1
|
Zhang WX, Chen J, Guo Q, Lv QY, Song X, Cui HF. Reversal of doxorubicin-resistance of MCF-7/Adr cells via multiple regulations by glucose oxidase loaded AuNRs@MnO 2@SiO 2 nanocarriers. Colloids Surf B Biointerfaces 2025; 253:114748. [PMID: 40334474 DOI: 10.1016/j.colsurfb.2025.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025]
Abstract
Targeting to multiple MDR mechanisms is a desired strategy for efficient reversal of multidrug resistance (MDR). Herein, a multi-functional and hierarchical-structured AuNRs@MnO2@SiO2 (AMS) nanocarrier is reported for multiple regulations of MDR. The glucose oxidase (GOx) loaded AMS (AMS/G) showed efficient capabilities of hypoxia-relieving, O2-generation enhanced cancer starvation therapy (CST), and near-infrared (NIR) laser photothermal therapy (PTT) to MCF-7/Adr, a doxorubicin (Dox)-resistant breast cancer cell line. It was revealed that hypoxia inducible factor-1α and heat shock protein 90, can be significantly down-regulated by AMS/G. The Dox resistance and the adenosine triphosphate (ATP)-binding cassette (ABC) transporters: P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein (BCRP), can be dramatically reversed by the AMS/G+NIR treatment. Specifically, the hypoxia-relieving function can down-regulate all the three ABC transporters. The enhanced CST decreases the expression of MRP1. The PTT diminishes the BCRP and MRP1. Assisted by the multiple and synergistic reversal mechanisms, the Dox co-loaded AMS/G (AMS/D/G) with NIR laser significantly inhibited the cell proliferation, migration, and drug efflux at both normoxia and hypoxia conditions. Cell apoptosis is greatly induced in a caspase-3 dependent manner. Tumor ATP depletion and Dox accumulation were confirmed in vivo. The tumor growth inhibition is greatly and synergistically enhanced, without inducing obvious side effects. Collectively, the nanostructured AMS/D/G can inhibit multiple ABC transporters and provide a promisingly platform for highly efficient reversal of tumor drug resistance.
Collapse
Affiliation(s)
- Wen-Xing Zhang
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Junyang Chen
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Qian Guo
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Qi-Yan Lv
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China
| | - Xiaojie Song
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China.
| | - Hui-Fang Cui
- School of Life Sciences, Zhengzhou University, Science Avenue 100#, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Opperman RCM, Bosch S, Nazmi K, Bikker FJ, Brand HS, Jimenez CR, de Meij TGJ, Dekker E, de Boer NKH, Kaman WE. Detecting Colorectal Neoplasia Using Specific Fecal Fluorogenic Protease-Sensitive Substrates: A Pilot Study. Anal Chem 2024; 96:20239-20246. [PMID: 39665576 DOI: 10.1021/acs.analchem.4c04586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
BACKGROUND identification and removal of advanced adenomas (AA) reduce colorectal cancer (CRC) incidence and potentially mortality. CRC screening often uses fecal immunochemical testing to select high-risk individuals for colonoscopy, despite its low sensitivity for AA and relatively high false-positivity rate. Previous studies have linked proteases to CRC development through their ability to facilitate angiogenesis and immunoregulation. This study aims to identify colorectal neoplasia-associated proteases and their substrates as a potential noninvasive screening test, introducing an innovative application of fecal protease profiling, which has previously been limited to tissue samples. METHODS eighteen fluorogenic substrates were designed based on literature. Proteolytic degradation of these substrates was measured in fecal samples of patients with CRC (n = 12), AA (n = 9), nonadvanced adenomas (n = 10), and controls (n = 14). Substrate degradation was correlated to a matched human proteome data set, and underlying proteases were identified based on their recognition patterns. Experiments with protease inhibitors and ZnCl2 were performed to further characterize the involved proteases. RESULTS in total, 7 of the 18 substrates tested showed a significantly decreased proteolytic degradation in feces from patients with any colorectal neoplasia compared to the control group. The l-aspartic acid-l-glutamic acid substrate (ED) showed significantly decreased degradation in AA and CRC patients. ED degradation significantly decreased with the addition of ZnCl2 and the cysteine protease inhibitor NEM. CONCLUSION we successfully developed colorectal neoplasia-specific fluorogenic substrates, highlighting the ED substrate as a potential substrate for the detection of AA and CRC. Although the responsible proteases require further identification, our results suggest an association with calcium-dependent cysteine proteases.
