1
|
Afroze N, Sundaram MK, Haque S, Hussain A. Long non-coding RNA involved in the carcinogenesis of human female cancer - a comprehensive review. Discov Oncol 2025; 16:122. [PMID: 39912983 PMCID: PMC11803034 DOI: 10.1007/s12672-025-01848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Recent years have seen an increase in our understanding of lncRNA and their role in various disease states. lncRNA molecules have been shown to contribute to carcinogenesis and influence the various cancer hallmarks and signalling pathways. It is pertinent to understand the specific contributions and mechanisms of action of these molecules in various cancers. This review provides an overview of the various lncRNA entities that influence and regulate the gynaecological cancers, namely, cervical, breast, ovarian and uterine cancers. The review curates a list of the key players and their effect on cellular processes. lncRNA molecules show immense potential to be used as diagnostic and prognostic indicators and in therapeutic strategies. Several phytochemicals, small molecules, RNA-based regulators, oligos and gene editing tools show promise as a therapeutic strategy. While this review highlights the promising developments in this field, it also underscores the necessity for further research to delineate the complex role of lncRNAs in cancer.
Collapse
Affiliation(s)
- Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Madhumitha K Sundaram
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates.
| |
Collapse
|
2
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Almalki WH. LncRNAs and PTEN/PI3K signaling: A symphony of regulation in cancer biology. Pathol Res Pract 2023; 249:154764. [PMID: 37643526 DOI: 10.1016/j.prp.2023.154764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
The Emergence of Long Non-coding RNAs (lncRNAs) as Key Regulators in Diverse Biological Processes: A Paradigm Shift in Understanding Gene Expression and its Impact on Cancer. The PTEN/PI3K pathway, a pivotal signaling cascade involved in cancer progression, orchestrates critical cellular functions such as survival, proliferation, and growth. In light of these advances, our investigation delves into the intricate and multifaceted interplay between lncRNAs and the PTEN/PI3K signaling pathway, unearthing previously undisclosed mechanisms that underpin cancer growth and advancement. These elusive lncRNAs exert their influence through direct targeting of the PTEN/PI3K pathway or by skillfully regulating the expression and activity of specific lncRNAs. This comprehensive review underscores the paramount significance of the interaction between lncRNAs and the PTEN/PI3K signaling pathway in cancer biology, unveiling an auspicious avenue for novel diagnostic tools and targeted therapeutic interventions. In this review, we navigate through the functional roles of specific lncRNAs in modulating PTEN/PI3K expression and activity. Additionally, we scrutinize their consequential effects on downstream components of the PTEN/PI3K pathway, unraveling the intricacies of their mutual regulation. By advancing our understanding of this complex regulatory network, this study holds the potential to revolutionize the landscape of cancer research, paving the way for tailored and efficacious treatments to combat this devastating disease.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
4
|
Chen S, Liang Y, Shen Y, Wang X. lncRNA XIST/miR‑129‑2‑3p axis targets CCP110 to regulate the proliferation, invasion and migration of endometrial cancer cells. Exp Ther Med 2023; 25:159. [PMID: 36911384 PMCID: PMC9996364 DOI: 10.3892/etm.2023.11858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023] Open
Abstract
Centromere coiled-coil protein 110 (CCP110) plays a role in the development of several types of cancer; however, its regulatory mechanism and role in endometrial cancer is unclear. The present study revealed that CCP110 is regulated by a signaling pathway involving microRNA (miR/miRNA)-129-2-3p and the long non-coding RNA (lncRNA) X-inactive-specific transcript (XIST), and plays a role in controlling the proliferation, migration and invasion of endometrial cancer cells. CCP110 was upregulated in human endometrial cancer tissues, as revealed by immunohistochemistry, and high expression of the protein was related to reduced overall survival of the patients. Genetic knockdown of CCP110 by small interfering RNA promoted apoptosis and suppressed the proliferation, migration, invasion and colony formation of endometrial cancer cells significantly in the endometrial cancer Ishikawa and HEC-1B cell lines, as assessed by flow cytometry, and Cell Counting Kit-8, Transwell and colony formation assays. A bioinformatics analysis and luciferase reporter assay revealed that CCP110 is a target of miR-129-2-3p. Overexpression of miR-129-2-3p mimic fragments inhibited the proliferation, migration and invasion of endometrial cancer cells significantly, while co-overexpression of CCP110 counteracted these inhibitory effects. The expression level of the lncRNA XIST was upregulated significantly in endometrial cancer tissues, as assessed by reverse transcription-quantitative PCR assay, while that of miR-129-2-3p was downregulated significantly. A bioinformatics analysis and luciferase reporter assay showed that XIST could inhibit miR-129-2-3p via a miRNA sponge effect. Furthermore, co-overexpression of XIST antagonized the inhibitory effect of the miR-129-2-3p mimic on the luciferase reporter gene signal and protein expression of CCP110. Co-overexpression of XIST also abolished the inhibitory effect of the miR-129-2-3p mimic on the proliferation, migration and invasion of endometrial cancer cells. Overall, these data identified a novel regulatory mechanism of CCP110 involving XIST and miR-129-2-3p, which affected the development of endometrial carcinoma. CCP110, XIST and miR-129-2-3p could represent novel targets for the clinical treatment of endometrial cancer.
Collapse
Affiliation(s)
- Shu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yaozhong Liang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoyu Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
5
|
Mangiavacchi A, Morelli G, Orlando V. Behind the scenes: How RNA orchestrates the epigenetic regulation of gene expression. Front Cell Dev Biol 2023; 11:1123975. [PMID: 36760365 PMCID: PMC9905133 DOI: 10.3389/fcell.2023.1123975] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Non-coding DNA accounts for approximately 98.5% of the human genome. Once labeled as "junk DNA", this portion of the genome has undergone a progressive re-evaluation and it is now clear that some of its transcriptional products, belonging to the non-coding RNAs (ncRNAs), are key players in cell regulatory networks. A growing body of evidence demonstrates the crucial impact of regulatory ncRNAs on mammalian gene expression. Here, we focus on the defined relationship between chromatin-interacting RNAs, particularly long non-coding RNA (lncRNA), enhancer RNA (eRNA), non-coding natural antisense transcript (ncNAT), and circular RNA (circRNA) and epigenome, a common ground where both protein and RNA species converge to regulate cellular functions. Through several examples, this review provides an overview of the variety of targets, interactors, and mechanisms involved in the RNA-mediated modulation of loci-specific epigenetic states, a fundamental evolutive strategy to orchestrate mammalian gene expression in a timely and reversible manner. We will discuss how RNA-mediated epigenetic regulation impacts development and tissue homeostasis and how its alteration contributes to the onset and progression of many different human diseases, particularly cancer.
Collapse
|
6
|
LncRNA CCAT2, involving miR-34a/TGF-β1/Smad4 signaling, regulate hepatic stellate cells proliferation. Sci Rep 2022; 12:21199. [PMID: 36482069 PMCID: PMC9732356 DOI: 10.1038/s41598-022-25738-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
miR-34a targeting on Smad4 plays important role in TGF-β1 pathway which is a dominant factor for balancing collagen production and degradation in hepatic stellate cells. TGF-β1/Smad4 regulated collagen deposition is a hallmark of hepatic fibrosis. The potential regulation on miR-34a by LncRNAs in hepatic stellate cells (HSCs) is still reserved to be revealed. In current study, it was hypothesized that a miR-34a interactor, lncRNA CCAT2 may regulate TGF-β1 pathway in liver fibrotic remodeling. The interaction between CCAT2 and miR-34a-5p was checked by dual luciferase assay. the effects of CCAT2 and miR-34a-5p on cell proliferation and apoptosis were verified by MTT assay, colony formation assay, and flow cytometry assay. Dual luciferase activity showed CCAT2 are targets of miR-34a-5p. Sh-CCAT2 transfection prohibit HSCs proliferation and induce HSCs apoptosis, also inhibited ECM protein synthesis in HSCs. Decreased miR-34a-5p enhanced HSCs proliferation, blocked HSCs apoptosis and promoted ECM protein production. miR-34a-5p inhibitor undo protective regulation of sh-CCAT2 in liver fibrosis. Furthermore, clinical investigation showed that CCAT2 and Smad4 expression level were significantly induced, while miR-34a-5p was significantly decreased in HBV related liver fibrosis serum. In conclusion, activated HSCs via TGF-β1/Smad4 signaling pathway was successfully alleviated by CCAT2 inhibition through miR-34a-5p elevation.
Collapse
|
7
|
Long non-coding RNA colon cancer-associated transcript 2: role and function in human cancers. Chin Med J (Engl) 2022; 135:2785-2797. [PMID: 36103972 PMCID: PMC9945556 DOI: 10.1097/cm9.0000000000002286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Indexed: 01/03/2023] Open
Abstract
ABSTRACT Long non-coding RNAs (lncRNAs) are a family of non-protein-coding RNAs that span a length of over 200 nucleotides. Research reports have illustrated that lncRNAs are involved in various cellular processes and that their abnormal expression leads to the occurrence and development of various tumors. Colon cancer-associated transcript 2 (CCAT2) was first reported as an oncogene in colon cancer. LncRNA CCAT2 is abnormally expressed in hepatocellular carcinoma, cholangiocarcinoma, lung cancer, breast cancer, ovarian cancer, glioma, and other tumors. In tumor tissues, abnormally overexpressed CCAT2 can affect cell proliferation, migration, epithelial-mesenchymal transition, apoptosis, and other biological behaviors through endogenous RNAs mechanisms, various signaling pathways, transcriptional regulation, and other complex mechanisms. Additionally, the overexpression of CCAT2 is also closely related to the tumor size, tumor node metastasis (TNM) stage, survival time, and other prognostic factors, suggesting that it is a potential prognostic indicator. This article reviews the biological functions of CCAT2 and its mechanisms of action in tumors from previous studies. In this review, we attempt to provide a molecular basis for future clinical applications of lncRNA CCAT2.
