1
|
Takeuchi LE, Kalia LV, Simmons CA. Vascular models of Alzheimer's disease: An overview of recent in vitro models of the blood-brain barrier. Neurobiol Dis 2025; 208:106864. [PMID: 40089165 DOI: 10.1016/j.nbd.2025.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) remains an overwhelming epidemiologic and economic burden on our healthcare systems, affecting an estimate of 11 % of individuals aged 65 years and older. Increasing evidence of the role of the blood-brain barrier (BBB) in AD pathology lends support to the vascular hypothesis of AD, which posits that damage to cerebral vasculature and impairments to cerebral blood flow are major contributors to neurodegeneration in AD. While the question remains whether the dysfunction of the BBB is the cause or consequence of the disease, understanding of the relationship between vascular pathology and AD is growing increasingly complex, warranting the need for better tools to study vasculature in AD. This review provides an overview of AD models in the context of studying vascular impairments and their relevance in pathology. Specifically, we summarize opportunities in in vitro models, cell sources, and phenotypic observations in sporadic and familial forms of AD. Further, we describe recent advances in generating models which recapitulate in vivo characteristics of the BBB in AD through the use of microfluidics, induced pluripotent stem cells (iPSC), and organoid technologies. Finally, we provide a searchable database of reported cell-based models of pathogenic AD gene variants.
Collapse
Affiliation(s)
- Lily E Takeuchi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Lorraine V Kalia
- Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON M5T 2S8, Canada; Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| |
Collapse
|
2
|
Yilmaz SN, Steiner K, Marksteiner J, Faserl K, Sarg B, Humpel C. Novel Plasma Biomarkers for Alzheimer's Disease: Insights from Organotypic Brain Slice and Microcontact Printing Techniques. FRONT BIOSCI-LANDMRK 2025; 30:36257. [PMID: 40152394 DOI: 10.31083/fbl36257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by beta-amyloid plaques and tau neurofibrillary tangles. The diagnosis of AD is complex, with the analysis of beta-amyloid and tau in cerebrospinal fluid being a well-established diagnostic approach. However, currently no blood biomarkers have been identified or validated for clinical use. In the present study, we will identify novel plasma biomarkers for AD using our well-established organotypic mouse brain slice model connected to microcontact prints. We hypothesize that AD plasma contains factors that affect endothelial cell migration and new vessel formation. METHODS In the present study, plasma from human patients is microcontact printed and connected to mouse brain slices. After 4 weeks in culture, laminin+ and lectin+ endothelial cells (ECs) and vessels are analyzed by immunostaining techniques. The most promising samples were processed by differential mass spectrometry. RESULTS Our data show that AD plasma significantly increased the migration length of laminin+ and lectin+ ECs along the microcontact prints. Using differential mass spectrometry, we could identify three potential biomarkers: C-reactive protein, basigin, and trem-like transcript 1 protein. CONCLUSION Here we show that brain slices connected to human plasma prints allow the identification of novel human AD biomarkers with subsequent mass spectrometry. This technique represents a novel and innovative approach to translate research findings from mouse models to human applications.
Collapse
Affiliation(s)
- Sakir Necat Yilmaz
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, 33343 Mersin, Turkey
| | - Katharina Steiner
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, 6060 Hall in Tirol, Austria
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Hafdi M, Taylor-Rowan M, Drozdowska B, Elliott E, McGuire L, Richard E, Quinn TJ. Prediction of dementia using CT imaging in stroke (PRODUCTS). Eur Stroke J 2025:23969873251325076. [PMID: 40079226 PMCID: PMC11907507 DOI: 10.1177/23969873251325076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION A better understanding of who will develop dementia can inform patient care. Although MRI offers prognostic insights, access is limited globally, whereas CT-imaging is readily available in acute stroke. We explored the prognostic utility of acute CT-imaging for predicting dementia. PATIENTS AND METHODS We included stroke or transient ischaemic attack (TIA) survivors from participating stroke centres in Scotland. Acute CT-scans were rated using ordinal scales for neurodegenerative and cerebrovascular changes (old infarcts, white matter lesions (WMLs), medial temporal lobe atrophy (MTA), and global atrophy (GA)) and combined together to a 'brain-frailty' score. Dementia status was established at 18-months following stroke or TIA. RESULTS Among 195 participants, 33% had dementia after 3 years of follow-up. High brain-frailty score (⩾2/4) correlated with higher risk of dementia (HR (95% CI) 6.02 (1.89-19.21)). As individual predictor, severe MTA was most strongly associated with dementia (adjusted HR (95% CI) 2.09 (1.07-4.08)). Other predictors associated with dementia included older age, higher prestroke morbidity (mRS), WMLs, and GA. Integrated in a prediction model with clinical parameters, prestroke mRS, cardiovascular disease, GA, MTA and Abbreviated-Mental-Test were the strongest predictors of dementia (c-statistic: 0.77). DISCUSSION AND CONCLUSION Increased brain-frailty, and its individual components (WMLs, MTA, and GA) are associated with a higher risk of dementia in participants with stroke. Combining clinical and brain-frailty parameters created a moderate dementia prediction model but added little value over clinical parameters in combination with cognitive testing. CT-based brain-frailty may provide better prognostic insights when cognitive testing isn't feasible and for identifying highest-risk individuals for dementia prevention trials to increase trial efficiency.