Collapse
Affiliation(s)
- Roza C M Opperman
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, 1081 HV Amsterdam, The Netherlands
- Research Program, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sofie Bosch
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, 1081 HV Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Henk S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Connie R Jimenez
- Research Program, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Tim G J de Meij
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, 1081 HV Amsterdam, The Netherlands
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Evelien Dekker
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, 1081 HV Amsterdam, The Netherlands
- Research Program, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, 1081 HV Amsterdam, The Netherlands
| | - Wendy E Kaman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Gurjar VK, Jain S, Vaidya A, Bansal K. Reinstating the expression and activation of caspase-8 and caspase-10 in cancer therapy. CASPASES AS MOLECULAR TARGETS FOR CANCER THERAPY 2024:131-182. [DOI: 10.1016/b978-0-443-15644-1.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Wei Z, Liu G, Jia R, Zhang W, Li L, Zhang Y, Wang Z, Bai X. Inhibition of secretory leukocyte protease inhibitor (SLPI) promotes the PUMA-mediated apoptosis and chemosensitivity to cisplatin in colorectal cancer cells. Discov Oncol 2023; 14:1. [PMID: 36595102 PMCID: PMC9810770 DOI: 10.1007/s12672-022-00535-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Aberrant expression of Secretory Leukocyte Protease Inhibitor (SLPI) has been associated with human cancer growth and its suppression was identified as a potential target for anti-cancer drugs, particularly in colorectal cancer. However, the underlying mechanism by which SLPI affected the development of drug resistance in CRC remains unclear. OBJECTIVE This study investigated the role of SLPI in the p53-up-regulated modulator of apoptosis (PUMA)-mediated CRC cells' apoptosis and their chemosensitivity to Cisplatin. METHODS A series of qRT-PCR and western blot analyses were performed to characterize the expressions of SLPI, PUMA, and Akt in CRC lines. Tunel, transwell, and CCK-8 analyses were monitored to define the impacts of the siRNA-mediated knockdown of SLPI on CRC cell development. Furthermore, in vivo development of CRC was evaluated in nude mice infected with siSLPI or Cisplatin alone or both, and Ki67 and caspase-3 immunohistochemistry assay was monitored on multiple tissue microarray from the same cohort. RESULTS Our results showed that SLPI inhibition strongly promoted the expressions of the pro-apoptotic protein PUMA, cleaved-caspase3 and Bax and reduced the cell viability of HT29 and HT116 cell lines in vitro. In addition, siSLPI knockdown effectively suppressed both Akt and FoxO3 proteins and improved the sensitivity to cisplatin chemotherapy. Xenograft tumor assay revealed a lowered growth in mice treated with Cisplatin, while combined treatment of siSLPI achieved more significant anticancer effects than Cisplatin alone. CONCLUSIONS Taken together, these findings demonstrated that suppression of SLPI might repress the growth of human colorectal cancer cells both in vitro and in vivo. These results suggested SLPI as a novel resistance factor to Cisplatin, and a combination of Cisplatin and SLPI inhibitor be beneficial for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhijiang Wei
- The First Department of Tumor Surgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, People's Republic of China.
