1
|
Abi Nahed R, Safwan-Zaiter H, Gemy K, Lyko C, Boudaud M, Desseux M, Marquette C, Barjat T, Alfaidy N, Benharouga M. The Multifaceted Functions of Prion Protein (PrP C) in Cancer. Cancers (Basel) 2023; 15:4982. [PMID: 37894349 PMCID: PMC10605613 DOI: 10.3390/cancers15204982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The cellular prion protein (PrPC) is a glycoprotein anchored to the cell surface by glycosylphosphatidylinositol (GPI). PrPC is expressed both in the brain and in peripheral tissues. Investigations on PrPC's functions revealed its direct involvement in neurodegenerative and prion diseases, as well as in various physiological processes such as anti-oxidative functions, copper homeostasis, trans-membrane signaling, and cell adhesion. Recent findings have revealed the ectopic expression of PrPC in various cancers including gastric, melanoma, breast, colorectal, pancreatic, as well as rare cancers, where PrPC promotes cellular migration and invasion, tumor growth, and metastasis. Through its downstream signaling, PrPC has also been reported to be involved in resistance to chemotherapy and tumor cell apoptosis. This review summarizes the variance of expression of PrPC in different types of cancers and discusses its roles in their development and progression, as well as its use as a potential target to treat such cancers.
Collapse
Affiliation(s)
- Roland Abi Nahed
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Hasan Safwan-Zaiter
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Kevin Gemy
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Camille Lyko
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Mélanie Boudaud
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Morgane Desseux
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Christel Marquette
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Tiphaine Barjat
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Nadia Alfaidy
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| | - Mohamed Benharouga
- U1292, Laboratoire de BioSanté, Institut National de la Santé et de la Recherche Médicale (INSERM), F-38058 Grenoble, France; (R.A.N.); (H.S.-Z.); (K.G.); (C.L.); (M.B.); (M.D.); (C.M.); (T.B.); (N.A.)
- Commissariat à l’Energie Atomique (CEA), DSV-IRIG, F-38054 Grenoble, France
- University of Grenoble Alpes (UGA), F-38058 Grenoble, France
| |
Collapse
|
2
|
Li H, Zhang J, Ke JR, Yu Z, Shi R, Gao SS, Li JF, Gao ZX, Ke CS, Han HX, Xu J, Leng Q, Wu GR, Li Y, Tao L, Zhang X, Sy MS, Li C. Pro-prion, as a membrane adaptor protein for E3 ligase c-Cbl, facilitates the ubiquitination of IGF-1R, promoting melanoma metastasis. Cell Rep 2022; 41:111834. [PMID: 36543142 DOI: 10.1016/j.celrep.2022.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/13/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of receptor tyrosine kinase (RTK) is usually a result of mutation and plays important roles in tumorigenesis. How RTK without mutation affects tumorigenesis remains incompletely understood. Here we show that in human melanomas pro-prion (pro-PrP) is an adaptor protein for an E3 ligase c-Cbl, enabling it to polyubiquitinate activated insulin-like growth factor-1 receptor (IGF-1R), leading to enhanced melanoma metastasis. All human melanoma cell lines studied here express pro-PrP, retaining its glycosylphosphatidylinositol-peptide signal sequence (GPI-PSS). The sequence, PVILLISFLI in the GPI-PSS of pro-PrP, binds c-Cbl, docking c-Cbl to the inner cell membrane, forming a pro-PrP/c-Cbl/IGF-1R trimeric complex. Subsequently, IGF-1R polyubiquitination and degradation are augmented, which increases autophagy and tumor metastasis. Importantly, the synthetic peptide PVILLISFLI disrupts the pro-PrP/c-Cbl/IGF-1R complex, reducing cancer cell autophagy and mitigating tumor aggressiveness in vitro and in vivo. Targeting cancer-associated GPI-PSS may provide a therapeutic approach for treating human cancers expressing pro-PrP.