Collapse
|
8
|
Yang G, Tian Y, Li C, Xia J, Qi Y, Yao W, Hao C. LncRNA UCA1 regulates silicosis-related lung epithelial cell-to-mesenchymal transition through competitive adsorption of miR-204-5p. Toxicol Appl Pharmacol 2022; 441:115977. [DOI: 10.1016/j.taap.2022.115977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
|
9
|
Zhou D, Gu J, Wang Y, Luo B, Feng M, Wang X. Long noncoding RNA CCAT2 reduces chemosensitivity to 5-fluorouracil in breast cancer cells by activating the mTOR axis. J Cell Mol Med 2022; 26:1392-1401. [PMID: 35170195 PMCID: PMC8899178 DOI: 10.1111/jcmm.17041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women and the second leading cause for cancer-related death in women. LncRNA CCAT2 is involved in BC cell drug sensitivity. Drug resistance of BC cells after chemotherapy is the main obstacle to therapeutic effects. This study explored whether BC cell drug sensitivity to 5-Fu was related to lncRNA CCAT2-regulated mTOR pathway. Normal breast tissues and BC tissues before/after neoadjuvant chemotherapy were collected, and CCAT2 expression was detected by RT-qPCR. Correlation between CCATA2 expression and neoadjuvant chemotherapy efficacy was analysed using the Kendall's tau-b correlation analysis. Normal breast epithelial cells and BC cell lines were cultured. BC cell lines were treated with 5-Fu, and CCAT2 mRNA level in cells was detected. The 5-Fu-resistant MCF-7/5-Fu and MDA-MB-231/5-Fu cells were treated with CCAT2 overexpression/knockdown or CCI-779 (the mTOR pathway inhibitor). The mTOR pathway levels were detected. Expression of apoptosis-related factors was identified. A subcutaneous xenograft model was carried out. High CCAT2 expression was detected in BC tissues and BC drug-resistant cells after neoadjuvant chemotherapy, and a negative link was revealed between CCAT2 expression and efficacy of neoadjuvant chemotherapy. p-mTOR/mTOR in 5-Fu-resistant BC cells with inhibited CCAT2 was decreased, while CCAT2 overexpression activated the mTOR pathway. IC50 value, proliferation, cells in S phase increased and apoptosis reduced after CCAT2 overexpression. After si-CCAT2 or CCI-779 treatment, the growth rate of transplanted tumours was inhibited, while promoted after CCAT2 overexpression. CCAT2 may reduce BC cell chemosensitivity to 5-Fu by activating the mTOR pathway.
Collapse
Affiliation(s)
- Daoping Zhou
- Department of Medical Laboratory ScienceAnhui No.2 Provincial People’s HospitalHefeiAnhuiChina
- Department of OncologyAnhui No.2 Provincial People’s HospitalHefeiAnhuiChina
| | - Juan Gu
- Department of Medical Laboratory ScienceThe Fifth People’s Hospital of WuxiNanjing Medical UniversityWuxiJiangsuChina
- Department of PathologyThe Fifth People’s Hospital of WuxiThe Medical School of Jiangnan UniversityWuxiJiangsuChina
| | - Yueping Wang
- Department of Medical Laboratory ScienceAnhui No.2 Provincial People’s HospitalHefeiAnhuiChina
- Department of BiologyCollege of Arts & ScienceMassachusetts UniversityBostonMassachusettsUSA
| | - Bing Luo
- Department of Medical Laboratory ScienceAnhui No.2 Provincial People’s HospitalHefeiAnhuiChina
| | - Mei Feng
- Department of Medical Laboratory ScienceAnhui No.2 Provincial People’s HospitalHefeiAnhuiChina
| | - Xuedong Wang
- Department of Medical Laboratory ScienceAnhui No.2 Provincial People’s HospitalHefeiAnhuiChina
| |
Collapse
|
10
|
lncRNAs MALAT1 and LINC00657 upstream to miR-214-3p/BMP2 regulate osteogenic differentiation of human mesenchymal stem cells. Mol Biol Rep 2022; 49:6847-6857. [DOI: 10.1007/s11033-022-07136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
11
|
Zhang Y, Zhao W, Na F, Li M, Tong S. LINC01354/microRNA-216b/KRAS Axis Promotes the Occurrence and Metastasis of Endometrial Cancer. NANOSCALE RESEARCH LETTERS 2022; 17:21. [PMID: 35099637 PMCID: PMC8804137 DOI: 10.1186/s11671-021-03640-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE LINC01354 has been defined as a tumor driver in several cancers. Nevertheless, whether LINC01354 involves in endometrial cancer (EC) has been little navigated. Thus, the mechanism of LINC01354 was explored in the disease. METHODS Measurements of LINC01354, microRNA (miR)-216b and kirsten rat sarcoma viral oncogene (KRAS) levels in EC tissues and cells were performed. LINC01354 low expression and miR-216b overexpression vectors were introduced into EC cells (lshikawa), thereby their effects on cell viability, apoptosis, migration and invasion were manifested. Rescue experiments were also carried out by down-regulating LINC01354 and miR-216b spontaneously. Tumorigenesis in vivo was also assessed. The relationships of LINC01354/miR-216b/KRAS were analyzed. RESULTS Increased LINC01354 and KRAS and reduced miR-216b levels were measured in EC. Silencing LINC01354 or overexpressing miR-216b retarded EC cellular development. LINC01354 counteracted with miR-216b to target KRAS. Suppression of miR-216b antagonized silenced LINC01354-induced impacts on EC cell development. LINC01354/miR-216b/KRAS axis enhanced tumorigenesis in mice with EC. CONCLUSION It is testified that silencing LINC01354 inhibits KRAS by up-regulating miR-216b, thereby discouraging cell malignant phenotype in EC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, China
| | - Wei Zhao
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, China
| | - Fei Na
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, China
| | - Meng Li
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, China
| | - Shengchun Tong
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, China.
| |
Collapse
|
12
|
The Roles of the Colon Cancer Associated Transcript 2 (CCAT2) Long Non-Coding RNA in Cancer: A Comprehensive Characterization of the Tumorigenic and Molecular Functions. Int J Mol Sci 2021; 22:ijms222212491. [PMID: 34830370 PMCID: PMC8620102 DOI: 10.3390/ijms222212491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Colon cancer-associated transcript 2 (CCAT2) is an intensively studied lncRNA with important regulatory roles in cancer. As such, cumulative studies indicate that CCAT2 displays a high functional versatility due to its direct interaction with multiple RNA binding proteins, transcription factors, and other species of non-coding RNA, especially microRNA. The definitory mechanisms of CCAT2 are its role as a regulator of the TCF7L2 transcription factor, enhancer of MYC expression, and activator of the WNT/β-catenin pathway, as well as a role in promoting and maintaining chromosome instability through the BOP1–AURKB pathway. Additionally, we highlight how the encompassing rs6983267 SNP has been shown to confer CCAT2 with allele-specific functional and structural particularities, such as the allelic-specific reprogramming of glutamine metabolism. Additionally, we emphasize CCAT2’s role as a competitive endogenous RNA (ceRNA) for multiple tumor suppressor miRNAs, such as miR-4496, miR-493, miR-424, miR-216b, miR-23b, miR-34a, miR-145, miR-200b, and miR-143 and the pro-tumorigenic role of the altered regulatory axis. Additionally, due to its upregulation in tumor tissues, wide distribution across cancer types, and presence in serum samples, we outline CCAT2’s potential as a biomarker and disease indicator and its implications for the development of resistance against current cancer therapy regiments and metastasis.
Collapse
|
13
|
Cavaliere AF, Perelli F, Zaami S, Piergentili R, Mattei A, Vizzielli G, Scambia G, Straface G, Restaino S, Signore F. Towards Personalized Medicine: Non-Coding RNAs and Endometrial Cancer. Healthcare (Basel) 2021; 9:965. [PMID: 34442102 PMCID: PMC8393611 DOI: 10.3390/healthcare9080965] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Endometrial cancer (EC) is the most frequent female cancer associated with excellent prognosis if diagnosed at an early stage. The risk factors on which clinical staging is based are constantly updated and genetic and epigenetic characteristics have recently been emerging as prognostic markers. The evidence shows that non-coding RNAs (ncRNAs) play a fundamental role in various biological processes associated with the pathogenesis of EC and many of them also have a prognosis prediction function, of remarkable importance in defining the therapeutic and surveillance path of EC patients. Personalized medicine focuses on the continuous updating of risk factors that are identifiable early during the EC staging to tailor treatments to patients. This review aims to show a summary of the current classification systems and to encourage the integration of various risk factors, introducing the prognostic role of non-coding RNAs, to avoid aggressive therapies where not necessary and to treat and strictly monitor subjects at greater risk of relapse.