| | - Guiying Liu
- The First Department of Tumor Surgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, People's Republic of China
| | - Rufu Jia
- The Brain Science Hospital of CangZhou Central Hospital, Cangzhou, 061001, Hebei, People's Republic of China
| | - Wei Zhang
- The First Department of Tumor Surgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, People's Republic of China
| | - Li Li
- The Brain Science Hospital of CangZhou Central Hospital, Cangzhou, 061001, Hebei, People's Republic of China
| | - Yuanyuan Zhang
- The First Department of Tumor Surgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, People's Republic of China
| | - Zhijing Wang
- The Brain Science Hospital of CangZhou Central Hospital, Cangzhou, 061001, Hebei, People's Republic of China
| | - Xiyong Bai
- The First Department of Tumor Surgery, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, People's Republic of China
| |
Collapse
|
6
|
Li R, Qin J, Wang Z, Lv F, Guo J, Zhu H, Huang Y. Dioscin reduced chemoresistance for colon cancer and analysis of sensitizing targets. Biochem Biophys Res Commun 2023; 638:94-102. [PMID: 36442237 DOI: 10.1016/j.bbrc.2022.10.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Chemotherapy resistance is the primary cause of high mortality in patients with advanced colon cancer. The combination of small molecule compound dioscin (DIO) and traditional medicine may have a chemosensitizing effect. In this study, we reported that DIO, in combination with Oxaliplatin (L-OHP) and 5-fluorouracil (5-Fu), can effectively inhibit colon cancer cell proliferation, and co-treatment was positively related to the DIO concentration. HCT116 co-treatment with 6.4 μM L-OHP and 0.8 μM DIO significantly reduced colony formation and migration, increased apoptosis, and cell-cycle arrest in the G0/G1 and G2/M phase. DIO-assisted L-OHP significantly inhibited the xenograft model growth and exhibited low toxicity.The mRNA-sequencing combined with network pharmacological analysis suggested that the DIO sensitivity may be related to the active targets FAS, CDKN1A, ABCA1, and PPARA, which are primarily involved in regulating the cell cycle and apoptosis. Finally, our experiments suggest that DIO may enhance the L-OHP sensitivity by regulating the cell cycle through the Notch pathway.
Collapse
Affiliation(s)
- Ruixue Li
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jianyan Qin
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Ziyuan Wang
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Fenghong Lv
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jiasen Guo
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Hong Zhu
- First Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Youguang Huang
- Yunnan Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
7
|
Al-Joufi FA, Setia A, Salem-Bekhit MM, Sahu RK, Alqahtani FY, Widyowati R, Aleanizy FS. Molecular Pathogenesis of Colorectal Cancer with an Emphasis on Recent Advances in Biomarkers, as Well as Nanotechnology-Based Diagnostic and Therapeutic Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:169. [PMID: 35010119 PMCID: PMC8746463 DOI: 10.3390/nano12010169] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a serious disease that affects millions of people throughout the world, despite considerable advances in therapy. The formation of colorectal adenomas and invasive adenocarcinomas is the consequence of a succession of genetic and epigenetic changes in the normal colonic epithelium. Genetic and epigenetic processes associated with the onset, development, and metastasis of sporadic CRC have been studied in depth, resulting in identifying biomarkers that might be used to predict behaviour and prognosis beyond staging and influence therapeutic options. A novel biomarker, or a group of biomarkers, must be discovered in order to build an accurate and clinically useful test that may be used as an alternative to conventional methods for the early detection of CRC and to identify prospective new therapeutic intervention targets. To minimise the mortality burden of colorectal cancer, new screening methods with higher accuracy and nano-based diagnostic precision are needed. Cytotoxic medication has negative side effects and is restricted by medication resistance. One of the most promising cancer treatment techniques is the use of nano-based carrier system as a medication delivery mechanism. To deliver cytotoxic medicines, targeted nanoparticles might take advantage of differently expressed molecules on the surface of cancer cells. The use of different compounds as ligands on the surface of nanoparticles to interact with cancer cells, enabling the efficient delivery of antitumor medicines. Formulations based on nanoparticles might aid in early cancer diagnosis and help to overcome the limitations of traditional treatments, including low water solubility, nonspecific biodistribution, and restricted bioavailability. This article addresses about the molecular pathogenesis of CRC and highlights about biomarkers. It also provides conceptual knowledge of nanotechnology-based diagnostic techniques and therapeutic approaches for malignant colorectal cancer.