Collapse
Affiliation(s)
- Huan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China; Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan 430030, China
| | - Jie Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Jing-Ru Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ze Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Run Shi
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Shan-Shan Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Jing-Feng Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Zhen-Xing Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Chang-Shu Ke
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hui-Xia Han
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1023-1063 Shatai South Road, Guangzhou 510515, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, No. 107 North 2nd Road, Shihezi 832008, China
| | - Qibin Leng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Gui-Ru Wu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Yingqiu Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China
| | - Lin Tao
- Department of Pathology, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832008, China
| | - Xianghui Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chaoyang Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China.
| |
Collapse
|
3
|
Choi M, Moon S, Eom HJ, Lim SM, Kim YH, Nam S. High Expression of PRNP Predicts Poor Prognosis in Korean Patients with Gastric Cancer. Cancers (Basel) 2022; 14:cancers14133173. [PMID: 35804944 PMCID: PMC9264980 DOI: 10.3390/cancers14133173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) has the highest occurrence and fourth-highest mortality rate of all cancers in Korea. Although survival rates are improving with the development of diagnosis and treatment methods, the five-year survival rate for stage 4 GC in Korea remains <10%. Therefore, it is important to identify candidate prognostic factors for predicting poor prognosis. PRNP is a gene encoding the prion protein PrP, which has been noted for its role in the nervous system and is known to be upregulated in various cancers and associated with both cell proliferation and metastasis. However, the value of PRNP as a prognostic factor for Korean GC patients remains unclear. Here, we analyzed the relationship between PRNP expression and survival in three independent datasets for Korean patients with GC as well as the TCGA-STAD dataset. Survival analysis indicates that high levels of PRNP expression are associated with poor overall survival of patients with GC. Gene set enrichment analysis showed that PRNP is associated with epithelial mesenchymal transition and Hedgehog signaling. In addition, proliferation of GC cell lines was inhibited after siRNA-mediated knockdown of PRNP. In conclusion, our study suggests a potential role for PRNP as a candidate prognostic factor for patients with GC.
Collapse
Affiliation(s)
- Minseok Choi
- College of Medicine, Gachon University, Incheon 21565, Korea;
| | - SeongRyeol Moon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Korea;
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea
| | - Hyo Jin Eom
- Research and Development Department, Corestem Inc., Seongnam 13486, Korea;
| | - Seung Mook Lim
- Department of Biomedical Science, CHA University, Seongnam 13486, Korea;
| | | | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Korea;
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-458-2737; Fax: +82-32-458-2875
| |
Collapse
|
4
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
6
|
Ramljak S, Herlyn H, Zerr I. Cellular Prion Protein (PrP c) and Hypoxia: True to Each Other in Good Times and in Bad, in Sickness, and in Health. Front Cell Neurosci 2016; 10:292. [PMID: 28066187 PMCID: PMC5165248 DOI: 10.3389/fncel.2016.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
The cellular prion protein (PrPc) and hypoxia appear to be tightly intertwined. Beneficial effects of PrPc on neuronal survival under hypoxic conditions such as focal cerebral ischemia are strongly supported. Conversely, increasing evidence indicates detrimental effects of increased PrPc expression on cancer progression, another condition accompanied by low oxygen tensions. A switch between anaerobic and aerobic metabolism characterizes both conditions. A cellular process that might unite both is glycolysis. Putative role of PrPc in stimulation of glycolysis in times of need is indeed thought provoking. A significance of astrocytic PrPc expression for neuronal survival under hypoxic conditions and possible association of PrPc with the astrocyte-neuron lactate shuttle is considered. We posit PrPc-induced lactate production via transactivation of lactate dehydrogenase A by hypoxia inducible factor 1α as an important factor for survival of both neurons and tumor cells in hypoxic microenvironment. Concomitantly, we discuss a cross-talk between Wnt/β-catenin and PI3K/Akt signaling pathways in executing PrPc-induced activation of glycolysis. Finally, we would like to emphasize that we see a great potential in joining expertise from both fields, neuroscience and cancer research in revealing the mechanisms underlying hypoxia-related pathologies. PrPc may prove focal point for future research.