Collapse
Affiliation(s)
- Anna Franca Cavaliere
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santo Stefano Hospital, 59100 Prato, Italy;
| | - Federica Perelli
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santa Maria Annunziata Hospital, 50012 Florence, Italy;
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Roma, Italy;
| | - Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Alberto Mattei
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santa Maria Annunziata Hospital, 50012 Florence, Italy;
| | - Giuseppe Vizzielli
- Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.V.); (G.S.)
- Obstetrics, Gynecology and Pediatrics Department, Udine University Hospital, DAME, 33100 Udine, Italy;
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.V.); (G.S.)
| | - Gianluca Straface
- Division of Perinatal Medicine, Policlinico Abano Terme, 35031 Abano Terme, Italy;
| | - Stefano Restaino
- Obstetrics, Gynecology and Pediatrics Department, Udine University Hospital, DAME, 33100 Udine, Italy;
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| |
Collapse
|
14
|
Liu T, Ye P, Ye Y, Han B. MicroRNA-216b targets HK2 to potentiate autophagy and apoptosis of breast cancer cells via the mTOR signaling pathway. Int J Biol Sci 2021; 17:2970-2983. [PMID: 34345220 PMCID: PMC8326127 DOI: 10.7150/ijbs.48933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Patients suffering from breast cancer (BC) still have a poor response to treatments, even though early detection and improved therapy have contributed to a reduced mortality. Recent studies have been inspired on the association between microRNAs (miRs) and therapies of BC. The current study set out to investigate the role of miR-216b in BC, and further analyze the underlining mechanism. Firstly, hexokinase 2 (HK2) and miR-216b were characterized in BC tissues and cells by RT-qPCR and Western blot assay. In addition, the interaction between HK2 and miR-216b was analyzed using dual luciferase reporter assay. BC cells were further transfected with a series of miR-126b mimic or inhibitor, or siRNA targeting HK2, so as to analyze the regulatory mechanism of miR-216b, HK2 and mammalian target of rapamycin (mTOR) signaling pathway, and to further explore their regulation in BC cellular behaviors. The results demonstrated that HK2 was highly expressed and miR-216b was poorly expressed in BC cells and tissues. HK2 was also verified as a target of miR-216b with online databases and dual luciferase reporter assay. Functionally, miR-216b was found to be closely associated with BC progression via inactivating mTOR signaling pathway by targeting HK2. Moreover, cell viability, migration and invasion were reduced as a result of miR-216b upregulation or HK2 silencing, while autophagy, cell cycle arrest and apoptosis were induced. Taken together, our findings indicated that miR-216 down-regulates HK2 to inactivate the mTOR signaling pathway, thus inhibiting the progression of BC. Hence, this study highlighted a novel target for BC treatment.
Collapse
Affiliation(s)
- Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| | - Ping Ye
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Yuanyuan Ye
- The Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| | - Baosan Han
- The Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| |
Collapse
|
15
|
Yi T, Song Y, Zuo L, Wang S, Miao J. LINC00470 Stimulates Methylation of PTEN to Facilitate the Progression of Endometrial Cancer by Recruiting DNMT3a Through MYC. Front Oncol 2021; 11:646217. [PMID: 34249684 PMCID: PMC8267821 DOI: 10.3389/fonc.2021.646217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Increasing researches emphasize the importance of long non-coding RNAs (lncRNAs) in the development of endometrial cancer (EC). There is wide recognition that LINC00470 is a critical participant in the tumorigenesis of cancers such as gastric cancer and glioblastoma, but its possible effects on EC progression remain to be explored. METHODS We collected EC tissues and cells, where the expression of LINC00470 was determined, and followed by the Kaplan-Meier analysis of EC patient survival. We next examined the effect of LINC00470 and phosphatase and tensin homolog (PTEN) on EC cell migration, invasion, tube formation in vitro, and angiogenesis in mice xenografted with tumor after gain- or loss-of-function treatments. RNA pull-down, Co-IP, and ChIP experiments were performed to analyze the targeting relationships among LINC00470, MYC and DNMT3a. RESULTS LINC00470 was aberrantly upregulated in EC and its high expression correlated to prognosis of EC patients. LINC00470 promoted invasiveness, migration, and angiogenesis of EC cells, and facilitated tumorigenesis and metastasis in vivo, but those effects were reversed by up-regulating PTEN. Functionally, LINC00470 bound to MYC in EC and that LINC00470 stimulated the binding of MYC to DNMT3a, and thus recruited DNMT3a through MYC to promote PTEN methylation. CONCLUSIONS Our findings revealed that LINC00470 stimulated PTEN methylation to inhibit its expression by MYC-induced recruitment of DNMT3a, thus aggravating EC.
Collapse
Affiliation(s)
- Tiezhong Yi
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yicun Song
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingling Zuo
- Department of Obstetrics and Gynecology, Heilongjiang Provincial Hospital, Harbin, China
| | - Siyun Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jintian Miao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Piergentili R, Zaami S, Cavaliere AF, Signore F, Scambia G, Mattei A, Marinelli E, Gulia C, Perelli F. Non-Coding RNAs as Prognostic Markers for Endometrial Cancer. Int J Mol Sci 2021; 22:3151. [PMID: 33808791 PMCID: PMC8003471 DOI: 10.3390/ijms22063151] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer (EC) has been classified over the years, for prognostic and therapeutic purposes. In recent years, classification systems have been emerging not only based on EC clinical and pathological characteristics but also on its genetic and epigenetic features. Noncoding RNAs (ncRNAs) are emerging as promising markers in several cancer types, including EC, for which their prognostic value is currently under investigation and will likely integrate the present prognostic tools based on protein coding genes. This review aims to underline the importance of the genetic and epigenetic events in the EC tumorigenesis, by expounding upon the prognostic role of ncRNAs.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, “Sapienza” University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Anna Franca Cavaliere
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santo Stefano Hospital, 59100 Prato, Italy;
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Gynecologic Oncology Unit, 00168 Rome, Italy;
- Universita’ Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Mattei
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| | - Enrico Marinelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy;
| | - Caterina Gulia
- Department of Urology, Misericordia Hospital, 58100 Grosseto, Italy;
| | - Federica Perelli
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| |
Collapse
|
17
|
Favier A, Rocher G, Larsen AK, Delangle R, Uzan C, Sabbah M, Castela M, Duval A, Mehats C, Canlorbe G. MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review. Cancers (Basel) 2021; 13:cancers13051137. [PMID: 33800944 PMCID: PMC7961497 DOI: 10.3390/cancers13051137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endometrial cancer (EC) is the 2nd most common gynecologic cancer worldwide. MicroRNAs (miRNAs) are small noncoding RNAs that contribute to epigenetic regulation. The objective of this systematic review is to summarize our current knowledge on the role of miRNAs in the epigenetic deregulation of tumor-related genes in EC. It includes all miRNAs reported to be involved in EC including their roles in DNA methylation and RNA-associated silencing. This systematic review should be useful for development of novel strategies to improve diagnosis and risk assessment as well as for new treatments aimed at miRNAs, their target genes or DNA methylation. Abstract The objective of this systematic review is to summarize our current knowledge on the influence of miRNAs in the epigenetic deregulation of tumor-related genes in endometrial cancer (EC). We conducted a literature search on the role of miRNAs in the epigenetic regulation of EC applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following terms were used: microRNA, miRNA, miR, endometrial cancer, endometrium, epigenetic, epimutation, hypermethylation, lynch, deacetylase, DICER, novel biomarker, histone, chromatin. The miRNAs were classified and are presented according to their function (tumor suppressor or onco-miRNA), their targets (when known), their expression levels in EC tissue vs the normal surrounding tissue, and the degree of DNA methylation in miRNA loci and CpG sites. Data were collected from 201 articles, including 190 original articles, published between November 1, 2008 and September 30, 2020 identifying 313 different miRNAs implicated in epigenetic regulation of EC. Overall, we identified a total of 148 miRNAs with decreased expression in EC, 140 miRNAs with increased expression in EC, and 22 miRNAs with discordant expression levels. The literature implicated different epigenetic phenomena including altered miRNA expression levels (miR-182, -230), changes in the methylation of miRNA loci (miR-34b, -129-2, -130a/b, -152, -200b, -625) and increased/decreased methylation of target genes (miR-30d,-191). This work provides an overview of all miRNAs reported to be involved in epigenetic regulation in EC including DNA methylation and RNA-associated silencing. These findings may contribute to novel strategies in diagnosis, risk assessment, and treatments aimed at miRNAs, their target genes or DNA methylation.