Collapse
Affiliation(s)
- Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia;
| | - Aseem Setia
- Department of Pharmacy, Shri Rawatpura Sarkar University, Raipur 492015, India
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ram Kumar Sahu
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, India
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.Y.A.); (F.S.A.)
| |
Collapse
|
8
|
Sloan-Dennison S, Laing S, Graham D, Faulds K. From Raman to SESORRS: moving deeper into cancer detection and treatment monitoring. Chem Commun (Camb) 2021; 57:12436-12451. [PMID: 34734952 PMCID: PMC8609625 DOI: 10.1039/d1cc04805h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is a non-invasive technique that allows specific chemical information to be obtained from various types of sample. The detailed molecular information that is present in Raman spectra permits monitoring of biochemical changes that occur in diseases, such as cancer, and can be used for the early detection and diagnosis of the disease, for monitoring treatment, and to distinguish between cancerous and non-cancerous biological samples. Several techniques have been developed to enhance the capabilities of Raman spectroscopy by improving detection sensitivity, reducing imaging times and increasing the potential applicability for in vivo analysis. The different Raman techniques each have their own advantages that can accommodate the alternative detection formats, allowing the techniques to be applied in several ways for the detection and diagnosis of cancer. This feature article discusses the various forms of Raman spectroscopy, how they have been applied for cancer detection, and the adaptation of the techniques towards their use for in vivo cancer detection and in clinical diagnostics. Despite the advances in Raman spectroscopy, the clinical application of the technique is still limited and certain challenges must be overcome to enable clinical translation. We provide an outlook on the future of the techniques in this area and what we believe is required to allow the potential of Raman spectroscopy to be achieved for clinical cancer diagnostics.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
9
|
Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:73-120. [PMID: 33931145 DOI: 10.1016/bs.apcsb.2021.01.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis, also named programmed cell death, is a fundament process required for morphogenetic homeostasis during early development and in pathophysiological conditions. It is come into existence in 1972 by work of Kerr, Wyllie and Currie and later on investigated during the research on development of the C. elegans. Trigger by several stimuli, apoptosis is necessary during the embryonic development and aging as homeostatic mechanism to control the cell population and also play a key role as defense mechanism against the immune responses and elimination of damaged cells. Cancer, a genetic disease, is a growing burden on the health and economy of both developing and developed countries. Every year there is tremendously increasing in the number of new cancer cases and mortality rate. Although, there is a significant improvement have been made in biotechnological and bioinformatic fields however, the therapeutic advantages and cancer etiology is still under explored. Several studies determined the deregulation of different apoptotic components during the cancer development and progression. Apoptosis relies on activation of distinct signaling pathways that are often deregulated in cancer. Thus, exploring the single or more than one apoptotic component underlying their expression in carcinogenesis could help to track the disease progression. Current book chapter will provide the several evidences supporting the use of different apoptotic components as prognosis and prediction markers in various human cancer types.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Neelam Goel
- Department of Information Technology, UIET, Panjab University, Chandigarh, India.