Collapse
Affiliation(s)
- Melanie Hafdi
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Bogna Drozdowska
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Emma Elliott
- National Institute for Health and Care Research (NIHR) Applied Research Collaboration Greater Manchester, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Lucy McGuire
- Institute of Cardiovascular and Metabolic Sciences, University of Glasgow, Glasgow, UK
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Behaviour and Cognition, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Public & Occupational Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Terence J Quinn
- Institute of Cardiovascular and Metabolic Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Wang J, Meng X, Yang J, Tang Y, Zeng F, Wang Y, Chen Z, Chen D, Zou R, Liu W. Improvements in Exercise for Alzheimer's Disease: Highlighting FGF21-Induced Cerebrovascular Protection. Neurochem Res 2025; 50:95. [PMID: 39903342 DOI: 10.1007/s11064-025-04350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Currently, it has shown a trend of earlier onset, with most patients experiencing a progressive decline in cognitive function following the disease's onset, which places a heavy burden on society and family. Since no drug cure for AD exists, exploring new ways for its treatment and prevention has become critical. Early vascular damage is an initial trigger for neuronal injury in AD, underscoring the importance of vascular health in the early stages of the disease. Patients with early AD experience abnormal blood-brain barrier transport of amyloid-β (Aβ) peptides, with excess Aβ being deposited in the cerebral vasculature. The toxic effects of Aβ lead to abnormalities in cerebrovascular structure and function. Fibroblast growth factor21 (FGF21) is an endocrine factor that positively regulates energy homeostasis and glucose-lipid metabolism. Notably, it is one of the effective targets for metabolic disease prevention and treatment. Recent studies have found that FGF21 has anti-aging and vasoprotective effects, with receptors for FGF21 present in the brain. Exercise stimulates the liver to produce large amounts of FGF21, which enters the blood-brain barrier with the blood to exert neurovascular protection. Therefore, we review the biological properties of FGF21, its role in the cerebrovascular structure and function in AD, and the mechanism of exercise-regulated FGF21 action on AD-related cerebrovascular changes, aiming to provide a new theoretical basis for using exercise to ameliorate degenerative neurological diseases.
Collapse
Affiliation(s)
- Juan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Dandan Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Ruihan Zou
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education, Hunan Normal University, Changsha, Hunan Province, 410081, China.
- Physical Education College, Yuelu District, Hunan Normal University, Changsha, Hunan Province, 410081, China.
| |
Collapse
|
5
|
Moseholm KF, Meineche JT, Jensen MK. The potential of circulating nonesterified fatty acids and sphingolipids in the biological understanding of cognitive decline and dementia. Curr Opin Lipidol 2025; 36:27-37. [PMID: 39641159 DOI: 10.1097/mol.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Cognitive decline and late-onset dementia pose significant challenges in aging societies, and many dementia cases could be prevented or delayed through modification of associated risk factors, many of which are tied to cardiovascular and metabolic dysfunction. As individuals age, the blood-brain barrier becomes more permeable, easing the exchange of molecules between the bloodstream and the brain. Consequently, blood-based biological markers (so-called biomarkers) provide a minimally invasive and accessible means of accessing molecular changes associated with aging and neurodegeneration. RECENT FINDINGS Circulating free fatty acids, also called nonesterified fatty acids (NEFAs), and sphingolipids are associated with cardiovascular disease, insulin resistance, and diabetes; thus, could be promising candidates as biomarkers for cognitive decline and dementia. SUMMARY The opportunity to study such minimally invasive biomarkers further opens up potential new avenues for improved understanding of the underlying biology of diseases of the brain.
Collapse
Affiliation(s)
- Kristine F Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Josefine T Meineche
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Majken K Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Vestergaard MB, Bakhtiari A, Osler M, Mortensen EL, Lindberg U, Law I, Lauritzen M, Benedek K, Larsson HBW. The cerebral blood flow response to neuroactivation is reduced in cognitively normal men with β-amyloid accumulation. Alzheimers Res Ther 2025; 17:4. [PMID: 39754275 PMCID: PMC11699738 DOI: 10.1186/s13195-024-01652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Accumulation of β-amyloid (Aβ) in the brain is a hallmark of Alzheimer's Disease (AD). Cerebral deposition of Aβ initiates deteriorating pathways which eventually can lead to AD. However, the exact mechanisms are not known. A possible pathway could be that Aβ affects the cerebral vessels, causing inadequate cerebrovascular function. In the present study, we examined if Aβ accumulation is associated with a reduced cerebral blood flow response (CBF) to neuronal activation by visual stimulation (ΔCBFVis.Act.) in cognitively normal subjects from the Metropolit Danish Male Birth Cohort. METHODS 64 subjects participated in the present study. ΔCBFVis.Act. was measured using arterial spin labelling (ASL) combined with blood-oxygen-level-dependent (BOLD) MRI. Neuronal activation was obtained by visual stimulation by a flickering checkerboard presented on a screen in the MRI-scanner. Brain Aβ accumulation and cerebral glucose metabolism were assessed by PET imaging using the radiotracers [11C]Pittsburgh Compound-B (PiB) and [18F]Fluorodeoxyglucose (FDG), respectively. Cortical thickness was measured from structural MRI. RESULTS ΔCBFVis.Act. correlated negatively ( β = -32.1 [95% confidence interval (CI): -60.2; -4.1], r = -0.30, p = 0.025) with PiB standardized uptake value ratio (SUVr) in the brain regions activated by visual stimulation. ΔCBFVis.Act. did not correlate with FDG SUVr ( β = 1.9 [CI: -23.8; 27.6], r = 0.02, p = 0.88) or cortical thickness ( β = 10.3 [CI: -8.4; 29.0], r = 0.15, p = 0.27) in the activated brain regions. Resting CBF did not correlate with PiB SUVr neither in the regions activated by visual stimulation ( β = -17.8 [CI:-71.9; 36.2], r =- 0.09, p = 0.51) nor in the remaining cortex ( β = 5.2 [CI:-3.9; 14.2], r = 0.15, p = 0.26). CONCLUSION We found a correlation between high PiB SUVr and reduced CBF response to neuronal activation, indicating a link between Aβ accumulation and impaired cerebrovascular function. The impairment was not associated with cortical thinning or hypometabolism, suggesting that Aβ accumulation affecting brain vessel function could be a very early pathology leading to neurodegenerative disease.