Collapse
Affiliation(s)
- Amélia Favier
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
- Correspondence: (A.F.); (G.C.)
| | - Grégoire Rocher
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Annette K. Larsen
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Romain Delangle
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Catherine Uzan
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Michèle Sabbah
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Mathieu Castela
- Scarcell Therapeutics, 101 rue de Sèvres, 75006 Paris, France;
| | - Alex Duval
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Céline Mehats
- U1016, CNRS, UMR8104, Institut Cochin, INSERM, Université de Paris, 75014 Paris, France;
| | - Geoffroy Canlorbe
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Correspondence: (A.F.); (G.C.)
| |
Collapse
|
18
|
Gao Q, Huang Q, Li F, Luo F. LncRNA MCTP1-AS1 Regulates EMT Process in Endometrial Cancer by Targeting the miR-650/SMAD7 Axis. Onco Targets Ther 2021; 14:751-761. [PMID: 33568915 PMCID: PMC7868288 DOI: 10.2147/ott.s240010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play critical roles in the pathogenesis of several diseases, especially some kinds of cancer. This study aimed to investigate the expression of MTCP1-AS1 and its effects on endometrial cancer (EC). Methods MTCP1-AS1 expression level was determined in human EC tissues and cell lines by qRT-PCR. The role of MTCP1-AS1 on EC cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT) was detected by CCK8, wound-healing assay, transwell assay and Western blot, respectively. Moreover, luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were performed to verify the targeting relationship between miR-650, MCTP1-AS1 and SMAD7 in EC cells. Results Our data showed that MCTP1-AS1 expression was downregulated in EC tissues and cell lines. Overexpression of MCTP1-AS1 inhibited cell proliferation, migration, invasion and EMT process of EC cells. Moreover, MCTP1-AS1 was proved to be the target of miR-650 and reversely correlated with its expression. In addition, MCTP1-AS1 reversed the effect of miR-650 on the EC cells, which might be associated with the role of SMAD7. Moreover, Western blot showed siRNA-SMAD7 transfection could rescue the repressed TGF-β/SMAD pathway induced by MCTP1-AS1 in EC cells. Conclusion Taken together, these data suggested that lncRNA MCTP1-AS1 inhibited cell proliferation, migration, invasion and EMT process of EC cells via targeting the miR-650/SMAD7 axis and it has the potential to be explored as a therapeutic target for the treatment of EC in the future.
Collapse
Affiliation(s)
- Qin Gao
- Obstetrics and Gynecology of Pu Ren Hospital in Wuhan, Wuhan, 430081, People's Republic of China
| | - Qin Huang
- Obstetrics and Gynecology of Pu Ren Hospital in Wuhan, Wuhan, 430081, People's Republic of China
| | - Fangbing Li
- Obstetrics and Gynecology of Pu Ren Hospital in Wuhan, Wuhan, 430081, People's Republic of China
| | - Fang Luo
- Obstetrics and Gynecology of Pu Ren Hospital in Wuhan, Wuhan, 430081, People's Republic of China
| |
Collapse
|
19
|
Wilson C, Kanhere A. 8q24.21 Locus: A Paradigm to Link Non-Coding RNAs, Genome Polymorphisms and Cancer. Int J Mol Sci 2021; 22:1094. [PMID: 33499210 PMCID: PMC7865353 DOI: 10.3390/ijms22031094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
The majority of the human genome is comprised of non-protein-coding genes, but the relevance of non-coding RNAs in complex diseases has yet to be fully elucidated. One class of non-coding RNAs is long non-coding RNAs or lncRNAs, many of which have been identified to play a range of roles in transcription and translation. While the clinical importance of the majority of lncRNAs have yet to be identified, it is puzzling that a large number of disease-associated genetic variations are seen in lncRNA genes. The 8q24.21 locus is rich in lncRNAs and very few protein-coding genes are located in this region. Interestingly, the 8q24.21 region is also a hot spot for genetic variants associated with an increased risk of cancer. Research focusing on the lncRNAs in this area of the genome has indicated clinical relevance of lncRNAs in different cancers. In this review, we summarise the lncRNAs in the 8q24.21 region with respect to their role in cancer and discuss the potential impact of cancer-associated genetic polymorphisms on the function of lncRNAs in initiation and progression of cancer.
Collapse
Affiliation(s)
| | - Aditi Kanhere
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| |
Collapse
|
20
|
Cai L, Chen J, Deng F, Wang L, Chen Y. MiR‐326 regulates the proliferation and apoptosis of endometrial cancer by targeting Bcl‐2. J Obstet Gynaecol Res 2020; 47:621-630. [PMID: 33210403 DOI: 10.1111/jog.14572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Lily Cai
- Department of Clinical Laboratory The Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Laboratory Medicine Nanchang China
| | - Juan‐Juan Chen
- Department of Clinical Laboratory The Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Laboratory Medicine Nanchang China
| | - Fu‐Mou Deng
- Department of Anesthesiology The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Lei Wang
- Further Education Department Jiangxi Health Vocational College Nanchang China
| | - Yu Chen
- Department of Clinical Laboratory The Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Laboratory Medicine Nanchang China
| |
Collapse
|
21
|
Zhang K, Cai Y, Zhou Q, Sun H, Wei J. Long Non-Coding RNA SNHG14 Impedes Viability, Migration and Invasion of Endometrial Carcinoma Cells Through Modulating miR-93-5p/ ZBTB7A Axis. Cancer Manag Res 2020; 12:9515-9525. [PMID: 33061638 PMCID: PMC7534865 DOI: 10.2147/cmar.s257419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background The function of long non-coding RNA small nucleolar RNA host gene 14 (SNHG14) in endometrial carcinoma (EC) has not been thoroughly reported. This research is designed to research the action mechanism of SNHG14 in EC development. Methods The expression of SNHG14 was estimated in The Cancer Genome Atlas and was verified by qRT-PCR in EC tissues. The correlation between SNHG14 expression and clinicopathological features of EC patients was analyzed. Cell viability, wound healing rate, and relative invasion rate were examined by MTT, wound healing, and transwell assay. StarBase, TargetScan, RNA pull-down, and dual luciferase reporter gene (DLR) assay were conducted to analyze the relationship among SNHG14, miR-93-5p and ZBTB7A. Results SNHG14 was underexpressed in EC. SNHG14 expression was significantly relevant to menstruation, FIGO stage, histological grade and lymphatic metastasis of EC patients. SNHG14 overexpression hampered viability, migration and invasion of EC cells. SNHG14 functioned as a sponge for miR-93-5p, and miR-93-5p inhibition restrained cell viability, migration and invasion in EC. In addition, miR-93-5p directly targeted to ZBTB7A, which was underexpressed in EC. The suppressive action of SNHG14 overexpression on the viability, migration and invasion of EC cells was partly rescued by miR-93-5p overexpression or ZBTB7A silencing. Conclusion LncRNA SNHG14 hampered the viability, migration and invasion of EC cells via modulating miR-93-5p/ZBTB7A axis.
Collapse
Affiliation(s)
- Kai Zhang
- No. 2 Disease Area of Gynaecology, Weifang Yidu Central Hospital, Qingzhou City, Shandong Province 262500, People's Republic of China
| | - Yongqin Cai
- No. 2 Disease Area of Gynaecology, Weifang Yidu Central Hospital, Qingzhou City, Shandong Province 262500, People's Republic of China
| | - Qi Zhou
- No. 2 Disease Area of Gynaecology, Weifang Yidu Central Hospital, Qingzhou City, Shandong Province 262500, People's Republic of China
| | - Hong Sun
- No. 2 Disease Area of Gynaecology, Weifang Yidu Central Hospital, Qingzhou City, Shandong Province 262500, People's Republic of China
| | - Jinying Wei
- No. 1 District of Gynecology, Weifang People's Hospital, Weifang City, Shandong Province 261041, People's Republic of China
| |
Collapse
|
22
|
Jana S, Krishna M, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. Therapeutic targeting of miRNA-216b in cancer. Cancer Lett 2020; 484:16-28. [DOI: 10.1016/j.canlet.2020.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
|
23
|
The Interplay of Tumor Stroma and Translational Factors in Endometrial Cancer. Cancers (Basel) 2020; 12:cancers12082074. [PMID: 32726992 PMCID: PMC7463731 DOI: 10.3390/cancers12082074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) is a common gynecologic malignancy which continues to have a poor prognosis in advanced stages due to current therapeutic limitations. A significant mechanism of chemoresistance in EC has been shown to also be the enhancement of epithelial to mesenchymal transition (EMT) and the subsequent obtainment of stem cell-like characteristics of EC. Current evidence on EMT in EC however fails to explain the relationship leading to an EMT signaling enhancement. Our review therefore focuses on understanding eukaryotic translation initiation factors (eIFs) as key regulators of the translational process in enhancing EMT and subsequently impacting higher chemoresistance of EC. We identified pathways connected to the development of a microenvironment for EMT, inducers of the process specifically related to estrogen receptors as well as their interplay with eIFs. In the future, investigation elucidating the translational biology of EC in EMT may therefore focus on the signaling between protein kinase RNA-like ER kinase (PERK) and eIF2alpha as well as eIF3B.
