1
|
Piccinin CC, Anis S, Yu JRT, Salles PA, Chaparro-Solano HM, Kundrick A, Ivary S, Liao JY, Nagel SJ, Mata IF. Genetic Risk Factors in Normal Pressure Hydrocephalus: What We Know and What Is Next. Mov Disord 2025. [PMID: 40266017 DOI: 10.1002/mds.30206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/02/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Knowledge of the genetic factors in normal pressure hydrocephalus (NPH) is rapidly evolving, with significant advances in recent years. We conducted a systematic review examining genetic contributions to NPH risk. Ovid Embase, Ovid Medline, Web of Science, and Cochrane Central were searched from inception through October 14, 2024, for human studies in English reporting familial NPH cases, genetic variants associated with NPH, and associations with other neurogenetic disorders and exploring transcriptomics. Studies on secondary, obstructive, and congenital hydrocephalus were excluded, and findings were reported narratively. Of 2562 titles and abstracts screened, 56 met inclusion criteria, predominantly involving European populations. More than 30 familial cases were identified, and two cohorts found that 10%-16% of patients with NPH had relatives with NPH symptoms. Whole-genome/exome sequencing, copy-number variant analyses, and genome-wide association studies showed risk variants enriched in NPH cohorts in or near CFAP43, SFMBT1, CWH43, AK9, RXFP2, PRKD1, HAVCR1, OTOG, MYO7A, NOTCH1, SPG11, MYH13, FOXJ1, AMZ1/GNA12, and C16orf95, alongside protective variants near SLCO1A2 and MLLT10. These genes are associated with blood-brain and blood-cerebrospinal fluid barriers, cilia, and ependymal function. In addition, higher rates of pathological C9orf72 repeat expansions were observed in an NPH cohort compared with controls. NPH was also more prevalent in frontotemporal dementia cohorts without this expansion and co-occurred with myotonic dystrophy type 1 in several cases. Despite heterogeneity in outcome measures, this review highlights the genetic contribution to NPH risk. Future research should encourage collaborations for big data generation, identify genetic variants addressing diversity, and integrate clinical, environmental, and shunt-response data. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Camila C Piccinin
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Saar Anis
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeryl Ritzi T Yu
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
- University of the East Ramon Magsaysay Memorial Medical Center, Quezon City, Philippines
| | | | - Henry Mauricio Chaparro-Solano
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Avery Kundrick
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shelley Ivary
- Education Institute, Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio, USA
| | - James Y Liao
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sean J Nagel
- Department of Neurosurgery, Center for Neurological Restoration, Neurological Institute, Cleveland, Ohio, USA
| | - Ignacio F Mata
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
2
|
de Geus MB, Wu CY, Dodge H, Leslie SN, Wang W, Lam TT, Kahle KT, Chan D, Kivisäkk P, Nairn AC, Arnold SE, Carlyle BC. Unbiased CSF Proteomics in Patients With Idiopathic Normal Pressure Hydrocephalus to Identify Molecular Signatures and Candidate Biomarkers. Neurology 2025; 104:e213375. [PMID: 39951680 PMCID: PMC11837848 DOI: 10.1212/wnl.0000000000213375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Idiopathic normal pressure hydrocephalus (iNPH) is a reversible neurologic disorder that remains poorly understood. Accurate differential diagnosis of iNPH and Alzheimer disease (AD) is complicated by overlapping clinical manifestations. Beyond neuroimaging, there are currently no biomarkers available for iNPH leading to frequent misdiagnosis, and proteomic studies into iNPH have been limited by low sample sizes and inadequate analytical depth. In this study, we report the results of a large-scale proteomic analysis of CSF from patients with iNPH to elucidate pathogenesis and identify potential disease biomarkers. METHODS CSF samples were collected through lumbar