Collapse
Affiliation(s)
- Mark Bitsch Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Valdemar Hansens Vej 1-23, Glostrup, 2600, Denmark.
| | - Aftab Bakhtiari
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Valdemar Hansens Vej 1-23, Glostrup, 2600, Denmark
- Department of Clinical Neurophysiology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Merete Osler
- Center for Clinical Research and Prevention, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Valdemar Hansens Vej 1-23, Glostrup, 2600, Denmark
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Krisztina Benedek
- Department of Clinical Neurophysiology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Valdemar Hansens Vej 1-23, Glostrup, 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
8
|
Lauriola M, Esposito L, D’Onofrio G, Ciccone F, la Torre A, Addante F, Cocomazzi A, Cascavilla L, Ariano O, Serviddio G, Greco A. Risk of Stroke or Heart Attack in Mild Cognitive Impairment and Subjective Cognitive Impairment. Neurol Int 2024; 16:1528-1539. [PMID: 39585072 PMCID: PMC11587450 DOI: 10.3390/neurolint16060113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The study aimed to identify Mild Cognitive Impairment (MCI) as an alert clinical manifestation of increased probability of major acute vascular events (MVEs), such as Ischemic Stroke and heart attack. METHODS In a longitudinal study, 181 (M = 81, F = 100; mean age of 75.8 ± 8.69 years) patients were enrolled and divided into three groups based on diagnosis: Subjective Cognitive Impairment (SCI), amnestic MCI Single Domain (aMCI-SD), and amnestic MCI More Domain (aMCI-MD). Clinical assessment and the presence of vascular risk factors were collected. RESULTS The distribution of MVEs showed a higher incidence in the first two years of follow-up of 7.4% in SCI, 12.17% in aMCI-SD, and 8.57% in aMCI-MD. Acute Myocardial Infarction showed a major incidence in one year of follow-up (41%) and in two years of follow-up (29%). Also, Ischemic Stroke showed a major incidence in one year of follow-up (30%) and in two years of follow-up (40%). A statistically significant difference in the progression to dementia was shown (SCI 3.75%; aMCI-SD 10.43%; aMCI-MD 37%; p-value < 0.001). CONCLUSIONS MCI is considered an expression of the systemic activation of mechanisms of endothelial damage, representing a diagnosis predictive of increased risk of MVEs.
Collapse
Affiliation(s)
- Michele Lauriola
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.L.); (L.E.); (F.A.); (A.C.); (L.C.); (A.G.)
| | - Luigi Esposito
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.L.); (L.E.); (F.A.); (A.C.); (L.C.); (A.G.)
| | - Grazia D’Onofrio
- Clinical Psychology Service, Health Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Filomena Ciccone
- Clinical Psychology Service, Health Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Filomena Addante
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.L.); (L.E.); (F.A.); (A.C.); (L.C.); (A.G.)
| | - Annagrazia Cocomazzi
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.L.); (L.E.); (F.A.); (A.C.); (L.C.); (A.G.)
| | - Leandro Cascavilla
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.L.); (L.E.); (F.A.); (A.C.); (L.C.); (A.G.)
| | - Olga Ariano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (O.A.); (G.S.)
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (O.A.); (G.S.)
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (M.L.); (L.E.); (F.A.); (A.C.); (L.C.); (A.G.)
| |
Collapse
|
9
|
Yen YH, Yen FS, Ko FS, Wei JCC, Huang Y, Yu TS, Hwu CM, Hsu CC. Microvascular disease and its association with dementia in patients with type 2 diabetes: A nationwide cohort study in Taiwan. Diabetes Obes Metab 2024; 26:5399-5407. [PMID: 39210562 DOI: 10.1111/dom.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
AIM To assess the likelihood of dementia in individuals with type 2 diabetes (T2D), distinguishing between those with and without microvascular diseases. METHODS Leveraging the National Health Insurance Research Database in Taiwan, we identified individuals newly diagnosed with T2D from 1 January 2009 through 31 December 2014. Multivariable Cox proportional hazard models were used to compare the risk of outcomes. RESULTS Individuals with microvascular disease had a significantly higher risk of all-cause dementia (adjusted hazard ratio [95% confidence interval] 1.13 [1.09, 1.17]) compared with matched individuals without microvascular disease. In addition, individuals with diabetic kidney disease and diabetic neuropathy were associated with a significantly increased risk of Alzheimer's disease (1.16 [1.02, 1.32] and 1.14 [1.03, 1.27]), vascular dementia (1.21 [1.06, 1.38] and 1.14 [1.02, 1.28]) and other dementia (1.11 [1.04, 1.19] and 1.10 [1.04, 1.16]), respectively, compared with those without microvascular disease. CONCLUSIONS This nationwide cohort study showed that patients with T2D and microvascular disease, particularly diabetic kidney disease and diabetic neuropathy, were associated with a significantly higher risk of Alzheimer's disease, vascular dementia, other dementia and all-cause dementia than those without microvascular disease.
Collapse
Affiliation(s)
- Yu-Hsin Yen
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Fu-Shun Ko
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yuhan Huang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Teng-Shun Yu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
10
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
11
|
Kim J, Han K, Jung JH, Park KA, Oh SY. Nonarteritic Anterior Ischemic Optic Neuropathy and the Risk of Dementia: A Nationwide Cohort Study. Neurology 2024; 103:e209657. [PMID: 39008797 DOI: 10.1212/wnl.0000000000209657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES While emerging theories suggest that vascular dysfunction may occur concurrently with the amyloid cascade in Alzheimer disease (AD) pathogenesis, the role of vascular components as primary neurodegeneration triggers remains uncertain. The aim of this retrospective, population-based cohort study conducted in Korea was to explore the link between nonarteritic anterior ischemic optic neuropathy (NAION) and dementia risk. METHODS In this nationwide, population-based, retrospective cohort study, we identified newly diagnosed NAION from 2010 to 2017 in the Korean National Health Insurance Service database. The primary outcome was new dementia diagnoses confirmed by new ICD-10 claims coupled with antidementia medication prescriptions. We assessed dementia risk using hazard ratios (HRs) with 95% CIs over an average 2.69-year follow-up after a 1-year lag period. RESULTS The cohort consisted of 42,943 patients with NAION and 214,715 age-matched and sex-matched controls without NAION (mean age 61.37 years ± 10.75 SD, 55.48% female). The study found a higher risk of all-cause dementia (ACD; HR 1.28, 95% CI 1.20-1.36), AD (HR 1.27, 95% CI 1.18-1.36), vascular dementia (VaD; HR 1.31, 95% CI 1.09-1.58), and other dementia (HR 1.39, 95% CI 1.11-1.73) among patients with NAION, regardless of other potential confounding factors such as age, sex, lifestyle behaviors, economic status, and preexisting health conditions. In subgroup analysis, the associations between NAION and ACD were stronger in the younger age group (HR 1.83 for those younger than 65 years vs 1.23 for those 65 years or older; p for interaction <0.001). Moreover, the association of NAION with both ACD and VaD was particularly strong among current smokers. DISCUSSION We found a significant association between NAION and increased risk for ACD, AD, VaD, and other dementia even after adjusting for potential confounders such as lifestyle, health conditions, and demographic factors within a nationwide cohort. This study highlights the potential role of vascular pathology in dementia progression and suggests that NAION may serve as a robust predictor for dementia, highlighting the need for comprehensive neurologic assessment in patients with NAION. Further research is needed to clarify the association between NAION and dementia risk.