Collapse
|
24
|
LINC01410/miR-23c/CHD7 functions as a ceRNA network to affect the prognosis of patients with endometrial cancer and strengthen the malignant properties of endometrial cancer cells. Mol Cell Biochem 2020; 469:9-19. [PMID: 32314193 DOI: 10.1007/s11010-020-03723-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
In previous studies, long non-coding RNA LINC01410 (LINC01410) has been found to promote cells proliferation and invasion in colon and gastric cancers. However, the function of LINC01410 in endometrial cancer (EC) is still elusive. The expression patterns of LINC01410/miR-23c/Chromodomain Helicase DNA-Binding Protein 7 (CHD7) in EC tissues and the prognosis of patients with different expression of LINC01410/miR-23c/CHD7 were determined by consulting TCGA database. EC patients with complete clinical data were applied for clinicopathological correlation analysis. The biological characteristics of EC cells were analyzed with the support of CCK-8 and transwell assays. CHD7 expression was assessed by qRT-PCR and western blot assays. Targeted associations between LINC01410 and miR-23c, as well as miR-23c and CHD7 were speculated by prediction website and verified by dual-luciferase assay. Rescue assays were performed to explore the interrelation among LINC01410, miR-23c and CHD7. Our data illustrated that LINC01410 high expression was presented in EC tissues and was positively related to the poor prognosis of patients in EC, as well as the malignant behaviors of EC cells. Through bioinformatics analysis, we surmised that LINC01410/miR-23c/CHD7 may play a role through the formation of competing endogenous RNA (ceRNA) mechanism. CHD7 expression was positively regulated by LINC01410, and inversely controlled by miR-23c. Furthermore, the promoting effects of miR-23c inhibitor or CHD7 upregulation on EC cell growth and aggressiveness were attenuated by LINC01410 silencing. Our results indicated that high expression of LINC01410 promoted EC cell progression through modulating miR-23c/CHD7 axis, providing a new direction for revealing the molecular mechanism of EC.
Collapse
|
25
|
A Comprehensive Exploration of the lncRNA CCAT2: A Pan-Cancer Analysis Based on 33 Cancer Types and 13285 Cases. DISEASE MARKERS 2020; 2020:5354702. [PMID: 32908615 PMCID: PMC7060419 DOI: 10.1155/2020/5354702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Whether the lncRNA CCAT2 expression level affects the clinical progression and outcome of cancer patients has not yet been fully elucidated. There is still an inconsistent view regarding the correlation between CCAT2 expression and clinicopathological factors, including survival data. Besides, the regulation mechanism of CCAT2 in human cancer is still unclear. Our study analyzed a large number of publication data and TCGA databases to identify the association of CCAT2 expression with clinicopathological factors and to explore the regulatory mechanisms in human cancers. We designed a comprehensive study to determine the expression of CCAT2 in human cancer by designing a meta-analysis of 20 selected studies and the TCGA database, using StataSE 12.0 to explore the relationship between CCAT2 expression and both the prognosis and clinicopathological features of 33 cancer types and 13285 tumor patients. Moreover, we performed GO and KEGG pathway enrichment analyses on potential target genes of CCAT2 collected from GEPIA and LncRNA2Target V2.0. The level of CCAT2 expression in tumor tissues is higher than that in paired normal tissues and is significantly associated with a poor prognosis in cancer patients. Besides, overexpression of CCAT2 was significantly associated with tumor size, clinical stage, and TNM classification. Meanwhile, CCAT2 expression is the highest in stage II of human cancer, followed by stage III. Finally, 111 validated target gene symbols were identified, and GO and KEGG demonstrated that the CCAT2 validation target was significantly enriched in several pathways, including microRNAs in the cancer pathway. In summary, CCAT2 can be a potential biomarker associated with the progression and prognosis of human cancer.
Collapse
|
26
|
The Communication Between the PI3K/AKT/mTOR Pathway and Y-box Binding Protein-1 in Gynecological Cancer. Cancers (Basel) 2020; 12:cancers12010205. [PMID: 31947591 PMCID: PMC7017275 DOI: 10.3390/cancers12010205] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/04/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Studies of the mechanistic (mammalian) target of rapamycin inhibitors (mTOR) represent a step towards the targeted treatment of gynecological cancers. It has been shown that women with increased levels of mTOR signaling pathway targets have worse prognosis compared to women with normal mTOR levels. Yet, targeting mTOR alone has led to unsatisfactory outcomes in gynecological cancer. The aim of our review was therefore to provide an overview of the most recent clinical results and basic findings on the interplay of mTOR signaling and cold shock proteins in gynecological malignancies. Due to their oncogenic activity, there are promising data showing that mTOR and Y-box-protein 1 (YB-1) dual targeting improves the inhibition of carcinogenic activity. Although several components differentially expressed in patients with ovarian, endometrial, and cervical cancer of the mTOR were identified, there are only a few investigated downstream actors in gynecological cancer connecting them with YB-1. Our analysis shows that YB-1 is an important player impacting AKT as well as the downstream actors interacting with mTOR such as epidermal growth factor receptor (EGFR), Snail or E-cadherin.
Collapse
|
27
|
Lin S, Wang H, Yang W, Wang A, Geng C. Silencing of Long Non-Coding RNA Colon Cancer-Associated Transcript 2 Inhibits the Growth and Metastasis of Gastric Cancer Through Blocking mTOR Signaling. Onco Targets Ther 2020; 13:337-349. [PMID: 32021279 PMCID: PMC6968811 DOI: 10.2147/ott.s220302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose This study aimed to evaluate the specific role of colon cancer-associated transcript 2 (CCAT2) on gastric cancer (GC), and reveal the potential regulatory mechanism relating to mammalian target of rapamycin (mTOR) signaling. Methods The expression of CCAT2 was detected in GC tissues and cells by quantitative real-time PCR (qRT-PCR), and its relation with the pathologic characteristics of GC patients was analyzed. HGC-27 and SGC-7901 cells were transfected with siRNA-CCAT2 to silence CCAT2, and HGC-27 cells were then treated with an mTOR agonist Leucine (Leu) to activate mTOR signaling. The cell proliferation was evaluated by cell viability and colony formation. The cell cycle and apoptosis, and the migration and invasion abilities were detected by Flow cytometry, and Transwell assay, respectively. The expression of PCNA (proliferation marker), Snail, N-cadherin, E-cadherin (invasion markers), P53, Caspase-8, Bcl-2 (apoptosis markers), LC3-II/LC3-I, ATG3, p62 (autophagy makers), phosphorylated mTOR (p-mTOR), p-AKT, and p-p70S6K (mTOR signaling markers) were detected by Western blot. Results CCAT2 was upregulated in GC tissues and cells, and positively associated with the maximum tumor diameter, lymphatic metastasis, TNM staging, and low overall survival rate (P < 0.05). siRNA-CCAT2 transfection significantly inhibited the viability, colony formation, and migration and invasion abilities, blocked the cell cycle in G0/G1 phase, and promoted the apoptosis and autophagy of SGC-7901 and HGC-27 cells (P < 0.05). In addition, siRNA-CCAT2 transfection significantly upregulated P53, Caspase-8, LC3-II/LC3-I and ATG3, and downregulated PCNA, Bcl-2, p62, p-mTOR, p-AKT and p-p70S6K in SGC-7901 and HGC-27 cells (P < 0.05). siRNA-CCAT2 reversed the tumor-promoting effect of mTOR signaling activation on HGC-27 cells (P < 0.05). Conclusion Silencing of CCAT2 inhibited the proliferation, migration and invasion, and promoted the apoptosis and autophagy of GC cells through blocking mTOR signaling.
Collapse
Affiliation(s)
- Sen Lin
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan City, Shangdong 250033, People's Republic of China
| | - Hongbo Wang
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan City, Shangdong 250033, People's Republic of China
| | - Wenjuan Yang
- Department of Nursing, Jinan Central Hospital, Jinan City, Shangdong 250013, People's Republic of China
| | - Aiguang Wang
- Department of Oncology, Qianfoshan Hospital of Shandong Province, Jinan City, Shangdong 250014, People's Republic of China
| | - Chao Geng
- Department of Gastroenterology, Shouguang People's Hospital, Shouguang City, Shangdong 262799, People's Republic of China
| |
Collapse
|
28
|
Liu D, Qiu M, Jiang L, Liu K. Long Noncoding RNA HOXB-AS1 Is Upregulated in Endometrial Carcinoma and Sponged miR-149-3p to Upregulate Wnt10b. Technol Cancer Res Treat 2020; 19:1533033820967462. [PMID: 33073693 PMCID: PMC7592328 DOI: 10.1177/1533033820967462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
The functions of Long noncoding RNA (lncRNA) HOXB-AS1 have been investigated in glioblastoma and multiple myeloma. However, the role of lncRNA HOXB-AS1 in endometrial carcinoma (EC) remains largely unknown. This study investigated the underlying mechanisms of the lncRNA HOXB-AS1 on the progression of EC. In this study, We found that HOXB-AS1 expression was significantly upregulated in EC tissue samples and was associated with shorter survival time. Furthermore, upregulation of HOXB-AS1 promoted proliferation, invasion, and migration of EC cell. HOXB-AS1 and Wnt10b directly bound to miR-149-3p. HOXB-AS1 increased the expression of Wnt10b by binding to miR-149-3p. We further verified the upregulation of β-catenin, cyclin D1, and c-myc induced by HOXB-AS1. In conclusion, our results indicated that HOXB-AS1 exerted oncogenic function as competing endogenous RNA (ceRNA) of miR-149-3p to release Wnt10b and activated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Min Qiu
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
29
|
Sun R, Sun X, Liu H, Li P. Knockdown of lncRNA TDRG1 Inhibits Tumorigenesis in Endometrial Carcinoma Through the PI3K/AKT/mTOR Pathway. Onco Targets Ther 2019; 12:10863-10872. [PMID: 31849490 PMCID: PMC6912007 DOI: 10.2147/ott.s228168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Endometrial carcinoma (EC) is one of the most frequently diagnosed malignancies in females. Dysregulation of lncRNA TDRG1 has been widely documented in several cancers, including EC. However, the mechanism of this lncRNA involving in EC progression remains to be further elucidated. MATERIALS AND METHODS The enrichment levels of TDRG1 in EC tissues and cell lines were examined by RT-qPCR. Flow cytometry, cell counting kit-8 (CCK-8), transwell, and Western blot assays were conducted to assess whether TDRG1 knockdown could affect cell cycle arrest, proliferation, migration, invasion, and apoptosis of EC cells. The phosphorylation levels of mTOR, AKT and PI3K that associated with PI3K/Akt/mTOR pathway were determined by Western blot assay. RESULTS TDRG1 expression was markedly upregulated in EC tissues and cell lines. Knockdown of TDRG1 significantly induced cell cycle arrest and apoptosis, inhibited cell proliferation, restrained the invasion and migration abilities in EC cells. Moreover, TDRG1 silencing decreased the protein levels of p-AKT, p-PI3K, and p-mTOR of EC cells. CONCLUSION Our data underlined the implication of TDRG1 in EC progression, proposing that targeting TDRG1 might be a potential therapeutic avenue in EC.
