1
|
Deng X, You Y, Lv S, Liu Y. MMP8-mediated vascular remodeling in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167582. [PMID: 39581558 DOI: 10.1016/j.bbadis.2024.167582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease that impacts the cardiopulmonary system. Due to the currently limited understanding of vascular remodeling, a cure for PAH remains elusive. This study highlights the critical role of the STAT1 (signal transducer and activator of transcription 1)/MMP8 (matrix metallopeptidase 8)/DRP1 (dynamin-related protein 1) axis in vascular remodeling and the pathogenesis of pulmonary hypertension. Notably, MMP8 is significantly elevated in pulmonary arterial endothelial cells and its levels correlate with the severity of the disease. MMP8 binds to and activates DRP1, inducing mitochondrial fragmentation and promoting a malignant phenotype of endothelial cells under hypoxic conditions. Moreover, MMP8 is tightly regulated by STAT1. The knockout of MMP8 attenuates chronic pulmonary vascular remodeling, and drugs targeting MMP8 alleviate pulmonary hypertension and enhance cardiac function. This study offers fresh insights into hypoxia-induced vascular remodeling, laying a theoretical foundation for countering vascular remodeling by directly regulating the STAT1/MMP8/DRP1 axis.
Collapse
Affiliation(s)
- Xiaodong Deng
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua 61700, China
| | - Yong You
- Department of Respiratory department, Huanggang Central Hospital, Huanggang 438000, China
| | - Sheng Lv
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua 61700, China
| | - Yi Liu
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua 61700, China.
| |
Collapse
|
2
|
Sang H, Li L, Zhao Q, Liu Y, Hu J, Niu P, Hao Z, Chai K. The regulatory process and practical significance of non-coding RNA in the dissemination of prostate cancer to the skeletal system. Front Oncol 2024; 14:1358422. [PMID: 38577343 PMCID: PMC10991771 DOI: 10.3389/fonc.2024.1358422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Prostate cancer is a major contributor to male cancer-related mortality globally. It has a particular affinity for the skeletal system with metastasis to bones seriously impacting prognosis. The identification of prostate cancer biomarkers can significantly enhance diagnosis and patient monitoring. Research has found that cancer and metastases exhibit abnormal expression of numerous non-coding RNA. Some of these RNA facilitate prostate cancer bone metastasis by activating downstream signaling pathways, while others inhibit this process. Elucidating the functional processes of non-coding RNA in prostate cancer bone metastasis will likely lead to innovative treatment strategies for this malignant condition. In this review, the mechanistic role of the various RNA in prostate cancer is examined. Our goal is to provide a new avenue of approach to the diagnosis and treatment of bone metastasis in this cancer.
Collapse
Affiliation(s)
- Hui Sang
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Luxi Li
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Qiang Zhao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Yulin Liu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jinbo Hu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Peng Niu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenming Hao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| |
Collapse
|
3
|
Wani SA, Hussain S, Gray JS, Nayak D, Tang H, Perez LM, Long MD, Siddappa M, McCabe CJ, Sucheston-Campbell LE, Freeman MR, Campbell MJ. Epigenetic disruption of the RARγ complex impairs its function to bookmark AR enhancer interactions required for enzalutamide sensitivity in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571947. [PMID: 38168185 PMCID: PMC10760102 DOI: 10.1101/2023.12.15.571947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The current study in prostate cancer (PCa) focused on the genomic mechanisms at the cross-roads of pro-differentiation signals and the emergence of lineage plasticity. We explored an understudied cistromic mechanism involving RARγ's ability to govern AR cistrome-transcriptome relationships, including those associated with more aggressive PCa features. The RARγ complex in PCa cell models was enriched for canonical cofactors, as well as proteins involved in RNA processing and bookmarking. Identifying the repertoire of miR-96 bound and regulated gene targets, including those recognition elements marked by m6A, revealed their significant enrichment in the RARγ complex. RARγ significantly enhanced the AR cistrome, particularly in active enhancers and super-enhancers, and overlapped with the binding of bookmarking factors. Furthermore, RARγ expression led to nucleosome-free chromatin enriched with H3K27ac, and significantly enhanced the AR cistrome in G2/M cells. RARγ functions also antagonized the transcriptional actions of the lineage master regulator ONECUT2. Similarly, gene programs regulated by either miR-96 or antagonized by RARγ were enriched in alternative lineages and more aggressive PCa phenotypes. Together these findings reveal an under-investigated role for RARγ, modulated by miR-96, to bookmark enhancer sites during mitosis. These sites are required by the AR to promote transcriptional competence, and emphasize luminal differentiation, while antagonizing ONECUT2.