Collapse
Affiliation(s)
| | - Holger Herlyn
- Institute of Anthropology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases Göttingen, Germany
| |
Collapse
|
7
|
Wang Y, Yu S, Huang D, Cui M, Hu H, Zhang L, Wang W, Parameswaran N, Jackson M, Osborne B, Bedogni B, Li C, Sy MS, Xin W, Zhou L. Cellular Prion Protein Mediates Pancreatic Cancer Cell Survival and Invasion through Association with and Enhanced Signaling of Notch1. THE AMERICAN JOURNAL OF PATHOLOGY 2016. [PMID: 27639164 DOI: 10.1016/j.ajpath.2016.07.010]available] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up-regulation of human prion protein (PrP) in patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. However, the underlying molecular mechanism of PrP-mediated tumorigenesis is not completely understood. In this study, we found that PDAC cell lines can be divided into either PrP high expresser or PrP low expresser. In addition to filamin A (FLNA), PrP interacts with Notch1, forming a PrP/FLNA/Notch1 complex. Silencing PrP in high-expresser cells decreases Notch1 expression and Notch1 signaling. These cells exhibited decreased proliferation, xenograft growth, and tumor invasion but show increased tumor apoptosis. These phenotypes were rescued by ectopically expressed and activated Notch1. By contrast, overexpression of PrP in low expressers increases Notch1 expression and signaling, enhances proliferation, and increases tumor invasion and xenograft growth that can be blocked by a Notch inhibitor. Our data further suggest that PrP increases Notch1 stability likely through suppression of Notch proteosome degradation. Additionally, we found that targeting PrP combined with anti-Notch is much more effective than singularly targeted therapy in retarding PDAC growth. Finally, we show that coexpression of PrP and Notch1 confers an even poorer prognosis than PrP expression alone. Taken together, our results have unraveled a novel molecular pathway driven by interactions between PrP and Notch1 in the progression of PDAC, supporting a critical tumor-promoting role of Notch1 in PrP-expressing PDAC tumors.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Min Cui
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Huankai Hu
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lihua Zhang
- Department of Pathology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Barbara Osborne
- Molecular & Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Chaoyang Li
- State Key Laboratory of Virology and Department of Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
8
|
Wang Y, Yu S, Huang D, Cui M, Hu H, Zhang L, Wang W, Parameswaran N, Jackson M, Osborne B, Bedogni B, Li C, Sy MS, Xin W, Zhou L. Cellular Prion Protein Mediates Pancreatic Cancer Cell Survival and Invasion through Association with and Enhanced Signaling of Notch1. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2945-2956. [PMID: 27639164 DOI: 10.1016/j.ajpath.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023]
Abstract
Up-regulation of human prion protein (PrP) in patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. However, the underlying molecular mechanism of PrP-mediated tumorigenesis is not completely understood. In this study, we found that PDAC cell lines can be divided into either PrP high expresser or PrP low expresser. In addition to filamin A (FLNA), PrP interacts with Notch1, forming a PrP/FLNA/Notch1 complex. Silencing PrP in high-expresser cells decreases Notch1 expression and Notch1 signaling. These cells exhibited decreased proliferation, xenograft growth, and tumor invasion but show increased tumor apoptosis. These phenotypes were rescued by ectopically expressed and activated Notch1. By contrast, overexpression of PrP in low expressers increases Notch1 expression and signaling, enhances proliferation, and increases tumor invasion and xenograft growth that can be blocked by a Notch inhibitor. Our data further suggest that PrP increases Notch1 stability likely through suppression of Notch proteosome degradation. Additionally, we found that targeting PrP combined with anti-Notch is much more effective than singularly targeted therapy in retarding PDAC growth. Finally, we show that coexpression of PrP and Notch1 confers an even poorer prognosis than PrP expression alone. Taken together, our results have unraveled a novel molecular pathway driven by interactions between PrP and Notch1 in the progression of PDAC, supporting a critical tumor-promoting role of Notch1 in PrP-expressing PDAC tumors.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Min Cui
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Huankai Hu
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lihua Zhang
- Department of Pathology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Barbara Osborne
- Molecular & Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Chaoyang Li
- State Key Laboratory of Virology and Department of Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
9
|
Tang Z, Ma J, Zhang W, Gong C, He J, Wang Y, Yu G, Yuan C, Wang X, Sun Y, Ma J, Liu F, Zhao Y. The Role of Prion Protein Expression in Predicting Gastric Cancer Prognosis. J Cancer 2016; 7:984-90. [PMID: 27313789 PMCID: PMC4910591 DOI: 10.7150/jca.14237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/15/2016] [Indexed: 12/26/2022] Open
Abstract
Previous reports indicated that prion protein (PrP) is involved in gastric cancer (GC) development and progression, but its role in GC prognosis has been poorly characterized. A total of 480 GC patients were recruited in this retrospective study. PrP expression in cancerous and non-cancerous gastric tissues was detected by using the tissue microarray and immunohistochemical staining techniques. Our results showed that the PrP expression in GC was significantly less frequent than that in the non-cancerous gastric tissue (44.4% vs 66.4%, P < 0.001). Cox regression analysis revealed that PrP expression was associated with TNM stage, survival status and survival time. GC patients with higher TNM stages (stages II, III and IV) had significantly lower PrP expression levels in tumors than those with lower TNM stages (stages 0 and I). Kaplan-Meier survival curves revealed that negative PrP expression was associated with poor overall survival (log-rank test: P < 0.001). The mean survival time for patients with negative PrP expression was significant lower than those with positive PrP expression (43.0±28.5m vs. 53.9±31.1m, P<0.001). In multivariate Cox hazard regression, PrP expression was an independent prognostic factor for GC survival, with a HR (hazard ratio) of 0.687 (95%CI:0.520-0.907, P=0.008). Our results revealed that negative PrP expression could independently predict worse outcome in GC and thereby could be used to guide the clinical practice.