puncture during diagnostic visits to the Mass General Brigham neurology clinic. Samples were analyzed using mass spectrometry. Differential expression of proteins was studied using linear regression models. Results were integrated with publicly available single-nucleus transcriptomic data to explore potential cellular origins. Biological process enrichment was analyzed using gene-set enrichment analyses. To identify potential diagnostic biomarkers, decision tree-based machine learning algorithms were applied. RESULTS Participants were classified as cognitively unimpaired (N = 53, mean age: 66.5 years, 58.5% female), AD (N = 124, mean age: 71.2 years, 46.0% female), or iNPH (N = 44, mean age: 74.6 years, 34.1% female) based on clinical diagnosis and AD biomarker status. Gene Ontology analyses indicated upregulation of the immune system and coagulation processes and downregulation of neuronal signaling processes in iNPH. Differential expression analysis showed a general downregulation of proteins in iNPH. Integration of differentially expressed proteins with transcriptomic data indicated that changes likely originated from neuronal, endothelial, and glial origins. Using machine learning algorithms, a panel of 12 markers with high diagnostic potential for iNPH were identified, which were not all detected using univariate linear regression models. These markers spanned the various molecular processes found to be affected in iNPH, such as LTBP2, neuronal pentraxin receptor (NPTXR), and coagulation factor 5. DISCUSSION Leveraging the etiologic insights from a typical neurologic clinical cohort, our results indicate that processes of immune response, coagulation, and neuronal signaling are affected in iNPH. We highlight specific markers of potential diagnostic interest. Together, our findings provide novel insights into the pathophysiology of iNPH and may facilitate improved diagnosis of this poorly understood disorder.
Collapse
Affiliation(s)
- Matthijs B de Geus
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Leiden University Medical Center, the Netherlands
| | - Chao-Yi Wu
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard University, Boston, MA
| | - Hiroko Dodge
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Harvard University, Boston, MA
| | - Shannon N Leslie
- Department of Psychiatry, Yale University, New Haven, CT
- Janssen Pharmaceuticals, San Diego, CA
| | - Weiwei Wang
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT
| | - TuKiet T Lam
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
- Broad Institute of Harvard and MIT, Boston, MA
- Division of Genetics and Genomics, Boston Children's Hospital, MA
- Department of Neurosurgery, Yale University, New Haven, CT
| | - Diane Chan
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Boston, MA
| | - Pia Kivisäkk
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Becky C Carlyle
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Department of Physiology Anatomy and Genetics, Oxford University, United Kingdom; and
- Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| |
Collapse
|
3
|
Lauranzano E, Fasano A. Unbiased Proteomics in Normal Pressure Hydrocephalus: Time to Test the Water? Neurology 2025; 104:e213419. [PMID: 39951676 DOI: 10.1212/wnl.0000000000213419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Affiliation(s)
- Eliana Lauranzano
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alfonso Fasano
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Ontario, Canada; and
- Krembil Brain Institute, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Liu N, Zhou Q, Wang H, Li Q, Chen Z, Lin Y, Yi L, Jiang S, Chen C, Deng Y. MiRNA-338-3p Inhibits Neuroinflammation in the Corpus Callosum of LCV-LPS Rats Via STAT1 Signal Pathway. Cell Mol Neurobiol 2023; 43:3669-3692. [PMID: 37479855 PMCID: PMC11409982 DOI: 10.1007/s10571-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Neuroinflammation is a common characteristic of intracranial infection (ICI), which is associated with the activation of astrocytes and microglia. MiRNAs are involved in the process of neuroinflammation. This study aimed to investigate the potential mechanism by which