were included in blood samples, while 920 cases of NSCLC patients and 406 normal controls were included in tissue samples. The pooled positive likelihood ratio, the pooled negative likelihood ratio and the pooled diagnostic odds ratio were calculated to reflect the diagnostic value of miR‐193a‐3p in blood and tissue samples. Moreover, the areas under the curve of the summary receiver operating characteristic curve of blood and tissue were 0.64 and 0.79, respectively. In addition, we found a lower level of miR‐193a in NSCLC tissues than in non‐cancerous controls based on TCGA. A gene ontology (GO) enrichment analysis demonstrated that miR‐193a‐3p could be related to key signaling pathways in NSCLC. Also, several vital pathways were illustrated by KEGG. Lower expression of miR‐193a‐3p in tissue samples of NSCLC may be associated with tumorigenesis and be a predictor of deterioration of NSCLC patients, and pathway analysis revealed crucial signaling pathways correlated with the incidence and progress of NSCLC.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Rui-Xue Tang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Qiong-Ni Xie
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jia-Ying Lin
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Hong-Lan Shi
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Zu-Yun Li
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| |
Collapse
|
31
|
Chen Y, Liu Y, Wang Y, Li W, Wang X, Liu X, Chen Y, Ouyang C, Wang J. Quantification of STAT3 and VEGF expression for molecular diagnosis of lymph node metastasis in breast cancer. Medicine (Baltimore) 2017; 96:e8488. [PMID: 29137038 PMCID: PMC5690731 DOI: 10.1097/md.0000000000008488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Axillary lymph node metastasis is associated with increased risk of regional recurrence, distant metastasis, and poor survival in breast malignant neoplasm. Expression of signal transducer and activator of transcription 3 (STAT3) is significantly associated with tumor formation, migration, and invasion in various cancers. In addition, vascular endothelial growth factor (VEGF) expression could promote angiogenesis and increase the risk of tumorigenesis. To determine correlations among STAT3 expression, VEGF, and clinicopathological data on lymph node involvement in breast cancer patients after surgery. METHODS The mRNA expression levels of STAT3 and VEGFs were measured in 45 breast invasive ductal carcinoma tissues, 45 peritumoral tissues, and 45 adjacent nontumor tissues by real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Postoperative pathological examination revealed explicit axillary lymph node involvement in all patients. RESULTS Average mRNA levels of STAT3 and VEGFs were the highest in breast invasive ductal carcinoma tissues, followed by peritumoral tissues. High expression of STAT3 showed significant positive correlation with high axillary lymph node involvement and progesterone receptor (PR), VEGF-C, VEGF-D, and vascular endothelial growth factor receptor (VEGFR)-3 expression. The expression levels of STAT3, VEGF-C, and VEGFR-3 were significantly higher in the tumor tissues of patients with axillary lymph node metastasis than in those of patients without the metastasis. Expression levels of VEGF-C and VEGFR-3 were also significantly higher in peritumoral tissues of patients with axillary lymph node metastasis. Positive correlations were found between STAT3 and VEGF-C/-D mRNA levels. CONCLUSION These data suggest that STAT3/VEGF-C/VEGFR-3 signaling pathway plays an important role in carcinogenesis and lymph-angiogenesis. Our findings suggest that STAT3 may be a potential molecular biomarker for predicting the involvement of axillary lymph nodes in breast cancer, and therapies targeting STAT3 may be important for preventing breast cancer metastasis.
Collapse
Affiliation(s)
- Yujuan Chen
- Department of Breast Surgery, Western China Hospital of Sichuan University
| | - Ya Liu
- Department of Breast Surgery, Western China Hospital of Sichuan University
| | - Yu Wang
- Laboratory of Molecular Diagnosis of Cancer, State Key Laboratory of Biotherapy, National Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Li
- Department of Breast Surgery, Western China Hospital of Sichuan University
| | - Xiaolu Wang
- Department of Breast Surgery, Western China Hospital of Sichuan University
| | - Xuejuan Liu
- Department of Breast Surgery, Western China Hospital of Sichuan University
| | - Yao Chen
- Department of Breast Surgery, Western China Hospital of Sichuan University
| | - Chibin Ouyang
- Department of Breast Surgery, Western China Hospital of Sichuan University
| | - Jing Wang
- Department of Breast Surgery, Western China Hospital of Sichuan University
| |
Collapse
|
32
|
Ma C, Han J, Dong D, Wang N. MicroRNA-152 Suppresses Human Osteosarcoma Cell Proliferation and Invasion by Targeting E2F Transcription Factor 3. Oncol Res 2017; 26:765-773. [PMID: 28810933 PMCID: PMC7844728 DOI: 10.3727/096504017x15021536183535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-152 (miR-152) expression has been reported to be downregulated in osteosarcoma (OS). However, the role of miR-152 in OS is not well documented. In the present study, we aimed to explore the function and underlying mechanism of miR-152 in OS. We found that miR-152 was underexpressed in OS tissues and cell lines. Decreased miR-152 was inversely correlated with lymph node metastasis and advanced clinical stage. Overexpression of miR-152 significantly inhibited cell proliferation, colony formation, migration, and invasion of OS cells. Bioinformatics analyses showed that miR-152 directly targeted E2F transcription factor 3 (E2F3), as further confirmed by a dual-luciferase reporter assay. E2F3 expression was upregulated and inversely correlated with miR-152 expression level in human OS tissues. Moreover, the inhibitory effects of miR-152 on OS growth and invasion were attenuated by E2F3 overexpression. Taken together, our findings indicated that miR-152 reduced OS growth and invasion by targeting E2F3 and provided new evidence of miR-152 as a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Chao Ma
- The First Hospital of Jilin University, Changchun, P.R. China
| | - Jinfeng Han
- The First Hospital of Jilin University, Changchun, P.R. China
| | - Dong Dong
- The First Hospital of Jilin University, Changchun, P.R. China
| | - Nanya Wang
- The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|