Collapse
Affiliation(s)
- Zhaoqing Tang
- 1. Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ji Ma
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Wei Zhang
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China;; 5. Department of Pathology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, P.R. China
| | - Changguo Gong
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Jing He
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Ying Wang
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China;; 3. Department of Physiology, Renji College, Wenzhou Medical University, Wenzhou, P.R. China
| | - Guohua Yu
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Chonggang Yuan
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Xuefei Wang
- 1. Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yihong Sun
- 1. Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiyan Ma
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China;; 4. Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Fenglin Liu
- 1. Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yulan Zhao
- 2. School of Life Sciences, East China Normal University, Shanghai, P.R. China
| |
Collapse
|
10
|
Wei W, Shi Q, Zhang NS, Xiao K, Chen LN, Yang XD, Ji JF, Dong XP. Expression of prion protein is closely associated with pathological and clinical progression and abnormalities of p53 in head and neck squamous cell carcinomas. Oncol Rep 2015; 35:817-24. [PMID: 26718886 DOI: 10.3892/or.2015.4425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
Prion protein (PrP) is a glycosyl-phosphatidylinositol (GPI)-anchored membrane protein that functions as a unique pathogenic agent in transmissible spongiform encephalopathy (TSE). In the past decade, overexpression of PrP was observed in a number of human malignant tumors, such as gastric, breast and pancreatic cancer. However, the role of PrP expression in squamous cell carcinoma is rarely documented. To screen PrP expression in head and neck squamous cell carcinoma (HNSCCs), the paraffin-embedded specimens of 92 pathologically diagnosed HNSCCs were assessed by PrP-specific immunohistochemistry (IHC). A total of 55.43% (51/92) of the tested carcinoma tissues were PrP-positive. The rate of positivity and the staining intensity of PrP were closely related with the pathological degree of the HNSCCs; a higher rate of PrP expression was noted in the group of poorly differentiated cancers. PrP-positivity rates increased along with the progression of the clinical grade of the carcinomas. Further evaluation of the associations between PrP expression and the data concerning p53 abnormalities and human papillomavirus (HPV) infection in these samples as previously described, revealed that PrP-positive staining was more frequently detected in the tissues with p53-positive accumulation and the wild-type TP53 gene. The patients with a proline (Pro) polymorphism in SNP72 of TP53 showed significantly higher PrP-positive rates than those with arginine (Arg). No notable difference in PrP expression was identified between the HPV-positive and HPV-negative group. These data indicate a close association of PrP expression with clinical and histological differentiation of HNSCCs, as well as abnormalities of p53.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Carcinogenesis and Translational Research (Chinese Ministry of Education), Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Nai-Song Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Chinese Ministry of Education), Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Chinese Ministry of Education), Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
11
|
Altekruse SF, Rosenfeld GE, Carrick DM, Pressman EJ, Schully SD, Mechanic LE, Cronin KA, Hernandez BY, Lynch CF, Cozen W, Khoury MJ, Penberthy LT. SEER cancer registry biospecimen research: yesterday and tomorrow. Cancer Epidemiol Biomarkers Prev 2015; 23:2681-7. [PMID: 25472677 DOI: 10.1158/1055-9965.epi-14-0490] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The National Cancer Institute's (NCI) Surveillance, Epidemiology, and End Results (SEER) registries have been a source of biospecimens for cancer research for decades. Recently, registry-based biospecimen studies have become more practical, with the expansion of electronic networks for pathology and medical record reporting. Formalin-fixed paraffin-embedded specimens are now used for next-generation sequencing and other molecular techniques. These developments create new opportunities for SEER biospecimen research. We evaluated 31 research articles published during 2005 to 2013 based on authors' confirmation that these studies involved linkage of SEER