miR-338-3p negatively modulate the occurrence of neuroinflammation. We here reported that the decreased levels of miR-338-3p were detected using qRT-PCR and the upregulated expression of TNF-α and IL-1β was measured by ELISA in the cerebrospinal fluid (CSF) in patients with ICI. A negative association between miR-338-3p and TNF-α or IL-1β was revealed by Pearson correlation analysis. Sprague-Dawley (SD) rats were injected with LPS (50 μg) into left cerebral ventricule (LCV), following which the increased expression of TNF-α and IL-1β and the reduction of miR-338-3p expression were observed in the corpus callosum (CC). Moreover, the expression of TNF-α and IL-1β in the astrocytes and microglia in the CC of LCV-LPS rats were saliently inhibited by the overexpression of miR-338-3p. In vitro, cultured astrocytes and BV2 cells transfected with mimic-miR-338-3p produced less TNF-α and IL-1β after LPS administration. Direct interaction between miR-338-3p and STAT1 mRNA was validated by biological information analysis and dual luciferase assay. Furthermore, STAT1 pathway was found to be implicated in inhibition of neuroinflammation induced by mimic miR-338-3p in the astrocytes and BV2 cells. Taken together, our results suggest that miR-338-3p suppress the generation of proinflammatory mediators in astrocyte and BV2 cells induced by LPS exposure through the STAT1 signal pathway. MiR-338-3p could act as a potential therapeutic strategy to reduce the neuroinflammatory response. Diagram describing the cellular and molecular mechanisms associated with LPS-induced neuroinflammation via the miR-338-3p/STAT1 pathway. LPS binds to TLRs on astrocytes or microglia to activate the STAT1 pathway and upregulate the production of pro-inflammatory cytokines. However, miR-338-3p inhibits the expression of STAT1 and reduces the production of inflammatory mediators.
Collapse
Affiliation(s)
- Nan Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Qiuping Zhou
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Qian Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
- Southern Medical University, Guangzhou, 510515, China
| | - Zhuo Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Yiyan Lin
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
- Southern Medical University, Guangzhou, 510515, China
| | - Lingling Yi
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Chunbo Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China.
| | - Yiyu Deng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Expression Profiles of Exosomal MicroRNAs Derived from Cerebrospinal Fluid in Patients with Congenital Hydrocephalus Determined by MicroRNA Sequencing. DISEASE MARKERS 2022; 2022:5344508. [PMID: 35371347 PMCID: PMC8966745 DOI: 10.1155/2022/5344508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Purpose. Congenital hydrocephalus is one of the most common birth defects worldwide. Exosomal microRNAs (miRNAs) in body fluids have been implicated in many diseases. However, their involvement in cerebrospinal fluid from congenital hydrocephalus is not well understood. This study is aimed at investigating the role of dysregulated exosomal miRNAs in congenital hydrocephalus. Methods. We collected cerebrospinal fluid samples from 15 congenital hydrocephalus patients and 21 control subjects. We used miRNA sequencing to generate exosomal miRNA expression profiles in three pairs of samples. We identified 31 differentially expressed exosomal miRNAs in congenital hydrocephalus and predicted their target mRNAs. Results. Three microRNAs (hsa-miR-130b-3p, hsa-miR-501-5p, and hsa-miR-2113) were selected according to their fold changes and the function of their target mRNAs, and only hsa-miR-130b-3p and hsa-miR-501-5p were confirmed their expression levels in all samples. Moreover, upregulated hsa-miR-130b-3p might mediate the downregulation of the phosphatase and tensin homolog gene (PTEN), which has been associated with hydrocephalus, via binding to its 3
-untranslated region by dual-luciferase reporter assay. Conclusion. This study implicates that abnormally expressed exosomal miRNAs in cerebrospinal fluid may be involved in the pathomechanism of congenital hydrocephalus.