Collapse
Affiliation(s)
- Jaeryung Kim
- From the Department of Ophthalmology (J.K., K.-A.P., S.Y.O.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Statistics and Actuarial Science (K.H.), Soongsil University; and Samsung Biomedical Research Institute (J.-H.J.), Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyungdo Han
- From the Department of Ophthalmology (J.K., K.-A.P., S.Y.O.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Statistics and Actuarial Science (K.H.), Soongsil University; and Samsung Biomedical Research Institute (J.-H.J.), Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin-Hyung Jung
- From the Department of Ophthalmology (J.K., K.-A.P., S.Y.O.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Statistics and Actuarial Science (K.H.), Soongsil University; and Samsung Biomedical Research Institute (J.-H.J.), Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyung-Ah Park
- From the Department of Ophthalmology (J.K., K.-A.P., S.Y.O.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Statistics and Actuarial Science (K.H.), Soongsil University; and Samsung Biomedical Research Institute (J.-H.J.), Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sei Yeul Oh
- From the Department of Ophthalmology (J.K., K.-A.P., S.Y.O.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Statistics and Actuarial Science (K.H.), Soongsil University; and Samsung Biomedical Research Institute (J.-H.J.), Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Mirzaei F, Agbaria L, Bhatnagar K, Sirimanne N, Omar A'amar N, Jindal V, Gerald Thilagendra A, Tawfiq Raba F. Coffee and Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2024; 289:21-55. [PMID: 39168581 DOI: 10.1016/bs.pbr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coffee, a universally consumed beverage, is known to contain thousands of bioactive constituents that have garnered interest due to their potential neuroprotective effects against various neurodegenerative disorders, including Alzheimer's disease (AD). Extensive research has been conducted on coffee constituents such as Caffeine, Trigonelline, Chlorogenic acid, and Caffeic acid, focusing on their neuroprotective properties. These compounds have potential to impact key mechanisms in AD development, including amyloidopathy, tauopathy, and neuroinflammation. Furthermore, apart from its neuroprotective effects, coffee consumption has been associated with anticancerogenic and anti-inflammatory effects, thereby enhancing its therapeutic potential. Studies suggest that moderate coffee intake, typically around two to three cups daily, could potentially contribute to mitigating AD progression and lowering the risk of related neurological disorders. This literature underscores the potential neuroprotective properties of coffee compounds, which usually perform their neuronal protective effects via modulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor erythroid-derived 2-like 2 (Nrf2), interleukins, tumor necrosis factor-alpha (TNF-α), and many other molecules.
Collapse
Affiliation(s)
- Foad Mirzaei
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia.
| | - Lila Agbaria
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Khushbu Bhatnagar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nethmini Sirimanne
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nathalie Omar A'amar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Vaishali Jindal
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Albankha Gerald Thilagendra
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Farah Tawfiq Raba
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| |
Collapse
|
13
|
Qin H, Shi X, Zhu Y, Ma J, Deng X, Wang L. Alzheimer's disease early screening and staged detection with plasma proteome using machine learning and convolutional neural network. Eur J Neurosci 2024; 60:4034-4048. [PMID: 38764192 DOI: 10.1111/ejn.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Alzheimer's disease (AD) stands as the prevalent progressive neurodegenerative disease, precipitating cognitive impairment and even memory loss. Amyloid biomarkers have been extensively used in the diagnosis of AD. However, amyloid proteins offer limited information about the disease process and accurate diagnosis depends on the presence of a substantial accumulation of amyloid deposition which significantly impedes the early screening of AD. In this study, we have combined plasma proteomics with an ensemble learning model (CatBoost) to develop a cost-effective and non-invasive diagnostic method for AD. A longitudinal panel has been identified that can serve as reliable biomarkers across the entire progression of AD. Simultaneously, we have developed a neural network algorithm that utilizes plasma proteins to detect stages of Alzheimer's disease. Based on the developed longitudinal panel, the CatBoost model achieved an area under the operating curve of at least 0.90 in distinguishing mild cognitive impairment from cognitively normal. The neural network model was utilized for the detection of three stages of AD, and the results demonstrated that the neural network model exhibited an accuracy as high as 0.83, surpassing that of the traditional machine learning model.
Collapse
Affiliation(s)
- Hengyu Qin
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Xiumin Shi
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Yibo Zhu
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Jiacheng Ma
- The Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Callahan BL, Becker S, Ramirez J, Taylor R, Shammi P, Gao F, Black SE. Vascular Burden Moderates the Relationship Between ADHD and Cognition in Older Adults. Am J Geriatr Psychiatry 2024; 32:427-442. [PMID: 37989710 DOI: 10.1016/j.jagp.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVES Recent evidence suggests attention-deficit/hyperactivity disorder (ADHD) is a risk factor for cognitive impairment in later life. Here, we investigated cerebrovascular burden, quantified using white matter hyperintensity (WMH) volumes, as a potential mediator of this relationship. DESIGN This was a cross-sectional observational study. SETTING Participants were recruited from a cognitive neurology clinic where they had been referred for cognitive assessment, or from the community. PARTICIPANTS Thirty-nine older adults with clinical ADHD and 50 age- and gender-matched older adults without ADHD. MEASUREMENTS A semiautomated structural MRI pipeline was used to quantify periventricular (pWMH) and deep WMH (dWMH) volumes. Cognition was measured using standardized tests of memory, processing speed, visuo-construction, language, and executive functioning. Mediation models, adjusted for sex, were built to test the hypothesis that ADHD status exerts a deleterious impact on cognitive performance via WMH burden. RESULTS Results did not support a mediated effect of ADHD on cognition. Post hoc inspection of the data rather suggested a moderated effect, which was investigated as an a posteriori hypothesis. These results revealed a significant moderating effect of WMH on the relationship between ADHD memory, speed, and executive functioning, wherein ADHD was negatively associated with cognition at high and medium levels of WMH, but not when WMH volumes were low. CONCLUSIONS ADHD increases older adults' susceptibility to the deleterious cognitive effects of WMH in the brain. Older adults with ADHD may be at risk for cognitive impairment if they have deep WMH volumes above 61 mm3 and periventricular WMH above 260 mm3.