data to biospecimens. Rather than providing an exhaustive review of all possible articles, our intent was to indicate the breadth of research made possible by such a resource. We also summarize responses to a 2012 questionnaire that was broadly distributed to the NCI intra- and extramural biospecimen research community. This included responses from 30 investigators who had used SEER biospecimens in their research. The survey was not intended to be a systematic sample, but instead to provide anecdotal insight on strengths, limitations, and the future of SEER biospecimen research. Identified strengths of this research resource include biospecimen availability, cost, and annotation of data, including demographic information, stage, and survival. Shortcomings include limited annotation of clinical attributes such as detailed chemotherapy history and recurrence, and timeliness of turnaround following biospecimen requests. A review of selected SEER biospecimen articles, investigator feedback, and technological advances reinforced our view that SEER biospecimen resources should be developed. This would advance cancer biology, etiology, and personalized therapy research. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology." Cancer Epidemiol Biomarkers Prev; 23(12); 2681-7. ©2014 AACR.
Collapse
Affiliation(s)
- Sean F Altekruse
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland.
| | - Gabriel E Rosenfeld
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Danielle M Carrick
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Emilee J Pressman
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Sheri D Schully
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Leah E Mechanic
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | - Kathleen A Cronin
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| | | | - Charles F Lynch
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Wendy Cozen
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California (USC), USC Norris Comprehensive Cancer Center, Los Angeles, California. Department of Pathology, Keck School of Medicine of the University of Southern California (USC), USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Muin J Khoury
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland. Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lynne T Penberthy
- Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Rockville, Maryland
| |
Collapse
|
12
|
Disruption of prion protein-HOP engagement impairs glioblastoma growth and cognitive decline and improves overall survival. Oncogene 2014; 34:3305-14. [PMID: 25151961 DOI: 10.1038/onc.2014.261] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
Glioblastomas (GBMs) are resistant to current therapy protocols and identification of molecules that target these tumors is crucial. Interaction of secreted heat-shock protein 70 (Hsp70)-Hsp90-organizing protein (HOP) with cellular prion protein (PrP(C)) triggers a large number of trophic effects in the nervous system. We found that both PrP(C) and HOP are highly expressed in human GBM samples relative to non-tumoral tissue or astrocytoma grades I-III. High levels of PrP(C) and HOP were associated with greater GBM proliferation and lower patient survival. HOP-PrP(C) binding increased GBM proliferation in vitro via phosphatidylinositide 3-kinase and extracellular-signal-regulated kinase pathways, and a HOP peptide mimicking the PrP(C) binding site (HOP230-245) abrogates this effect. PrP(C) knockdown impaired tumor growth and increased survival of mice with tumors. In mice, intratumor delivery of HOP230-245 peptide impaired proliferation and promoted apoptosis of GBM cells. In addition, treatment with HOP230-245 peptide inhibited tumor growth, maintained cognitive performance and improved survival. Thus, together, the present results indicate that interfering with PrP(C)-HOP engagement is a promising approach for GBM therapy.
Collapse
|
13
|
Yang X, Zhang Y, Zhang L, He T, Zhang J, Li C. Prion protein and cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:431-40. [PMID: 24681883 DOI: 10.1093/abbs/gmu019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang 330029, China
| | - Yan Zhang
- Department of Molecular Endocrinology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lihua Zhang
- Department of Pathology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Tianlin He
- Department of General Surgery, Changhai Hospital of Second Military Medical University, Shanghai 200433, China
| | - Jie Zhang
- Department of Stomatology, The First Affiliated Hospital of Shihezi University Medical College, Shihezi 832000, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|