Collapse
Affiliation(s)
- Ruimei Sun
- Department of Radiotherapy, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| | - Xiujiang Sun
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| | - Hua Liu
- Department of Gynaecology, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| | - Peirui Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| |
Collapse
|
30
|
Shi Y, Zha J, Zuo M, Yan Q, Song H. Long noncoding RNA CHL1-AS1 promotes cell proliferation and migration by sponging miR-6076 to regulate CHL1 expression in endometrial cancer. J Cell Biochem 2019; 121:2655-2663. [PMID: 31736153 DOI: 10.1002/jcb.29486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Endometrial cancer (EC) is deemed to be the most typical gynecologic malignant tumor. Despite the incidence of EC being lower in Asia than that in western countries, substantial increased incidence has been observed in the past few decades in Asia. Although various molecular testing methods and genomic science have developed, the overall prognosis is still disappointing. LncRNAs have been found to influence the progression of various cancers. CHL1-AS1 has been found to be upregulated in ovarian endometriosis, nevertheless, the molecular mechanism and biological function of CHL1-AS1 in EC have not been explored. In our exploration, both CHL1-AS1 and CHL1 were upregulated in EC cells. Knockdown of CHL1-AS1 or CHL1 inhibited cell proliferation and migration in EC. Furthermore, microRNA-6076 (miR-6076) could bind with CHL1-AS1 or CHL1, and regulate the expression of CHL1. Finally, absence of miR-6076 or overexpression of CHL1 can partially rescue the effect of CHL1-AS1 knockdown or miR-6076 upregulation on cell proliferation and migration, respectively. All in all, our research was the first endeavor to study the underlying mechanism of CHL1-AS1 in EC and confirmed that CHL1-AS1 regulated EC progression via targeting the miR-6076/CHL1 axis, offering new insight into treating EC.
Collapse
Affiliation(s)
- Yanmei Shi
- Department of Gynecology and Obstetrics, Yantaishan Hospital, Yantai, Shandong, China
| | - Jinfen Zha
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Manzhen Zuo
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Qian Yan
- Department of Gynecology and Obstetrics, Yantaishan Hospital, Yantai, Shandong, China
| | - Huamei Song
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
31
|
Ouyang D, Li R, Li Y, Zhu X. Construction of a Competitive Endogenous RNA Network in Uterine Corpus Endometrial Carcinoma. Med Sci Monit 2019; 25:7998-8010. [PMID: 31650984 PMCID: PMC6825398 DOI: 10.12659/msm.915798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) affect post-transcriptional regulation by interfering with microRNAs (miRNAs), and by acting as competitive endogenous RNAs (ceRNAs). The roles and mechanisms of lncRNAs as ceRNAs in the progression and prognosis of uterine corpus endometrial carcinoma are not well understood. MATERIAL AND METHODS We analyzed high-throughput transcriptome data downloaded from The Cancer Genome Atlas database for 548 patients with uterine corpus endometrial carcinoma, and the we constructed a ceRNA network. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses of differentially expressed messenger RNAs (DE-mRNAs) were performed using R software. Kaplan-Meier survival curves were generated for all RNAs in the ceRNA network. RESULTS We identified 2612 messenger RNAs (mRNAs), 1111 lncRNAs, and 187 miRNAs that were differentially expressed in uterine corpus endometrial carcinoma. We then identified mutual regulatory relationships between lncRNA-miRNA pairs and miRNA-mRNA pairs. A ceRNA regulatory network for uterine corpus endometrial carcinoma was successfully constructed, and consisted of 87 lncRNAs, 74 mRNAs, and 20 miRNAs. Nine lncRNAs, 3 miRNAs, and 22 mRNAs were associated with prognosis of uterine corpus endometrial carcinoma. We also analyzed the linear relationships between the expression of the 9 DE-lncRNAs and 22 DE-mRNAs with prognostic value. CONCLUSIONS Our study showed that the lncRNAs C2orf48 and LINC00261 might be key regulators of uterine corpus endometrial carcinoma and might serve as prognostic indicators. Our study contributes to the understanding of the molecular mechanisms of uterine corpus endometrial carcinoma, and it identifies lncRNAs that might serve as prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Dong Ouyang
- Department of Obstetrics and Gynecology, Akesu Hospital of Traditional Chinese Medicine, Akesu, Xinjiang, P.R. China
| | - Ruyi Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yaxian Li
- Department of Obstetrics and Gynecology, Akesu Hospital of Traditional Chinese Medicine, Akesu, Xinjiang, P.R. China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
32
|
Farooqi AA, Fuentes-Mattei E, Fayyaz S, Raj P, Goblirsch M, Poltronieri P, Calin GA. Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer. Semin Cancer Biol 2019; 58:47-55. [PMID: 30742906 DOI: 10.1016/j.semcancer.2019.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic abnormalities and aberrant expression of non-coding RNAs are two emerging features of cancer cells, both of which are responsible for deregulated gene expression. In this review, we describe the interplay between the two. Specific themes include epigenetic silencing of tumor suppressor miRNAs, epigenetic activation of oncogenic miRNAs, epigenetic aberrations caused by miRNAs, and naturally occurring compounds which modulate miRNA expression through epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Priyank Raj
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Goblirsch
- College of Science, Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Palmiro Poltronieri
- National Research Council Italy Institute of Sciences of Food Productions (CNR-ISPA), Via Lecce-Monteroni km 7, 73100 Lecce, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Fu C, Xu X, Lu W, Nie L, Yin T, Wu D. Increased expression of long non-coding RNA CCAT2 predicts poorer prognosis in patients with hepatocellular carcinoma. Medicine (Baltimore) 2019; 98:e17412. [PMID: 31626095 PMCID: PMC6824708 DOI: 10.1097/md.0000000000017412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long non-coding RNA colon cancer-associated transcript 2 (CCAT2) is a 1752-bp lncRNA transcribed from m8q24 genomic region. A lot of investigations have confirmed the involvement of CCAT2 in the tumorigenesis of many cancer types. Previous studies found that over-expression of CCAT2 significantly promoted cell migration and proliferation, and inhibited apoptosis of HCC cells. In the present investigation, the clinical value and prognostic significance of CCAT2 were investigated. METHODS The 122 pairs of HCC tissues and adjacent normal liver tissues were acquired between September 2013 and February 2018. The expression levels of CCAT2 in HCC tissues and their corresponding adjacent normal liver tissues were examined by RT-qPCR analysis. Survival was calculated using the Kaplan-Meier method and analyzed using the log-rank test. Independent prognostic indicators were determined in the multivariate analysis using Cox's proportional hazard model. RESULTS CCAT2 expression levels were significantly increased in HCC tissues compared to that in their normal counterparts (P < .001). CCAT2 expression was significantly correlated with vascular invasion (P = .001), histopathologic grading (P = .001), distant metastasis (P = .002) and TNM stage (P = .018). A Kaplan-Meier survival curve showed that the overall survival rate of HCC patients in high CCAT2 expression group markedly decreased as compared with that of low CCAT2 expression group (P = .016). In addition, COX multivariate analysis showed that high expression of CCAT2 was an independent risk factor for predicting shorter overall survival time in HCC (HR = 2.126, 95%CI:1.273-8.775, P = .021). CONCLUSIONS Taken together, this research revealed that lncRNA CCAT2 may serve as a potential biomarker for predicting overall survival time in HCC.