Collapse
Affiliation(s)
- Brandy L Callahan
- Department of Psychology (BLC, SB), University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (BLC, SB), Calgary, Alberta, Canada.
| | - Sara Becker
- Department of Psychology (BLC, SB), University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (BLC, SB), Calgary, Alberta, Canada
| | - Joel Ramirez
- Dr. Sandra Black Centre for Brain Resilience & Recovery (JR, RT, FG, SEB), LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Ontario, Canada; Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rebecca Taylor
- Dr. Sandra Black Centre for Brain Resilience & Recovery (JR, RT, FG, SEB), LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Ontario, Canada; Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Prathiba Shammi
- Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada; Neuropsychology & Cognitive Health Program (PS), Baycrest Health Sciences Centre, Toronto, Ontario, Canada
| | - Fuqiang Gao
- Dr. Sandra Black Centre for Brain Resilience & Recovery (JR, RT, FG, SEB), LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Ontario, Canada; Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sandra E Black
- Dr. Sandra Black Centre for Brain Resilience & Recovery (JR, RT, FG, SEB), LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Ontario, Canada; Hurvitz Brain Sciences Program (JR, RT, PS, FG, SEB), Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medicine (Neurology) (SEB), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Kim J, Han K, Jung JH, Park KA, Oh SY. Early-Onset Ocular Motor Cranial Neuropathy Is a Strong Predictor of Dementia: A Nationwide, Population-Based Cohort Study. Ophthalmology 2024; 131:288-301. [PMID: 37832727 DOI: 10.1016/j.ophtha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
PURPOSE To assess the risk of dementia in individuals with newly diagnosed ocular motor cranial neuropathy (OMCN). DESIGN A nationwide, population-based cohort study using authenticated data from the Korean National Health Insurance Service (KNHIS). PARTICIPANTS This study included 60 781 patients with OMCN who received a diagnosis between 2010 and 2017 and were followed up through 2018, with an average follow-up of 3.37 ± 2.21 years with a 1-year lag. After excluding patients with disease related to oculomotor dysfunction preceding the OMCN diagnosis, a total of 52 076 patients with OMCN were established. Of these, 23 642 patients who had participated in the National Health Screening Program (NHSP) within 2 years before the OMCN diagnosis were included. After applying the exclusion criteria, the final cohort comprised 19 243 patients and 96 215 age and sex-matched control participants without OMCN. METHODS We identified patients with newly diagnosed OMCN in the KNHIS database and collected participant characteristics from the health checkup records of the NHSP. The study end point was determined by the first claim with a dementia diagnostic code and antidementia medications. The association of OMCN with dementia risk was examined using Cox proportional hazards regression analysis, adjusting for potential confounding factors. MAIN OUTCOME MEASURES The main outcome measures were hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause dementia (ACD), Alzheimer's disease (AD), and vascular dementia (VaD) development in patients with OMCN relative to those without OMCN. RESULTS Patients with newly diagnosed OMCN demonstrated higher metabolic comorbidities than those without OMCN. New OMCN was associated with an elevated risk of ACD (HR, 1.203; 95% CI, 1.113-1.300), AD (HR, 1.137; 95% CI, 1.041-1.243), and VaD (HR, 1.583; 95% CI, 1.286-1.948), independent of potential confounding factors. The younger age groups exhibited a stronger association between OMCN and ACD (HR, 8.690 [< 50 years] vs. 1.192 [≥ 50 years]; P = 0.0004; HR, 2.517 [< 65 years] vs. 1.099 [≥ 65 years]; P < 0.0001). CONCLUSIONS This nationwide population-based study assessed the association between OMCN and dementia risk. Our results demonstrated a robust relationship between OMCN and the risk of dementia, particularly in the younger population. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Jaeryung Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Sei Yeul Oh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Liu X, Halvorsen S, Blanke N, Downs M, Stein TD, Bigio IJ, Zaia J, Zhang Y. Progressive mechanical and structural changes in anterior cerebral arteries with Alzheimer's disease. Alzheimers Res Ther 2023; 15:185. [PMID: 37891618 PMCID: PMC10605786 DOI: 10.1186/s13195-023-01331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the main cause for dementia. The irreversible neurodegeneration leads to a gradual loss of brain function characterized predominantly by memory loss. Cerebrovascular changes are common neuropathologic findings in aged subjects with dementia. Cerebrovascular integrity is critical for proper metabolism and perfusion of the brain, as cerebrovascular remodeling may render the brain more susceptible to pulse pressure and may be associated with poorer cognitive performance and greater risk of cerebrovascular events. The objective of this study is to provide understanding of cerebrovascular remodeling with AD progression. Anterior cerebral arteries (ACAs) from a total of 19 brain donor participants from controls and pathologically diagnosed AD groups (early-Braak stages I-II; intermediate-Braak stages III-IV; and advanced-Braak stages V-VI) were included in this study. Mechanical testing, histology, advanced optical imaging, and mass spectrometry were performed to study the progressive structural and functional changes of ACAs with AD progression. Biaxial extension-inflation tests showed that ACAs became progressively less compliant, and the longitudinal stress in the intermediate and advanced AD groups was significantly higher than that from the control group. With pathological AD development, the inner and outer diameters of the ACAs remained almost unchanged; however, histology study revealed progressive smooth muscle cell atrophy and loss of elastic fibers which led to compromised structural integrity of the arterial wall. Multiphoton imaging demonstrated elastin degradation at the media-adventitia interface, which led to the formation of an empty band of 21.0 ± 15.4 μm and 32.8 ± 9.24 μm in width for the intermediate and advanced AD groups, respectively. Furthermore, quantitative birefringence microscopy showed disorganized adventitial collagen with AD development. Mass spectrometry analysis provided further evidence of altered collagen content and other extracellular matrix (ECM) molecule and smooth muscle cell changes that were consistent with the mechanical and structural alterations. Collectively, our study provides understanding of the mechanical and structural cerebrovascular deterioration in cerebral arteries with AD, which may be related to neurodegenration and pathology in the brain.