Collapse
Affiliation(s)
- Sajad A Wani
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Shahid Hussain
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jaimie S Gray
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Hancong Tang
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Lillian M Perez
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mark D Long
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263
| | - Manjunath Siddappa
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
| | | | - Michael R Freeman
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Moray J Campbell
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
4
|
Lian Z, Tian P, Ma S, Chang T, Liu R, Feng Q, Li J. Long noncoding RNA MEG3 regulates cell proliferation and apoptosis by disrupting microRNA-9-5p-mediated inhibition of NDRG1 in prostate cancer. Aging (Albany NY) 2024; 16:1938-1951. [PMID: 38271137 PMCID: PMC10866422 DOI: 10.18632/aging.205472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Long noncoding RNA MEG3 has been described to be involved in the regulation of gene expression and cancer progression. However, the role of lncMEG3 in prostate cancer (PCa) remains largely uncharted. METHODS Differential expression of lncMEG3 was identified in PCa tissues using RNA-sequencing analysis. qRT-PCR was performed to examine the level of lncMEG3. Additionally, cellular fractionation and fluorescent in situ hybridization techniques were employed to determine the localization. Subsequently, functional assays were conducted to evaluate the impact of lncMEG3 and miR-9-5p on PCa proliferation and apoptosis in vitro and in vivo. The interaction between lncMEG3 and miR-9-5p was confirmed using RNA immunoprecipitation. Moreover, luciferase reporter assays were also utilized to investigate the relationship between miR-9-5p and NDRG1. RESULTS We observed downregulation of lncMEG3 in PCa cells and tissues. Patients with lower levels of lncMEG3 had a higher likelihood of experiencing biochemical recurrence. Overexpression of lncMEG3 resulted in the inhibition of PCa cell proliferation and the promotion of apoptosis. Moreover, lncMEG3 is competitively bound to miR-9-5p, preventing its inhibitory effect on the target gene NDRG1. This ultimately led to the inhibition of PCa cell proliferation and the promotion of apoptosis. Furthermore, increasing lncMEG3 levels also demonstrated inhibitory effects on PCa proliferation and promotion of apoptosis in vivo. CONCLUSIONS Our findings uncover a crucial role for lncMEG3 in inhibiting PCa proliferation and promoting apoptosis through disruption of miR-9-5p-mediated inhibition of NDRG1.
Collapse
Affiliation(s)
- Zhenpeng Lian
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Pei Tian
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shenfei Ma
- Tianjin Institute of Urology, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Taihao Chang
- Tianjin Institute of Urology, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ranlu Liu
- Tianjin Institute of Urology, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qingchuan Feng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
5
|
Yang T, Liu J, Liu F, Lei J, Chen S, Ma Z, Ke P, Yang Q, Wen J, He Y, Duan J, Zeng X. Integrative analysis of disulfidptosis and immune microenvironment in hepatocellular carcinoma: a putative model and immunotherapeutic strategies. Front Immunol 2024; 14:1294677. [PMID: 38235128 PMCID: PMC10791859 DOI: 10.3389/fimmu.2023.1294677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a malignant tumor with a high rate of recurrence and m metastasis that does not respond well to current therapies and has a very poor prognosis. Disulfidptosis is a novel mode of cell death that has been analyzed as a novel therapeutic target for HCC cells. Methods This study integrated bulk ribonucleic acid (RNA) sequencing datasets, spatial transcriptomics (ST), and single-cell RNA sequencing to explore the landscape of disulfidptosis and the immune microenvironment of HCC cells. Results We developed a novel model to predict the prognosis of patients with HCC based on disulfidptosis. The model has good stability, applicability, and prognostic and immune response prediction abilities. N-myc downregulated gene1 (NDRG1) may contribute to poor prognosis by affecting macrophage differentiation, thus allowing HCC cells to evade the immune system. Conclusion Our study explores the disulfidptosis of HCC cells through multi-omics and establishes a new putative model that explores possible targets for HCC treatment.
