1
|
Tahtasakal R, Hamurcu Z, Oz AB, Balli M, Dana H, Gok M, Cinar V, Inanc M, Sener EF. miR-484 as an "OncomiR" in Breast Cancer Promotes Tumorigenesis by Suppressing Apoptosis Genes. Ann Surg Oncol 2025; 32:2994-3008. [PMID: 39692982 DOI: 10.1245/s10434-024-16656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE Breast cancer (BC) is one of the most common causes of death among females. Cancer cells escape from apoptosis, causing the cells to proliferate uncontrollably. MicroRNAs (miRNAs) are known to regulate apoptosis in cancer cells. OBJECTIVE This study aimed to determine the change in miR-484 in different BC cells and its relationship with the apoptosis pathway. METHODS In the study, tumor and healthy tissue samples adjacent to the tumor were collected from 42 patients (6 benign, 36 malignant). Tissue samples were classified according to tumor type, tumor histological grade, proliferation index, and molecular subtypes. Gene expression levels were determined by quantitative real-time polymerase chain reaction (qRT-PCR), and protein levels were determined using the Western Blot method. The results were analyzed using the delta-delta Ct method. RESULTS Findings showed that miR-484 expression levels were higher in malignant tumors than in benign tumors, and higher in tumor tissues than healthy tissues. Additionally, it was determined that as Ki-67 levels and histological grade and aggressiveness increased, miR-484 expression levels also increased. In tumor tissue compared with healthy adjacent tissue, there was an increase in BCL2 expression and a decrease in Casp3 and Casp9 expression. Therefore, a positive correlation was found between miR-484 expression and BCL2, and a negative correlation was found between CASP3 and CASP9 expression. CONCLUSION Our results show that miR-484 may play a roll as an onco-miR in BC. Increased miR-484 and BCL2, and decreased Casp3, in breast tumor tissues suggest that Casp9 expression may increase uncontrolled cell proliferation by suppressing apoptosis in BC cells and may contribute to tumor progression.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- MicroRNAs/genetics
- Apoptosis/genetics
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Middle Aged
- Prognosis
- Carcinogenesis/genetics
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Follow-Up Studies
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Case-Control Studies
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Adult
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Reyhan Tahtasakal
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Zuhal Hamurcu
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Abdullah Bahadir Oz
- Department of General Surgery, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Mustafa Balli
- General Surgery Clinic, Kayseri State Hospital, Kayseri, Türkiye
| | - Halime Dana
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Mustafa Gok
- Department of General Surgery, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Venhar Cinar
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Mevlude Inanc
- Department of Medical Oncology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Elif Funda Sener
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye.
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye.
| |
Collapse
|
2
|
Yang R, Han Y, Yi W, Long Q. Autoantibodies as biomarkers for breast cancer diagnosis and prognosis. Front Immunol 2022; 13:1035402. [PMID: 36451832 PMCID: PMC9701846 DOI: 10.3389/fimmu.2022.1035402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 10/07/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide and is a substantial public health problem. Screening for breast cancer mainly relies on mammography, which leads to false positives and missed diagnoses and is especially non-sensitive for patients with small tumors and dense breasts. The prognosis of breast cancer is mainly classified by tumor, node, and metastasis (TNM) staging, but this method does not consider the molecular characteristics of the tumor. As the product of the immune response to tumor-associated antigens, autoantibodies can be detected in peripheral blood and can be used as noninvasive, presymptomatic, and low-cost biomarkers. Therefore, autoantibodies can provide a possible supplementary method for breast cancer screening and prognosis classification. This article introduces the methods used to detect peripheral blood autoantibodies and the research progress in the screening and prognosis of breast cancer made in recent years to provide a potential direction for the examination and treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 2022; 12:985363. [PMID: 36313628 PMCID: PMC9597512 DOI: 10.3389/fonc.2022.985363] [Citation(s) in RCA: 346] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Apoptosis, as a very important biological process, is a response to developmental cues or cellular stress. Impaired apoptosis plays a central role in the development of cancer and also reduces the efficacy of traditional cytotoxic therapies. Members of the B-cell lymphoma 2 (BCL-2) protein family have pro- or anti-apoptotic activities and have been studied intensively over the past decade for their importance in regulating apoptosis, tumorigenesis, and cellular responses to anticancer therapy. Since the inflammatory response induced by apoptosis-induced cell death is very small, at present, the development of anticancer drugs targeting apoptosis has attracted more and more attention. Consequently, the focus of this review is to summarize the current research on the role of BCL-2 family proteins in regulating apoptosis and the development of drugs targeting BCL-2 anti-apoptotic proteins. Additionally, the mechanism of BCL-2 family proteins in regulating apoptosis was also explored. All the findings indicate the potential of BCL-2 family proteins in the therapy of cancer.