Collapse
|
6
|
Kamenova S, Aralbayeva A, Kondybayeva A, Akimniyazova A, Pyrkova A, Ivashchenko A. Evolutionary Changes in the Interaction of miRNA With mRNA of Candidate Genes for Parkinson's Disease. Front Genet 2021; 12:647288. [PMID: 33859673 PMCID: PMC8042338 DOI: 10.3389/fgene.2021.647288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) exhibits the second-highest rate of mortality among neurodegenerative diseases. PD is difficult to diagnose and treat due to its polygenic nature. In recent years, numerous studies have established a correlation between this disease and miRNA expression; however, it remains necessary to determine the quantitative characteristics of the interactions between miRNAs and their target genes. In this study, using novel bioinformatics approaches, the quantitative characteristics of the interactions between miRNAs and the mRNAs of candidate PD genes were established. Of the 6,756 miRNAs studied, more than one hundred efficiently bound to mRNA of 61 candidate PD genes. The miRNA binding sites (BS) were located in the 5′-untranslated region (5′UTR), coding sequence (CDS) and 3′-untranslated region (3′UTR) of the mRNAs. In the mRNAs of many genes, the locations of miRNA BS with overlapping nucleotide sequences (clusters) were identified. Such clusters substantially reduced the proportion of nucleotide sequences of miRNA BS in the 5′UTRs, CDSs, and 3′UTRs. The organization of miRNA BS into clusters leads to competition among miRNAs to bind mRNAs. Differences in the binding characteristics of miRNAs to the mRNAs of genes expressed at different rates were identified. Single miRNA BS, polysites for the binding for one miRNA, and multiple BS for two or more miRNAs in one mRNA were identified. Evolutionary changes in the BS of miRNAs and their clusters in 5′UTRs, CDSs and 3′UTRs of mRNA of orthologous candidate PD genes were established. Based on the quantitative characteristics of the interactions between miRNAs and mRNAs candidate PD genes, several associations recommended as markers for the diagnosis of PD.
Collapse
Affiliation(s)
- Saltanat Kamenova
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Assel Aralbayeva
- Department of Neurology, Kazakh Medical University, Almaty, Kazakhstan
| | - Aida Kondybayeva
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aigul Akimniyazova
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anna Pyrkova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anatoliy Ivashchenko
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
7
|
Kamohara C, Nakajima M, Kawamura K, Akiba C, Ogino I, Xu H, Karagiozov K, Arai H, Miyajima M. Neuropsychological tests are useful for predicting comorbidities of idiopathic normal pressure hydrocephalus. Acta Neurol Scand 2020; 142:623-631. [PMID: 32619270 PMCID: PMC7689708 DOI: 10.1111/ane.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 01/12/2023]
Abstract
Objectives Comorbidities of idiopathic normal pressure hydrocephalus (iNPH), such as Alzheimer's disease (AD) and Parkinson's spectrum (PS) disorder, can affect the long‐term prognosis of cerebrospinal fluid (CSF) shunting. Therefore, it is important to be able to predict comorbidities in the early stage of the disease. This study aimed to predict the comorbidities of iNPH using neuropsychological tests and cognitive performance evaluation. Materials & Methods Forty‐nine patients with possible iNPH were divided into three groups: iNPH without AD or PS comorbidity (group‐1), iNPH with AD comorbidity (group‐2), and iNPH with PS comorbidity (group‐3), according to CSF biomarkers such as phosphorylated tau and dopamine transporter imaging. Scores on the new EU‐iNPH‐scale, which is based on 4 neuropsychological tests (Rey Auditory Verbal Learning Test, Grooved Pegboard test, Stroop colour‐naming test and interference test), were compared for each group. In addition, the scores before and 12 months after CSF shunting for each group were compared. Results EU‐iNPH‐scale using 4 neuropsychological tests could distinguish group‐1 from group‐2 or group‐3 by area under the curve values of 0.787 and 0.851, respectively. Patients in group‐1 showed a remarkable increase in memory and learning ability after surgery. Group‐2 performed significantly poorer than group‐1 patients on memory testing, but otherwise showed improvements in most of the neuropsychological tests. Group‐3 performed significantly worse than group‐1 patients—especially on Stroop tests—but showed post‐surgery improvement on only the Stroop colour‐naming test. Conclusions The 4 neuropsychological tests of the EU‐iNPH‐scale can help predict iNPH comorbidities and evaluate the prognosis of CSF shunting.