Collapse
Affiliation(s)
- Changbo Fu
- Department of Hepatobiliary and Pancreatic Surgery
| | - Xuan Xu
- Department of Anesthesiology, Hubei Provincial Cancer Hospital, Wuhan, Hubei, China
| | - Weijun Lu
- Department of Hepatobiliary and Pancreatic Surgery
| | - Lei Nie
- Department of Hepatobiliary and Pancreatic Surgery
| | - Tao Yin
- Department of Hepatobiliary and Pancreatic Surgery
| | - Dongde Wu
- Department of Hepatobiliary and Pancreatic Surgery
| |
Collapse
|
34
|
Ghafouri-Fard S, Taheri M. Colon Cancer-Associated Transcripts 1 and 2: Roles and functions in human cancers. J Cell Physiol 2019; 234:14581-14600. [PMID: 30693526 DOI: 10.1002/jcp.28176] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The long noncoding RNAs (lncRNAs) Colon Cancer-Associated Transcripts 1 and 2 (CCAT1 and CCAT2) are located in a recurrently amplified region in cancers. Their proximity with the Myc oncogene and their interactions with its promoter provided further evidence for their contribution in the tumorigenesis processes. Several cell line and clinical studies have shown upregulation of these lncRNAs in diverse malignancies. Moreover, some single nucleotide variants within these genes have been associated with cancer risk or therapeutic response in different populations. Besides, these two lncRNAs act as sponges for some tumor suppressor microRNAs (miRNAs), thus promoting cancer evolution. In the current study, we review recent literature about their expression level, interaction with cancer-related pathways, their role in determination of cell fate and their contribution in malignant phenotype characteristics. Taken together, the current literature shows that these lncRNAs are putative targets for design of novel treatment strategies. Moreover, their expression levels in biopsied samples, exosomes, and sera of patients might be applied as diagnostic biomarkers or markers for patient follow-up.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Zhu H, Jin YM, Lyu XM, Fan LM, Wu F. Long noncoding RNA H19 regulates HIF-1α/AXL signaling through inhibiting miR-20b-5p in endometrial cancer. Cell Cycle 2019; 18:2454-2464. [PMID: 31411527 DOI: 10.1080/15384101.2019.1648958] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In a variety of cancers, long non-coding RNAs (lncRNAs) were believed to play important roles. Nevertheless, H19's possible molecular mechanism related to miR-20b-5p has not yet been explored in endometrial cancer. Differential lncRNAs in endometrial cancer were identified based on microarray analysis (GSE23339). In this research, in the first place, H19 expression was detected to be increased but miR-20b-5p to be decreased in endometrial cancer tissues and cells. Besides, H19 expression displayed a negative relationship to miR-20b-5p expression in endometrial cancer tissues. According to gain- and loss-of-function experiments of H19, like a ceRNA, H19 elevated AXL level and HIF-1α expression so as to stimulate the migration, proliferation and EMT process of endometrial cancer. Additionally, the knockdown of H19 slowed down tumor growth, promoted apoptosis and upregulated miR-20b-5p expression but lowered the expressions of HIF-1α, PCNA and AXL in vivo. Furthermore, H19 was also verified to stimulate the activity of endometrial cancer with AXL inhibitor BGB324 in vitro and in vivo. To sum up, H19 accelerates the tumor formation of endometrial cancer through the miR-20b-5p/AXL/HIF-1α signaling pathway, thereby providing a novel target for diagnosing and treating endometrial cancer.
Collapse
Affiliation(s)
- He Zhu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University , Changchun , Jilin , China
| | - Yue-Mei Jin
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University , Changchun , Jilin , China
| | - Xue-Man Lyu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Li-Mei Fan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University , Changchun , Jilin , China
| | - Fei Wu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University , Changchun , Jilin , China
| |
Collapse
|
36
|
Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162833. [PMID: 31398859 PMCID: PMC6720737 DOI: 10.3390/ijerph16162833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
The worldwide incidence of hepatocellular carcinoma (HCC), the major histological type of primary liver cancer, is heterogeneous due to the variable prevalence of etiological factors, indicating a correlation of HCC risk with genetic variations among individuals. Among long non-coding RNAs (lncRNAs) located in the chromosome 8q24 loci and involved in the carcinogenesis are colon cancer associated transcript 2 (CCAT2) and cancer susceptibility candidate 8 (CASC8). In this study, the association of CCAT2 and CASC8 gene polymorphisms with the occurrence of HCC was explored between 397 HCC patients and 1195 controls. We found that carriers of rs6983267 GG in CCAT2 were more susceptible to HCC, with the odds ratio (OR) and adjusted odds ratio (AOR) being 1.532 (95% CI, 1.103–2.129; p = 0.011) and 1.627 (95% CI, 1.120–2.265; p = 0.033), respectively. Moreover, for patients stratified by age (under 65), gender (male only), or status of drinking (habitual drinkers), a protective effect of CASC8 rs3843549 on presenting high Child–Pugh scores, metastatic vascular invasion, or large-size tumors was observed in a dominant model. Collectively, our data reveal association of CCAT2 and CASC8 gene polymorphisms with the occurrence and progression of HCC.
Collapse
|
37
|
Delangle R, De Foucher T, Larsen AK, Sabbah M, Azaïs H, Bendifallah S, Daraï E, Ballester M, Mehats C, Uzan C, Canlorbe G. The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis. Cancers (Basel) 2019; 11:cancers11060832. [PMID: 31208108 PMCID: PMC6628044 DOI: 10.3390/cancers11060832] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction: Endometrial cancer (EC) is the most important gynecological cancer in terms of incidence. microRNAs (miRs), which are post-transcriptional regulators implicated in a variety of cellular functions including carcinogenesis, are particularly attractive candidates as biomarkers. Indeed, several studies have shown that the miR expression pattern appears to be associated with prognostic factors in EC. Our objective is to review the current knowledge of the role of miRs in carcinogenesis and tumor progression and their association with the prognosis of endometrial cancer. Materials and Method: We performed a literature search for miR expression in EC using MEDLINE, PubMed (the Internet portal of the National Library of Medicine) and The Cochrane Library, Cochrane databases “Cochrane Reviews” and “Clinical Trials” using the following keywords: microRNA, endometrial cancer, prognosis, diagnosis, lymph node, survival, plasma, FFPE (formalin-fixed, paraffin-embedded). The miRs were classified and presented according to their expression levels in cancer tissue in relation to different prognostic factors. Results: Data were collected from 74 original articles and 8 literature reviews which described the expression levels of 261 miRs in ECs, including 133 onco-miRs, 110 miR onco-suppressors, and 18 miRs with discordant functions. The review identified 30 articles studying the expression pattern of miR in neoplastic endometrial tissue compared to benign and/or hyperplastic tissues, 12 articles detailing the expression profile of miRs as a function of lymph node status, and 14 articles that detailed the expression pattern of miRs in endometrial tumor tissue according to overall survival or in the absence of recurrence. Conclusions: The findings presented here suggest that miR analysis merits a role as a prognostic factor in the management of patients with endometrial cancer.
Collapse
Affiliation(s)
- Romain Delangle
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France.
| | - Tiphaine De Foucher
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Obstetrics and Gynaecology, Tenon University Hospital, 75020 Paris, France.
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), 75012 Paris, France.
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), 75012 Paris, France.
| | - Henri Azaïs
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France.
| | - Sofiane Bendifallah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Obstetrics and Gynaecology, Tenon University Hospital, 75020 Paris, France.
| | - Emile Daraï
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Obstetrics and Gynaecology, Tenon University Hospital, 75020 Paris, France.
| | - Marcos Ballester
- Department of Gynecology, Groupe Hospitalier Diaconesses Croix Saint-Simon, 75020 Paris, France.
| | - Céline Mehats
- INSERM U1016-Institut Cochin, UMR 8104, Team "From Gametes to Birth", University Paris Descartes, 75014 Paris, France.
| | - Catherine Uzan
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France.
- Institut Universitaire de Cancérologie (IUC), 75020 Paris, France.
| | - Geoffroy Canlorbe
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France.
- Institut Universitaire de Cancérologie (IUC), 75020 Paris, France.
| |
Collapse
|
38
|
Che D, Huang W, Fang Z, Li L, Wu H, Pi L, Zhou H, Xu Y, Fu L, Tan Y, Lu Z, Li Q, Gu X. The lncRNA CCAT2 rs6983267 G allele is associated with decreased susceptibility to recurrent miscarriage. J Cell Physiol 2019; 234:20577-20583. [PMID: 30982978 DOI: 10.1002/jcp.28661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Genetics might play various roles in susceptibility to recurrent miscarriage, and previous studies suggest that some gene polymorphisms might be associated with abortion and breast cancer onset. Colon cancer-associated transcript 2 (CCAT2) is a novel long noncoding RNA (lncRNA) transcript that might be correlated with susceptibility to multiple cancers, including breast cancer. However, whether lncRNA CCAT2 polymorphisms are related to susceptibility to recurrent miscarriage is unclear. We genotyped two lncRNA CCAT2 polymorphisms (rs6983267 and rs3843549) in 248 patients with recurrent miscarriage and 392 controls through a TaqMan real-time polymerase chain reaction assay, and the strength of each association was evaluated via 95% confidence intervals (CIs) and odds ratios (ORs). Our results showed that the rs6983267 G allele in lncRNA CCAT2 was associated with decreased susceptibility to recurrent miscarriage (TG vs. TT: adjusted OR = 0.603; 95% CI = 0.420-0.866; p = 0.0062; GG/TG vs. TT: adjusted OR = 0.620; 95% CI = 0.441-0.873; p = 0.0061). The combined analysis of the two protective polymorphisms (rs3843549 AA and rs6983267 TG/GG) revealed that individuals with two unfavorable alleles exhibited a lower risk of recurrent miscarriage than those with no or only one unfavorable allele (adjusted OR = 0.531; 95% CI = 0.382-0.739). Moreover, the decreased risk associated with the two protective alleles was most obvious in women aged less than 35 years (OR = 0.551; 95% CI = 0.378-0.8803; p = 0.0019) and in women with two to three miscarriages (adjusted OR = 0.466; 95% CI = 0.318-0.683; p < 0.0001). In conclusion, our study indicates that the rs6983267G allele might contribute to a decreased risk of recurrent miscarriage in the South Chinese population.