Collapse
Affiliation(s)
- Xiaozhu Liu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Samuel Halvorsen
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Nathan Blanke
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Margaret Downs
- Department of Biochemistry and Cell Biology, Boston University, Avedisian School of Medicine, Chobanian &, Boston, MA, USA
| | - Thor D Stein
- Pathology and Laboratory Medicine, Boston University, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Joseph Zaia
- Department of Biochemistry and Cell Biology, Boston University, Avedisian School of Medicine, Chobanian &, Boston, MA, USA
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
18
|
Tarasova I, Trubnikova O, Kukhareva I, Syrova I, Sosnina A, Kupriyanova D, Barbarash O. A Comparison of Two Multi-Tasking Approaches to Cognitive Training in Cardiac Surgery Patients. Biomedicines 2023; 11:2823. [PMID: 37893196 PMCID: PMC10604887 DOI: 10.3390/biomedicines11102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The multi-tasking approach may be promising for cognitive rehabilitation in cardiac surgery patients due to a significant effect on attentional and executive functions. This study aimed to compare the neuropsychological changes in patients who have undergone two variants of multi-tasking training and a control group in the early postoperative period of coronary artery bypass grafting (CABG). METHODS One hundred and ten CABG patients were divided into three groups: cognitive training (CT) I (a postural balance task with mental arithmetic, verbal fluency, and divergent tasks) (n = 30), CT II (a simple visual-motor reaction with mental arithmetic, verbal fluency, and divergent tasks) (n = 40), and control (n = 40). RESULTS Two or more cognitive indicators improved in 93.3% of CT I patients, in 72.5% of CT II patients, and in 62.5% of control patients; CT I patients differed from CT II and control (p = 0.04 and p = 0.008, respectively). The improving short-term memory and attention was found more frequently in the CT I group as compared to control (56.7% vs. 15%; p = 0.0005). The cognitive improvement of all domains (psychomotor and executive functions, attention, and short-term memory) was also revealed in CT I patients more frequently than CT II (46.7% vs. 20%; p = 0.02) and control (46.7% vs. 5%; p = 0.0005). CONCLUSIONS The CT I multi-tasking training was more effective at improving the cognitive performance in cardiac surgery patients as compared to CT II training and standard post-surgery management. The findings of this study will be helpful for future studies involving multi-tasking training.
Collapse
Affiliation(s)
- Irina Tarasova
- Department of Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Blvd., 6, 650002 Kemerovo, Russia; (O.T.); (I.S.)
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhang B, Langa KM, Weuve J, D’Souza J, Szpiro A, Faul J, Mendes de Leon C, Kaufman JD, Lisabeth L, Hirth RA, Adar SD. Hypertension and Stroke as Mediators of Air Pollution Exposure and Incident Dementia. JAMA Netw Open 2023; 6:e2333470. [PMID: 37728927 PMCID: PMC10512106 DOI: 10.1001/jamanetworkopen.2023.33470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/04/2023] [Indexed: 09/22/2023] Open
Abstract
Importance Fine particulate matter air pollution (PM2.5) has been consistently associated with cardiovascular disease, which, in turn, is associated with an increased risk of dementia. As such, vascular dysfunction might be a mechanism by which PM2.5 mediates dementia risk, yet few prior epidemiological studies have examined this potential mechanism. Objective To investigate whether hypertension and stroke serve as mediators and modifiers of the association of PM2.5 with incident dementia. Design, Setting, and Participants As part of the Environmental Predictors of Cognitive Health and Aging (EPOCH) Project, this cohort study used biennial survey data collected between 1998 and 2016 from respondents of the Health and Retirement Study (HRS), a nationally representative, population-based, cohort in the US. Eligible participants were those over 50 years of age who were free of dementia at baseline and had complete exposure, mediator, outcome, and demographic data from the HRS. Data analysis was conducted from August to November 2022. Exposures Exposure to PM2.5, calculated for the 10 years preceding each person's baseline examination according to residential histories and spatiotemporal models. Main Outcomes and Measures Incident dementia was identified using a validated algorithm based on cognitive testing and informant reports. The 4-way decomposition causal mediation analysis method was used to quantify the degree to which hypertension and stroke mediated or modified the association of PM2.5 with incident dementia after adjustment for individual-level and area-level covariates. Results Among 27 857 participants (mean [SD] age at baseline, 61 [10] years; 15 747 female participants [56.5%]; 19 249 non-Hispanic White participants [69.1%]), 4105 (14.7%) developed dementia during the follow-up period (mean [SD], 10.2 [5.6] years). Among participants with dementia, 2204 (53.7%) had a history of hypertension at baseline and 386 (9.4%) received a diagnosis of hypertension during the follow up. A total of 378 participants (9.2%) had a history of stroke at baseline and 673 (16.4%) developed stroke over the follow-up period. The IQR of baseline PM2.5 concentrations was 10.9 to 14.9 μg/m3. In fully adjusted models, higher levels of PM2.5 (per IQR) were not associated with increased risk of incident dementia (HR, 1.04; 95% CI, 0.98 to 1.11). Although there were positive associations of prevalent stroke (HR, 1.67; 95% CI, 1.48 to 1.88) and hypertension (HR, 1.15; 95% CI, 1.08 to 1.23) with incident dementia compared with those free of stroke and hypertension during follow-up, there was no statistically significant association of PM2.5 with stroke (odds ratio per IQR increment in PM2.5, 1.08; 95%CI, 0.91 to 1.29) and no evidence of an association of PM2.5 with hypertension (odds ratio per IQR increment in PM2.5, 0.99; 95%CI, 0.92 to 1.07). Concordantly, there was no evidence that hypertension or stroke acted as mediators or modifiers of the association of PM2.5 with incident dementia. Although the nonmediated interaction between PM2.5 and hypertension accounted for 39.2% of the total excess association (95% CI, -138.5% to 216.9%), the findings were not statistically significant. Conclusions and Relevance These findings suggest that although hypertension may enhance the susceptibility of individuals to air pollution, hypertension and stroke do not significantly mediate or modify the association of PM2.5 with dementia, indicating the need to investigate other pathways and potential mediators of risk.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Kenneth M. Langa
- Institute for Social Research, University of Michigan, Ann Arbor
- University of Michigan Medical School, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Jennifer D’Souza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle
| | - Jessica Faul
- Institute for Social Research, University of Michigan, Ann Arbor
| | | | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Lynda Lisabeth
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Richard A. Hirth
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
20
|
Bailes SM, Gomez DEP, Setzer B, Lewis LD. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. eLife 2023; 12:e86453. [PMID: 37565644 PMCID: PMC10506795 DOI: 10.7554/elife.86453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, confounding our ability to make inferences about the timing of the underlying neural processes. Here, we show that resting-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and characterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, because differences in fMRI frequency content can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural dynamics.