| |
Collapse
|
10
|
Wang CCN, Jin J, Chang JG, Hayakawa M, Kitazawa A, Tsai JJP, Sheu PCY. Identification of most influential co-occurring gene suites for gastrointestinal cancer using biomedical literature mining and graph-based influence maximization. BMC Med Inform Decis Mak 2020; 20:208. [PMID: 32883271 PMCID: PMC7469322 DOI: 10.1186/s12911-020-01227-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/20/2020] [Indexed: 12/02/2022] Open
Abstract
Background Gastrointestinal (GI) cancer including colorectal cancer, gastric cancer, pancreatic cancer, etc., are among the most frequent malignancies diagnosed annually and represent a major public health problem worldwide. Methods This paper reports an aided curation pipeline to identify potential influential genes for gastrointestinal cancer. The curation pipeline integrates biomedical literature to identify named entities by Bi-LSTM-CNN-CRF methods. The entities and their associations can be used to construct a graph, and from which we can compute the sets of co-occurring genes that are the most influential based on an influence maximization algorithm. Results The sets of co-occurring genes that are the most influential that we discover include RARA - CRBP1, CASP3 - BCL2, BCL2 - CASP3 – CRBP1, RARA - CASP3 – CRBP1, FOXJ1 - RASSF3 - ESR1, FOXJ1 - RASSF1A - ESR1, FOXJ1 - RASSF1A - TNFAIP8 - ESR1. With TCGA and functional and pathway enrichment analysis, we prove the proposed approach works well in the context of gastrointestinal cancer. Conclusions Our pipeline that uses text mining to identify objects and relationships to construct a graph and uses graph-based influence maximization to discover the most influential co-occurring genes presents a viable direction to assist knowledge discovery for clinical applications.
Collapse
Affiliation(s)
- Charles C N Wang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,Center for Artificial Intelligence in Precision Medicine, UAsia University, Taichung, Taiwan
| | - Jennifer Jin
- Department of EECS and BME, University of California, Irvine, USA
| | - Jan-Gowth Chang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | | | | | - Jeffrey J P Tsai
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Phillip C-Y Sheu
- Department of EECS and BME, University of California, Irvine, USA.
| |
Collapse
|
11
|
Geng X, Sun YY, Fu JJ, Cao L, Li Y. Role of miR-155-5p expression and its involvement in apoptosis-related factors in thyroid follicular carcinoma. J Clin Pharm Ther 2020; 45:660-665. [PMID: 32415722 DOI: 10.1111/jcpt.13175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 11/28/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Thyroid follicular carcinoma is a malignant tumor from thyroid follicular epithelium, which is prone to involve capsular and vascular invasion. The present study was conducted in order to detect the expression of microRNA-155-5p (miR-155-5p) in thyroid follicular carcinoma with an attempt to analyze its involvement in apoptosis-related factors. METHODS Forty-five patients with thyroid follicular carcinoma made up the observation group and 45 patients with thyroid follicular adenoma were included into the control group. Tissues of thyroid follicular carcinoma and thyroid follicular adenoma were obtained from the patients, and analysed for expression of miR-155-5p by real-time fluorescence quantitative PCR (qPCR). The expression of cysteine-containing aspartic acid protein hydrolase-3 (Caspase-3) in thyroid follicular carcinoma was detected with the use of Western Blot analyses. Immunohistochemical method was used to detect the expression of B-cell lymphoma protein-2 (Bcl-2) in thyroid follicular carcinoma. RESULTS There was significant difference in the expression of miR-155-5p between the two groups (Observation vs Control: 1.46 ± 0.42 vs 0.98 ± 0.33 P < .05). The expression of miR-155-5p was significantly different in the maximum diameter of tumor, vascular invasion and neural invasion (maximum diameter of tumor <4 cm vs ≥4 cm: 1.36 ± 0.40 vs 1.68 ± 0.32, vascular invasion N vs Y: 1.35 ± 0.42 vs 1.69 ± 0.39, Neural invasion N vs Y: 1.35 ± 0.38 vs 1.70 ± 0.31 P < .05). However, there was no significant difference in the expression of miR-155-5p in terms of different gender, age and group with or without lymph node metastasis (P > .05). Based on survival analysis, patients with high expression of miR-155-5p experienced short survival time (median survival time was 45 months, P < .05). There was a negative correlation between miR-155-5p and Caspase-3 (r = -.50, P < .05). In addition, positive correlation was observed between miR-155-5p and Bcl-2 (r = .55, P < .05). WHAT IS NEW AND CONCLUSION There was increased expression of miR-155-5p in thyroid follicular carcinoma. The abnormal expression of miR-155-5p may be an independent prognostic factor for thyroid follicular carcinoma associated with cell apoptosis.