Collapse
Affiliation(s)
- Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wendong Huang
- Department of Pharmacy, Maoming People's Hospital, Maoming, China
| | - Zhenzhen Fang
- Program of Molecular Medicine, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haiying Wu
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - LanYan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yaqian Tan
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaoliang Lu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qingfeng Li
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Blood Transfusion, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Ramón Y Cajal S, Segura MF, Hümmer S. Interplay Between ncRNAs and Cellular Communication: A Proposal for Understanding Cell-Specific Signaling Pathways. Front Genet 2019; 10:281. [PMID: 31001323 PMCID: PMC6454836 DOI: 10.3389/fgene.2019.00281] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023] Open
Abstract
Intercellular communication is essential for the development of specialized cells, tissues, and organs and is critical in a variety of diseases including cancer. Current knowledge states that different cell types communicate by ligand–receptor interactions: hormones, growth factors, and cytokines are released into the extracellular space and act on receptors, which are often expressed in a cell-type-specific manner. Non-coding RNAs (ncRNAs) are emerging as newly identified communicating factors in both physiological and pathological states. This class of RNA encompasses microRNAs (miRNAs, well-studied post-transcriptional regulators of gene expression), long non-coding RNAs (lncRNAs) and other ncRNAs. lncRNAs are diverse in length, sequence, and structure (linear or circular), and their functions are described as transcriptional regulation, induction of epigenetic changes and even direct regulation of protein activity. They have also been reported to act as miRNA sponges, interacting with miRNA and modulating its availability to endogenous mRNA targets. Importantly, lncRNAs may have a cell-type-specific expression pattern. In this paper, we propose that lncRNA–miRNA interactions, analogous to receptor–ligand interactions, are responsible for cell-type-specific outcomes. Specific binding of miRNAs to lncRNAs may drive cell-type-specific signaling cascades and modulate biochemical feedback loops that ultimately determine cell identity and response to stress factors.
Collapse
Affiliation(s)
- Santiago Ramón Y Cajal
- Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,Translational Molecular Pathology, Vall d'Hebron Research Institute, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Research Institute, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
40
|
Exploring lncRNA-Mediated Regulatory Networks in Endometrial Cancer Cells and the Tumor Microenvironment: Advances and Challenges. Cancers (Basel) 2019; 11:cancers11020234. [PMID: 30781521 PMCID: PMC6406952 DOI: 10.3390/cancers11020234] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies have revealed both the promise and challenges of targeting long non-coding RNAs (lncRNAs) to diagnose and treat endometrial cancer (EC). LncRNAs are upregulated or downregulated in ECs compared to normal tissues and their dysregulation has been linked to tumor grade, FIGO stage, the depth of myometrial invasion, lymph node metastasis and patient survival. Tumor suppressive lncRNAs (GAS5, MEG3, FER1L4 and LINC00672) and oncogenic lncRNAs (CCAT2, BANCR, NEAT1, MALAT1, H19 and Linc-RoR) have been identified as upstream modulators or downstream effectors of major signaling pathways influencing EC metastasis, including the PTEN/PI3K/AKT/mTOR, RAS/RAF/MEK/ERK, WNT/β-catenin and p53 signaling pathways. TUG1 and TDRG1 stimulate the VEGF-A pathway. PCGEM1 is implicated in activating the JAK/STAT3 pathway. Here, we present an overview of the expression pattern, prognostic value, biological function of lncRNAs in EC cells and their roles within the tumor microenvironment, focusing on the influence of lncRNAs on established EC-relevant pathways. We also describe the emerging classification of EC subtypes based on their lncRNA signature and discuss the clinical implications of lncRNAs as valuable biomarkers for EC diagnosis and potential targets for EC treatment.
Collapse
|
41
|
He J, Sun M, Geng H, Tian S. Long non-coding RNA Linc00518 promotes paclitaxel resistance of the human prostate cancer by sequestering miR-216b-5p. Biol Cell 2018; 111:39-50. [PMID: 30462844 DOI: 10.1111/boc.201800054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Junhui He
- Department of Urology Surgery; Heze Municipal Hospital; Heze 274000 China
| | - Mingchong Sun
- Department of Urology Surgery; Heze Municipal Hospital; Heze 274000 China
| | - Huaizhen Geng
- Department of Urology Surgery; Heze Municipal Hospital; Heze 274000 China
| | - Sujian Tian
- Department of Urology Surgery; Heze Municipal Hospital; Heze 274000 China
| |
Collapse
|
42
|
Expression of Long Non-Coding RNAs (UCA1 and CCAT2) in the Blood of Multiple Sclerosis Patients: A Case - Control Study. IRANIAN RED CRESCENT MEDICAL JOURNAL 2018. [DOI: 10.5812/ircmj.66334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Ferlita AL, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M, Pietro CD. Non-Coding RNAs in Endometrial Physiopathology. Int J Mol Sci 2018; 19:ijms19072120. [PMID: 30037059 PMCID: PMC6073439 DOI: 10.3390/ijms19072120] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022] Open
Abstract
The Human Genome Project led to the discovery that about 80% of our DNA is transcribed in RNA molecules. Only 2% of the human genome is translated into proteins, the rest mostly produces molecules called non-coding RNAs, which are a heterogeneous class of RNAs involved in different steps of gene regulation. They have been classified, according to their length, into small non-coding RNAs and long non-coding RNAs, or to their function, into housekeeping non-coding RNAs and regulatory non-coding RNAs. Their involvement has been widely demonstrated in all cellular processes, as well as their dysregulation in human pathologies. In this review, we discuss the function of non-coding RNAs in endometrial physiology, analysing their involvement in embryo implantation. Moreover, we explore their role in endometrial pathologies such as endometrial cancer, endometriosis and chronic endometritis.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Francesca Andronico
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Salvatore Caruso
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Antonio Cianci
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
44
|
Li Q, Wang M, Wang N, Wang J, Qi L, Mao P. Downregulation of microRNA-216b contributes to glioma cell growth and migration by promoting AEG-1-mediated signaling. Biomed Pharmacother 2018; 104:420-426. [PMID: 29787989 DOI: 10.1016/j.biopha.2018.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates microRNA-216b (miR-216b) plays an important role in the development and progression of various cancers. However, little is known about the function of miR-216b in gliomas. In this study, we aimed to investigate the expression level and functional significance of miR-216b in gliomas. We found that miR-216b was significantly downregulated in glioma specimens and cell lines. Overexpression of miR-216b suppressed the growth and migration of glioma cells, while miR-216b inhibition showed the opposite effects. Astrocyte elevated gene-1 (AEG-1) was predicted as a potential target gene of miR-216b by bioinformatics analysis. A dual-luciferase reporter assay showed that miR-216b could directly target the 3'-untranslated region of AEG-1. RT-qPCR and western blot analysis showed that miR-216 negatively regulated AEG-1 expression in glioma cells. Correlation analysis revealed an inverse correlation between miR-216b and AEG-1 in clinical glioma specimens. miR-216b also regulated the activation of nuclear factor-κB and Wnt signaling in glioma cells. Moreover, restoration of AEG-1 expression partially reversed the inhibitory effect of miR-216b overexpression on glioma cell growth and migration. Overall, these results revealed a tumor suppressive role of miR-216b in glioma tumorigenesis, and identified AEG-1 as a target gene of miR-216b action. Our study suggests that miR-216b can be potentially targeted for the development of novel therapies for gliomas.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lei Qi
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
45
|
Dai Y, Lu H, Wang S, Chang S, Li C, Huang Z, Zhang F, Yang H, Shen Y, Chen Z, Qian J, Ge J. MicroRNA-216b actively modulates diabetic angiopathy through inverse regulation on FZD5. Gene 2018; 658:129-135. [PMID: 29477872 DOI: 10.1016/j.gene.2018.02.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND In this work, we examined the angiogenic function of microRNA-216b in an in vitro rat diabetic model of myocardial microvascular endothelial cells (MMECs). METHODS MMECs were extracted from Wistar rats (MMEC(WI)) or diabetic Goto-Kakizaki (GK) rats (MMEC(GK)) and cultured in vitro. QRT-PCR was applied to compare miR-216b between MMEC(WI) and MMEC(GK). MiR-216b was downregulated in MMEC(GK). Its effects on angiogenic development, including invasion and proliferation, were evaluated. In MMEC(GK), putative miR-216b downstream target gene, frizzled class receptor 5 (FZD5), was evaluated by dual-luciferase reporter, qRT-PCR and western blot assays, respectively. FZD5 was further downregulated in MMEC(GK) with stable miR-216b downregulation to evaluate its functional role in regulating diabetic angiogenesis. RESULTS MiR-216b was markedly overexpressed in MMEC(GK). MiR-216b downregulation significantly enhanced angiogenesis in MMEC(GK) by promoting invasion and proliferation. FZD5 was inversely upregulated in miR-216b-downregulated MMEC(GK). Subsequently, FZD5 downregulation suppressed angiogenic development, by inhibiting invasion and proliferation in miR-216b-downregulated MMEC(GK). CONCLUSION MicroRNA-216b was overexposed in diabetic MMECs and its downregulation may actively enhance angiogenesis in diabetic angiopathy through inverse regulation on FZD5.
Collapse
Affiliation(s)
- Yuxiang Dai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shen Wang
- Department of Cardiology, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Shufu Chang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenguang Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheyong Huang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Feng Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongbo Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Shen
- Department of Geratology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|