Collapse
Affiliation(s)
| | | | - Kaito Kawamura
- Department of Neurosurgery Juntendo University Tokyo Japan
| | - Chihiro Akiba
- Department of Neurosurgery Juntendo Tokyo Koto Geriatric Medical Center Tokyo Japan
| | - Ikuko Ogino
- Department of Neurosurgery Juntendo University Tokyo Japan
| | - Hanbing Xu
- Department of Neurosurgery Juntendo University Tokyo Japan
| | | | - Hajime Arai
- Department of Neurosurgery Juntendo University Tokyo Japan
| | - Masakazu Miyajima
- Department of Neurosurgery Juntendo Tokyo Koto Geriatric Medical Center Tokyo Japan
| |
Collapse
|
8
|
Gao G, Shi X, Yao Z, Shen J, Shen L. Identification of lymph node metastasis-related microRNAs in breast cancer using bioinformatics analysis. Medicine (Baltimore) 2020; 99:e22105. [PMID: 32991406 PMCID: PMC7523764 DOI: 10.1097/md.0000000000022105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Lymph node metastasis is a significant problem in breast cancer, and its underlying molecular mechanism is still unclear. The purpose of this study is to research the molecular mechanism and to explore the key RNAs and pathways that mediate lymph node metastasis in breast cancer. METHODS GSE100453 and GSE38167 were downloaded from the Gene Expression Omnibus (GEO) database and 569 breast cancer statistics were also downloaded from the TCGA database. Differentially expressed miRNAs were calculated by using R software and GEO2R. Gene ontology and Enriched pathway analysis of target mRNAs were analyzed by using the Database for Database of Annotation Visualization and Integrated Discovery (DAVID) and R software. The protein-protein interaction (PPI) network was performed according to Metascape, String, and Cytoscape software. RESULTS In total, 6 differentially expressed miRNAs were selected, and 499 mRNAs were identified after filtering. The research of the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that mRNAs enriched in certain tumor pathways. Also, certain hub mRNAs were highlighted after constructed and analyzed the PPI network. A total of 3 out of 6 miRNAs had a significant relationship with the overall survival (P < .05) and showed a good ability of risk prediction model of over survival. CONCLUSIONS By utilizing bioinformatics analyses, differently expressed miRNAs were identified and constructed a complete gene network. Several potential mechanisms and therapeutic and prognostic targets of lymph node metastasis were also demonstrated in breast cancer.
Collapse
|
9
|
Acharya S, Salgado-Somoza A, Stefanizzi FM, Lumley AI, Zhang L, Glaab E, May P, Devaux Y. Non-Coding RNAs in the Brain-Heart Axis: The Case of Parkinson's Disease. Int J Mol Sci 2020; 21:E6513. [PMID: 32899928 PMCID: PMC7555192 DOI: 10.3390/ijms21186513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex and heterogeneous disorder involving multiple genetic and environmental influences. Although a wide range of PD risk factors and clinical markers for the symptomatic motor stage of the disease have been identified, there are still no reliable biomarkers available for the early pre-motor phase of PD and for predicting disease progression. High-throughput RNA-based biomarker profiling and modeling may provide a means to exploit the joint information content from a multitude of markers to derive diagnostic and prognostic signatures. In the field of PD biomarker research, currently, no clinically validated RNA-based biomarker models are available, but previous studies reported several significantly disease-associated changes in RNA abundances and activities in multiple human tissues and body fluids. Here, we review the current knowledge of the regulation and function of non-coding RNAs in PD, focusing on microRNAs, long non-coding RNAs, and circular RNAs. Since there is growing evidence for functional interactions between the heart and the brain, we discuss the benefits of studying the role of non-coding RNAs in organ interactions when deciphering the complex regulatory networks involved in PD progression. We finally review important concepts of harmonization and curation of high throughput datasets, and we discuss the potential of systems biomedicine to derive and evaluate RNA biomarker signatures from high-throughput expression data.