Collapse
Affiliation(s)
- Xiang Geng
- Department of Thyroid and Breast Surgery, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yang-Yang Sun
- Department of Pathology, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jin-Jin Fu
- Department of Gastroenterology, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Liang Cao
- Department of General Surgery, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yuan Li
- Department of Thyroid and Breast Surgery, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
12
|
Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer 2020; 1873:188357. [PMID: 32147543 DOI: 10.1016/j.bbcan.2020.188357] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is a cysteine - aspartate specific protease that classically triggers the extrinsic apoptotic pathway, in response to the activation of cell surface Death Receptors (DRs) like FAS, TRAIL-R and TNF-R. Besides it's roles in triggering death receptor-mediated apoptosis, Caspase-8 has also been implicated in the onsets of anoikis, autophagy and pyroptosis. Furthermore, Caspase-8 also plays a crucial pro-survival function by inhibiting an alternative form of programmed cell death called necroptosis. Low expression levels of pro-Caspase-8 is therefore associated with the malignant transformation of cancers. However, the long-held notion that pro-Caspase-8 expression/activity is generally lost in most cancers, thereby contributing to apoptotic escape and enhanced resistance to anti-cancer therapeutics, has been found to be true for only a minority of cancers types. In the majority of cases, pro-Caspase-8 expression is maintained and sometimes elevated, while it's apoptotic activity is regulated through different mechanisms. This supports the notion that the non-apoptotic functions of Caspase-8 offer growth advantage in these cancer types and have, therefore, gained renewed interest in the recent years. In light of these reasons, a number of therapeutic approaches have been employed, with the intent of targeting pro-Caspase-8 in cancer cells. In this review, we would attempt to discuss - the classic roles of Caspase-8 in initiating apoptosis; it's non-apoptotic functions; it's the clinical significance in different cancer types; and the therapeutic applications exploiting the ability of pro-Caspase-8 to regulate various cellular functions.
Collapse
|
13
|
Long JY, Chen JM, Liao YJ, Zhou YJ, Liang BY, Zhou Y. Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus. Behav Brain Funct 2020; 16:4. [PMID: 32103758 PMCID: PMC7045422 DOI: 10.1186/s12993-020-00166-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/18/2020] [Indexed: 01/21/2023] Open
Abstract
Background Chemokine C–C motif ligand 2 (CCL2) is one of the most widely recognised proinflammatory chemokines in cognitive disorders. Currently, CCL2-targeting drugs are extremely limited. Thus, this study aimed to explore the neuroprotection afforded by naringin in CCL2-induced cognitive impairment in rats. Methods Before the CCL2 intra-hippocampal injection, rats were treated with naringin for 3 consecutive days via intraperitoneal injection. Two days post-surgery, the Morris water maze (MWM) and novel object recognition (NORT) tests were performed to detect spatial learning and memory and object cognition, respectively. Nissl staining and dUTP nick-end labelling (TUNEL) staining were performed to assess histopathological changes in the hippocampus. Commercial kits were used to measure the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the content of malondialdehyde (MDA). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the relative mRNA expression of interleukin 1β, (IL-1β), interleukin 6 (IL-6), glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), phosphate-activated glutaminase (PAG), cysteine aspartic acid-specific protease 8 (caspase-8), cysteine aspartic acid-specific protease 3 (caspase-3), cell lymphoma/leukaemia-2 (Bcl-2), and Bcl-2 associated X protein (Bax). Results In the MWM, the average escape latency and average swimming distance were significantly reduced and the crossing times were increased in the naringin-treated groups, compared with the CCL2 group. The NORT results revealed that, compared with the CCL2 rats, the discrimination index in the naringin-treated rats increased significantly. Nissl and TUNEL staining revealed that naringin protected the structure and survival of the neurons in the CA1 zone of the hippocampus. In the naringin-treated groups, the SOD and GSH-Px activities were increased, whereas the MDA levels were decreased. Furthermore, in the naringin-treated groups, the relative mRNA expression of IL-1β and IL-6 was significantly decreased; GLAST and GLT-1 mRNA expression levels were increased, whereas PAG was decreased. In the naringin-treated groups, the relative mRNA expression levels of caspase-8, caspase-3, and Bax were decreased, whereas that of Bcl-2 was increased. Conclusion Collectively, these data indicated that naringin alleviated the CCL2-induced cognitive impairment. The underlying mechanisms could be associated with the inhibition of neuroinflammation, oxidative stress, apoptosis, and the regulation of glutamate metabolism.