Collapse
Affiliation(s)
- Shanna Qian
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhong Wei
- Gastrointestinal Surgery, Anhui Provincial Hospital, Hefei, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Isotypic analysis of anti-p53 serum autoantibodies and p53 protein tissue phenotypes in colorectal cancer. Hum Pathol 2022; 128:1-10. [PMID: 35750247 DOI: 10.1016/j.humpath.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022]
Abstract
The presence of IgA- and IgM-specific autoantibody (AAb) isotypes and their relationship to p53 tissue expression patterns are not well understood. This study aims to investigate the clinical utility of the anti-p53 AAb isotypes and tissue positivity in colorectal cancer (CRC). We analysed anti-p53 IgG, IgM, and IgA AAbs in sera of 99 CRC patients and 99 non-cancer control subjects. Corresponding tissue expression of the p53 protein was evaluated by immunohistochemistry (IHC). Anti-p53 AAbs of the IgG isotype were present in the sera of 21 out of 99 patients (21%), while IgM AAbs were observed in 9 (9%) and IgA in 2 (2%) CRC patients. Anti-p53 AAbs of all three isotypes were generally associated with IHC staining indicative of mutated TP53. Seropositive anti-p53 IgM cases in the absence of anti-p53 IgG were linked to wild-type p53. Anti-p53 IgA in the absence of IgG AAbs was detected in two non-cancer controls indicating a potential p53 epitope mimicry. Although seropositivity was not associated with patient survival (P = 0.650), mutant-pattern p53 tissue expression was associated with reduced 5-year overall survival (P = 0.032), however, it was not an independent prognostic marker (Multivariate Cox regression, P = 0.193). In conclusion, immunoglobulin isotyping revealed that anti-p53 IgM and IgA AAbs were predominantly concurrent with anti-p53 serum IgG and the mutant-pattern p53 tissue phenotype. IgM and IgA seropositive cases in absence of anti-p53 IgG were linked to wild-type p53 tissue phenotype indicating early anti-p53 immune responses preceding isotype class-switch (IgM) or p53 antigen mimicry (IgA).
Collapse
|
5
|
Tumour- associated autoantibodies as prognostic cancer biomarkers- a review. Autoimmun Rev 2022; 21:103041. [DOI: 10.1016/j.autrev.2022.103041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
|
6
|
Gohara S, Yoshida R, Kawahara K, Sakata J, Arita H, Nakashima H, Kawaguchi S, Nagao Y, Yamana K, Nagata M, Hirosue A, Hiraki A, Nakayama H. Re-evaluating the clinical significance of serum p53 antibody levels in patients with oral cancer in Japanese clinical practice. Mol Clin Oncol 2021; 15:209. [PMID: 34462664 PMCID: PMC8375037 DOI: 10.3892/mco.2021.2372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022] Open
Abstract
TP53 gene mutations can lead to mutant p53 protein accumulation in cancer cells, thereby inducing the production of serum antip53 antibodies (Ap53Ab) in patients with various types of cancer. The aim of the present study was to re-evaluate the clinicopathological and prognostic significance of Ap53Ab using the Ap53Ab ELISA kit, approved by the Japanese Health Insurance System in 2007. Ap53Ab was measured as a tumor marker in 94 patients with oral squamous cell carcinoma (OSCC), by subjecting paraffin-embedded sections obtained from biopsy specimens to immunohistochemical analysis to confirm p53 expression. The associations among Ap53Ab status, p53 expression and clinical significance in OSCC were examined. A total of 23% of the patients were Ap53Ab-positive. Ap53Ab status was found to be significantly associated with p53 expression status in primary tumors (P=0.027), clinical T-category, pathological N-category and pathological stage (P=0.04, P=0.010 and P=0.013, respectively). Kaplan-Meier curve analysis revealed that Ap53Ab status was significantly associated with poor disease-free survival (DFS; P=0.043), and Cox regression analysis revealed that Ap53Ab status was a significant prognostic factor for DFS in patients with OSCC (hazard ratio=2.807; 95% confidence interval: 1.029-7.160; P=0.044). These results suggested that Ap53Ab measurement may reflect the p53 mutation status and an aggressive malignant phenotype, and it may serve as a useful predictive marker candidate for OSCC in clinical practice.
Collapse
Affiliation(s)
- Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Sho Kawaguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akimitsu Hiraki
- Section of Oral Oncology, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
7
|
The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction. Cancers (Basel) 2021; 13:cancers13030479. [PMID: 33513745 PMCID: PMC7865496 DOI: 10.3390/cancers13030479] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.
Collapse
|