Collapse
Affiliation(s)
- Shubhra Acharya
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Andrew I. Lumley
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| |
Collapse
|
10
|
Zhan C, Xiao G, Zhang X, Chen X, Zhang Z, Liu J. Decreased MiR-30a promotes TGF-β1-mediated arachnoid fibrosis in post-hemorrhagic hydrocephalus. Transl Neurosci 2020; 11:60-74. [PMID: 33335750 PMCID: PMC7711221 DOI: 10.1515/tnsci-2020-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Background Fibrosis in the ventricular system is closely associated with post-hemorrhagic hydrocephalus (PHH). It is characterized by an expansion of the cerebral ventricles due to CSF accumulation following intraventricular hemorrhage (IVH). The activation of transforming growth factor-β1 (TGF-β1) may be involved in thrombin-induced arachnoid fibrosis. Methods A rat model of PHH was established by injection of autologous non-anticoagulated blood from the right femoral artery into the lateral ventricles. Differential expression of miR-30a was detected in rat arachnoid cells by RNA sequencing. AP-1, c-Fos, and TRAF3IP2 were knocked down in primary arachnoid cells, and the degree of arachnoid fibrosis was assessed. Results Decreased expression of miR-30a and increased expression of TRAF3IP2, TGF-β1, and α-SMA were detected in the arachnoid cells of PHH rat. Besides, overexpression of miR-30a targets TRAF3IP2 mRNA 3′UTR and inhibits the expression of TRAF3IP2, TGF-β1, and α-SMA in the primary arachnoid cells. Furthermore, TRAF3IP2 activates AP-1 to promote arachnoid fibrosis. The content of type I collagen in the primary arachnoid cells was reduced after the silencing of AP-1 and TRAF3IP2. Conclusions This study identified a miR-30a-regulated mechanism of arachnoid fibrosis, suggesting a previously unrecognized contribution of miR-30a to the pathogenesis of fibrosis in the ventricular system. These results might provide a new target for the clinical diagnosis and treatment of PHH.
Collapse
Affiliation(s)
- Chaohong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Xiangyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Xiaoyu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
| |
Collapse
|
11
|
Liew BS, Takagi K, Kato Y, Duvuru S, Thanapal S, Mangaleswaran B. Current Updates on Idiopathic Normal Pressure Hydrocephalus. Asian J Neurosurg 2019; 14:648-656. [PMID: 31497081 PMCID: PMC6703007 DOI: 10.4103/ajns.ajns_14_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is one of the neurodegenerative diseases which can be treated surgically with favorable outcome. The gait disturbance, cognitive, and urinary symptoms are known as the clinical triad of iNPH. In this review, we have addressed the comorbidities, differential diagnoses, clinical presentations, and pathology of iNPH. We have also summarized the imaging studies and clinical procedures used for the diagnosis of iNPH. The treatment modality, outcomes, and prognosis were also discussed.