Collapse
Affiliation(s)
- Jiang-Yi Long
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Jian-Min Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Yuan-Jun Liao
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Yi-Jun Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Bing-Yu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guang, China
| | - Yan Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China.
| |
Collapse
|
14
|
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24:955-970. [PMID: 30849442 DOI: 10.1016/j.drudis.2019.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome-editing tool, has revolutionized genetic engineering. It is widely used to investigate the molecular basis of different cancer types. In this review, we present an overview of recent studies in which CRISPR/Cas9 has been used for the identification of potential molecular targets. Based on the collected data, we suggest here that CRISPR/Cas9 is an effective system to distinguish between mutant and wild-type alleles in cancer. We show that several new potential therapeutic targets, such as CD38, CXCR2, MASTL, and RBX2, as well as several noncoding (nc)RNAs have been identified using CRISPR/Cas9 technology. We also discuss the obstacles and challenges that we face for using CRISPR/Cas9 as a therapeutic.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
15
|
Overexpression of IRS-4 Correlates with Procaspase 3 Levels in Tumoural Tissue of Patients with Colorectal Cancer. JOURNAL OF ONCOLOGY 2018; 2018:3812581. [PMID: 30410539 PMCID: PMC6206579 DOI: 10.1155/2018/3812581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
We reported that insulin receptor substrate 4 (IRS-4) levels increased in tissue from colorectal cancer (CRC) patients and promoted retinoblastoma-cyclin-dependent kinase activation. The aim of the present study was to evaluate the effect of IRS-4 on IGF-1 receptor pathway and its impact on procaspase 3 and PARP expression in RKO and HepG2 cancer cell lines. The results obtained in vitro were compared with those obtained from biopsies of patients with CRC (n = 18), tubulovillous adenomas (TA) (n = 2) and in matched adjacent normal colorectal (MANC) tissue (n = 20). IRS-4 overexpression in cultured cells induced the overactivation of IGF-1/BRK/AKT/GSK-3/β-catenin/cyclin D1 pathways, which led to increased expression of procaspase 3 and PARP protein levels. Studies carried out on CRC and TA tissues revealed the overactivation of the IGF-1 receptor signalling pathway, as well as the overexpression of procaspase 3 and PARP in tumoural tissue with respect to MANC tissue. The upregulation of IRS-4 in tumoural samples correlated significantly with the increase in pIGF-1 receptor (Tyr 1165/1166) (r = 0.84; p < 0.0001), procaspase 3 (r = 0. 77; p < 0. 0005) and PARP (r = 0. 89; p < 0. 0005). Similarly, we observed an increase in the proteolysis of procaspase 3 in tumoural tissue with respect to MANC tissue, which correlated significantly with the degradation of PARP (r = 0.86; p < 0.0001), p53 (r = 0.84; p < 0.0001), and GSK-3 (r = 0.78; p < 0.0001). The stratification of patient samples using the TNM system revealed that procaspase 3 and caspase 3 increased gradually with T values, which suggests their involvement in the size and local invasion of primary tumours. Taken together, our findings suggest that IRS-4 overexpression promotes the activation of the IGF-1 receptor pathway, which leads to the increase in procaspase 3 levels in CRC.
Collapse
|