Collapse
Affiliation(s)
- Ti Yang
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhao Liu
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Fang Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiashun Lei
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Siliang Chen
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zengxin Ma
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peifeng Ke
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiaolan Yang
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Jianfan Wen
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yifeng He
- Department of General Management, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Juan Duan
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiancheng Zeng
- Department of Hepatobiliary-pancreatic&hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Li Y, Zhao Q, Yao J, Lv C, Gao Y, Sun D, Yang Y. MiR-96-5p Suppresses Progression of Arsenite-Induced Human Keratinocyte Proliferation and Malignant Transformation by Targeting Denticleless E3 Ubiquitin Protein Ligase Homolog. TOXICS 2023; 11:978. [PMID: 38133379 PMCID: PMC10747408 DOI: 10.3390/toxics11120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 μmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 μmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 μmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Yan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Qiaoshi Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
- Institution of Environmentally Related Diseases, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
7
|
Mulens-Arias V, Portilla Y, Pérez-Yagüe S, Ferreras-Martín R, Martín ME, González VM, Barber DF. An electrostatically conjugated-functional MNK1 aptamer reverts the intrinsic antitumor effect of polyethyleneimine-coated iron oxide nanoparticles in vivo in a human triple-negative cancer xenograft. Cancer Nanotechnol 2023; 14:64. [DOI: 10.1186/s12645-023-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 12/12/2024] Open
Abstract
Abstract
Background
Triple-negative breast cancer (TNBC) remains a difficult breast cancer subtype to treat as it exhibits a particularly aggressive behavior. The dysregulation of distinct signaling pathways underlies this aggressive behavior, with an overactivation of MAP kinase interacting kinases (MNKs) promoting tumor cell behavior, and driving proliferation and migration. Therefore, MNK1 is an excellent target to impair the progression of TNBC and indeed, an MNK1-specific aptamer has proved to be efficient in inhibiting TBNC cell proliferation in vitro. Although polyethyleneimine-coated iron oxide nanoparticles (PEI–IONPs) have been used as transfection and immunomodulating agents, no study has yet addressed the benefits of using these nanoparticles as a magnetic carrier for the delivery of a functional aptamer.
Results
Here, we tested the antitumor effect of a PEI–IONP complexed to the functional MNK1b-specific aptamer in vitro and in vivo. We demonstrated that these apMNKQ2@PEI–IONP nanoconjugates delivered three times more apMNKQ2 to MDA-MB-231 cells than the aptamer alone, and that this enhanced intracellular delivery of the aptamer had consequences for MNK1 signaling, reducing the amount of MNK1 and its target the phospho(Ser209)-eukaryotic initiation factor 4E (eIF4E). As a result, a synergistic effect of the apMNKQ2 and PEI–IONPs was observed that inhibited MDA-MB-231 cell migration, probably in association with an increase in the serum and glucocorticoid-regulated kinase-1 (SGK1) and the phospho(Thr346)-N-myc down-regulated gene 1 (NDRG1). However, intravenous administration of the apMNKQ2 alone did not significantly impair tumor growth in vivo, whereas the PEI–IONP alone did significantly inhibit tumor growth. Significantly, tumor growth was not inhibited when the apMNKQ2@PEI–IONP nanocomplex was administered, possibly due to fewer IONPs accumulating in the tumor. This apMNKQ2-induced reversion of the intrinsic antitumor effect of the PEI–IONPs was abolished when an external magnetic field was applied at the tumor site, promoting IONP accumulation.
Conclusions
Electrostatic conjugation of the apMNKQ2 aptamer with PEI–IONPs impedes the accumulation of the latter in tumors, which appears to be necessary for PEI–IONPs to exert their antitumor activity.
Graphical Abstract
Collapse
|
8
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Liu Y, Luo Y, Shi X, Lu Y, Li H, Fu G, Li X, Shan L. Role of KLF4/NDRG1/DRP1 axis in hypoxia-induced pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2023:166794. [PMID: 37356737 DOI: 10.1016/j.bbadis.2023.166794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
N-myc downstream regulated gene 1 (NDRG1) has recently drawn increasing attention because of its involvement in angiogenesis, cell proliferation, and differentiation. We used in vitro [human pulmonary artery smooth muscle cells (hPASMCs)] and in vivo (rat) models under hypoxic conditions and found a vital role of NDRG1 in reducing apoptosis and increasing proliferation and migration by overexpressing and knocking down NDRG1. We also proved that hypoxia induced the protein expression of dynamin-related protein 1 (DRP1) and stimulated The phosphatidylinositol-3-kinase (PI3K)/ Protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways, and these effects were reversed by NDRG1 knockdown. The relationship between NDRG1 and DRP1 and the PI3K/Akt/mTOR pathway was further evaluated by adding mdivi-1 (DRP1 inhibitor) or LY294002 (PI3K inhibitor). NDRG1 was found to regulate the proliferation, apoptosis, and migration of hypoxia-treated hPASMCs via DRP1 and PI3K/Akt/mTOR signaling pathways. We explored the upstream regulators of NDRG1 using in vivo and in vitro hypoxia models. Hypoxia was found to upregulate and downregulate KLF transcription factor 4 (KLF4) protein expression in the cytoplasm and nucleus, respectively. Further, we showed that KLF4 regulated the proliferation and migration of hypoxia-treated hPASMCs via NDRG1. These results indicated a link between KLF4, NDRG1, and DRP1 for the first time, providing new ideas for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Luo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xianbao Shi
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Ya Lu
- Department of Respiratory Disease, Jiujiang First People's Hospital, Jiujiang 332000, China
| | - Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
10
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|