Collapse
Affiliation(s)
- Boon Seng Liew
- Department of Neurosurgery, Hospital Sungai Buloh, Selangor, Malaysia
| | - Kiyoshi Takagi
- Normal Pressure Hydrocephalus Center, Tokyo Neurological Center Hospital, Tokyo, Japan
| | - Yoko Kato
- Department of Neurosurgery, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya, Japan
| | - Shyam Duvuru
- Department of Neurosurgery, Velammal Hospitals, Velammal Medical College Hospital and Research Institute, Madurai, Tamil Nadu, India
| | - Sengottuvel Thanapal
- Department of Neurosurgery, Government Mohan Kumaramangalam Medical College, Salem, Tamil Nadu, India
| | | |
Collapse
|
12
|
Maass F, Schulz I, Lingor P, Mollenhauer B, Bähr M. Cerebrospinal fluid biomarker for Parkinson's disease: An overview. Mol Cell Neurosci 2018; 97:60-66. [PMID: 30543858 DOI: 10.1016/j.mcn.2018.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 01/01/2023] Open
Abstract
In Parkinson's disease (PD), there is a wide field of recent and ongoing search for useful biomarkers for early and differential diagnosis, disease monitoring or subtype characterization. Up to now, no biofluid biomarker has entered the daily clinical routine. Cerebrospinal fluid (CSF) is often used as a source for biomarker development in different neurological disorders because it reflects changes in central-nervous system homeostasis. This review article gives an overview about different biomarker approaches in PD, mainly focusing on CSF analyses. Current state and future perspectives regarding classical protein markers like alpha‑synuclein, but also different "omics" techniques are described. In conclusion, technical advancements in the field already yielded promising results, but further multicenter trials with well-defined cohorts, standardized protocols and integrated data analysis of different modalities are needed before successful translation into routine clinical application.
Collapse
Affiliation(s)
- Fabian Maass
- University Medical Center, Department of Neurology, Robert-Koch Strasse 40, 37075 Goettingen, Germany.
| | - Isabel Schulz
- University of Southampton, Faculty of Medicine, 12 University Rd, Southampton SO17 1BJ, United Kingdom
| | - Paul Lingor
- Department of Neurology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Brit Mollenhauer
- University Medical Center, Department of Neurology, Robert-Koch Strasse 40, 37075 Goettingen, Germany; Paracelsus-Elena-Klinik, Klinikstrasse 16, 24128 Kassel, Germany
| | - Mathias Bähr
- University Medical Center, Department of Neurology, Robert-Koch Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
13
|
Roser AE, Caldi Gomes L, Schünemann J, Maass F, Lingor P. Circulating miRNAs as Diagnostic Biomarkers for Parkinson's Disease. Front Neurosci 2018; 12:625. [PMID: 30233304 PMCID: PMC6135037 DOI: 10.3389/fnins.2018.00625] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Its main neuropathological hallmarks are the degeneration of dopaminergic neurons in the substantia nigra and alpha-synuclein containing protein inclusions, called Lewy Bodies. The diagnosis of idiopathic PD is still based on the assessment of clinical criteria, leading to an insufficient diagnostic accuracy. Additionally, there is no biomarker available allowing the prediction of the disease course or monitoring the response to therapeutic approaches. So far, protein biomarker candidates such as alpha-synuclein have failed to improve diagnosis of PD. Circulating microRNAs (miRNAs) in body fluids are promising biomarker candidates for PD, as they are easily accessible by non- or minimally-invasive procedures and changes in their expression are associated with pathophysiological processes relevant for PD. Advances in miRNA analysis methods resulted in numerous recent publications on miRNAs as putative biomarkers. Here, we discuss the applicability of different body fluids as sources for miRNA biomarkers, highlight technical aspects of miRNA analysis and give an overview on published studies investigating circulating miRNAs as biomarker candidates for diagnosis of PD and other Parkinsonian syndromes.
Collapse
Affiliation(s)
- Anna Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Lucas Caldi Gomes
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Schünemann
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany
| |
Collapse
|
14
|
De-Ugarte L, Serra-Vinardell J, Nonell L, Balcells S, Arnal M, Nogues X, Mellibovsky L, Grinberg D, Diez-Perez A, Garcia-Giralt N. Expression profiling of microRNAs in human bone tissue from postmenopausal women. Hum Cell 2017; 31:33-41. [PMID: 28933035 DOI: 10.1007/s13577-017-0181-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.
Collapse
Affiliation(s)
- Laura De-Ugarte
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jenny Serra-Vinardell
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Lara Nonell
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Susana Balcells
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Magdalena Arnal
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Xavier Nogues
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Adolfo Diez-Perez
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Natalia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|