Collapse
Affiliation(s)
- Sydney M Bailes
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Daniel EP Gomez
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Beverly Setzer
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
21
|
Yao Q, Jiang K, Lin F, Zhu T, Khan NH, Jiang E. Pathophysiological Association of Alzheimer's Disease and Hypertension: A Clinical Concern for Elderly Population. Clin Interv Aging 2023; 18:713-728. [PMID: 37181536 PMCID: PMC10167960 DOI: 10.2147/cia.s400527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/22/2023] [Indexed: 05/16/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia and the fifth leading cause of death in the adult population has a complex pathophysiological link with hypertension (HTN). A growing volume of published literature on a parallel elevation of blood pressure (BP), amyloid plaques, and neurofibrillary tangles formation in post-middle of human brain cells has developed new, widely accepting foundations on this association. In particular, HTN in elderly life mediates cerebral blood flow dysfunction, neuronal dysfunction, and significant decline in cognitive impairment, primarily in the late-life populace, governing the onset of AD. Thus, HTN is an established risk factor for AD. Considering the impact of AD, 1.89 million deaths annually, and the failure of palliative therapies to cure AD, the scientific research community is looking to adopt integrated approaches to target early modified risk factors like HTN to reduce AD burden. The current review highlights the significance and impact of HTN-based prevention in lowering the AD burden in the elderly by providing a comprehensive overview of the physiological relationship between AD and HTN with an in-detail explanation of the role and applications of pathological biomarkers in this clinical association. The review will gain worth in presenting new insights and providing inclusive discussion on the correlation between HTN and cognitive impairment. It will increase across a wider scientific audience to expand understanding of this pathophysiological association.
Collapse
Affiliation(s)
- Qianqian Yao
- Institute of Nursing and Health, Henan University, Kaifeng, People’s Republic of China
| | - Kexin Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, People’s Republic of China
| | - Fei Lin
- School of Medicine, Shangqiu Institute of Technology, Shangqiu, People’s Republic of China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, People’s Republic of China
| | - Nazeer Hussain Khan
- Institute of Nursing and Health, Henan University, Kaifeng, People’s Republic of China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, People’s Republic of China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, People’s Republic of China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, People’s Republic of China
| |
Collapse
|
22
|
Anwar MM, Mabrouk AA. Hepatic and cardiac implications of increased toxic amyloid-beta serum level in lipopolysaccharide-induced neuroinflammation in rats: new insights into alleviating therapeutic interventions. Inflammopharmacology 2023; 31:1257-1277. [PMID: 37017850 DOI: 10.1007/s10787-023-01202-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/06/2023]
Abstract
Neuroinflammation is a devastating predisposing factor for Alzheimer's disease (AD). A number of clinical findings have reported peripheral disorders among AD patients. Amyloid beta (Aβ) is a toxic physiological aggregate that serves as a triggering factor for hepatic and cardiac disorders related to neurotoxicity. As a drawback of Aβ excessive accumulation in the brain, part of Aβ is believed to readily cross the blood-brain barrier (BBB) into the peripheral circulation resulting in serious inflammatory and toxic cascades acting as a direct bridge to cardiac and hepatic pathophysiology. The main aim is to find out whether neuroinflammation-related AD may result in cardiac and liver dysfunctions. Potential therapeutic interventions are also suggested to alleviate AD's cardiac and hepatic defects. Male rats were divided into: control group I, lipopolysaccharide (LPS)-neuroinflammatory-induced group II, LPS-neuroinflammatory-induced group treated with sodium hydrogen sulphide donor (NaHS) (group III), and LPS-neuroinflammatory-induced group treated with mesenchymal stem cells (MSCs) (group IV). Behavior and histopathological studies were conducted in addition to the estimation of different biological biomarkers. It was revealed that the increased toxic Aβ level in blood resulted in cardiac and hepatic malfunctions as a drawback of exaggerated inflammatory cascades. The administration of NaHS and MSCs proved their efficiency in combating neuroinflammatory drawbacks by hindering cardiac and hepatic dysfunctions. The consistent direct association of decreased heart and liver functions with increased Aβ levels highlights the direct involvement of AD in other organ complications. Thereby, these findings will open new avenues for combating neuroinflammatory-related AD and long-term asymptomatic toxicity.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt.
| | - Abeer A Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
23
|
Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, Johnson KM, Paulsen JS. Vascular contributions to Alzheimer's disease. Transl Res 2023; 254:41-53. [PMID: 36529160 PMCID: PMC10481451 DOI: 10.1016/j.trsl.2022.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. In this review, we discuss several potential pathological pathways of vascular involvement in AD that have been described including dysregulation of neurovascular coupling, disruption of the blood brain barrier, and reduced clearance of metabolite waste such as beta-amyloid, a toxic peptide considered the hallmark of AD. We will also discuss the two-hit hypothesis which proposes a 2-step positive feedback loop in which microvascular insults precede the accumulation of Aß and are thought to be at the origin of the disease development. At neuroimaging, signs of vascular dysfunction such as chronic cerebral hypoperfusion have been demonstrated, appearing early in AD, even before cognitive decline and alteration of traditional biomarkers. Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony Peret
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bolanle M Famakin
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jeremy H Bockholt
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
24
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
25
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Gentile MT, Camerino I, Ciarmiello L, Woodrow P, Muscariello L, De Chiara I, Pacifico S. Neuro-Nutraceutical Polyphenols: How Far Are We? Antioxidants (Basel) 2023; 12:antiox12030539. [PMID: 36978787 PMCID: PMC10044769 DOI: 10.3390/antiox12030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The brain, composed of billions of neurons, is a complex network of interacting dynamical systems controlling all body functions. Neurons are the building blocks of the nervous system and their impairment of their functions could result in neurodegenerative disorders. Accumulating evidence shows an increase of brain-affecting disorders, still today characterized by poor therapeutic options. There is a strong urgency to find new alternative strategies to prevent progressive neuronal loss. Polyphenols, a wide family of plant compounds with an equally wide range of biological activities, are suitable candidates to counteract chronic degenerative disease in the central nervous system. Herein, we will review their role in human healthcare and highlight their: antioxidant activities in reactive oxygen species-producing neurodegenerative pathologies; putative role as anti-acetylcholinesterase inhibitors; and protective activity in Alzheimer’s disease by preventing Aβ aggregation and tau hyperphosphorylation. Moreover, the pathology of these multifactorial diseases is also characterized by metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), most important for cellular function. In this scenario, polyphenols’ action as natural chelators is also discussed. Furthermore, the critical importance of the role exerted by polyphenols on microbiota is assumed, since there is a growing body of evidence for the role of the intestinal microbiota in the gut–brain axis, giving new opportunities to study molecular mechanisms and to find novel strategies in neurological diseases.
Collapse
|
27
|
Bailes SM, Gomez DEP, Setzer B, Lewis LD. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525528. [PMID: 36747821 PMCID: PMC9900794 DOI: 10.1101/2023.01.25.525528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, confounding our ability to make inferences about the timing of the underlying neural processes. Here we show that resting-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and characterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, as differences can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural dynamics.
Collapse
Affiliation(s)
| | - Daniel E. P. Gomez
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Beverly Setzer
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| |
Collapse
|
28
|
Schroeter ML, Godulla J, Thiel F, Taskin B, Beutner F, Dubovoy VK, Teren A, Camilleri J, Eickhoff S, Villringer A, Mueller K. Heart failure decouples the precuneus in interaction with social cognition and executive functions. Sci Rep 2023; 13:1236. [PMID: 36690723 PMCID: PMC9870947 DOI: 10.1038/s41598-023-28338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Aging increases the risk to develop Alzheimer's disease. Cardiovascular diseases might accelerate this process. Our study aimed at investigating the impact of heart failure on brain connectivity using functional magnetic resonance imaging at resting state. Here we show brain connectivity alterations related to heart failure and cognitive performance. Heart failure decreases brain connectivity in the precuneus. Precuneus dysconnectivity was associated with biomarkers of heart failure-left ventricular ejection fraction and N-terminal prohormone of brain natriuretic peptide-and cognitive performance, predominantly executive function. Meta-analytical data-mining approaches-conducted in the BrainMap and Neurosynth databases-revealed that social and executive cognitive functions are mainly associated with those neural networks. Remarkably, the precuneus, as identified in our study in a mid-life cohort, represents one central functional hub affected by Alzheimer's disease. A long-term follow-up investigation in our cohort after approximately nine years revealed more severe cognitive impairment in the group with heart failure than controls, where social cognition was the cognitive domain mainly affected, and not memory such as in Alzheimer's disease. In sum, our results indicate consistently an association between heart failure and decoupling of the precuneus from other brain regions being associated with social and executive functions. Further longitudinal studies are warranted elucidating etiopathological mechanisms.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Clinic for Cognitive Neurology, University Hospital Leipzig, Liebigstr. 16, 04103, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103, Leipzig, Germany.
- Leipzig Research Center for Civilization Diseases, Leipzig, Germany.
| | - Jannis Godulla
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103, Leipzig, Germany
- Ludwig Maximilians University Munich, Munich, Germany
| | - Friederike Thiel
- Clinic for Cognitive Neurology, University Hospital Leipzig, Liebigstr. 16, 04103, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103, Leipzig, Germany
| | - Birol Taskin
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103, Leipzig, Germany
| | - Frank Beutner
- Leipzig Research Center for Civilization Diseases, Leipzig, Germany
- Leipzig Heart Center, Leipzig, Germany
| | - Vladimir K Dubovoy
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103, Leipzig, Germany
- Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Andrej Teren
- Leipzig Research Center for Civilization Diseases, Leipzig, Germany
- Leipzig Heart Center, Leipzig, Germany
- Department of Cardiology and Intensive Care Medicine, Klinikum Bielefeld, Bielefeld, Germany
| | - Julia Camilleri
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7 Brain and Behaviour), Forschungszentrum Jülich, Jülich, Germany
| | - Simon Eickhoff
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7 Brain and Behaviour), Forschungszentrum Jülich, Jülich, Germany
| | - Arno Villringer
- Clinic for Cognitive Neurology, University Hospital Leipzig, Liebigstr. 16, 04103, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases, Leipzig, Germany
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, 04103, Leipzig, Germany.
| |
Collapse
|
29
|
Grobler C, van Tongeren M, Gettemans J, Kell DB, Pretorius E. Alzheimer's Disease: A Systems View Provides a Unifying Explanation of Its Development. J Alzheimers Dis 2023; 91:43-70. [PMID: 36442193 DOI: 10.3233/jad-220720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting 50 million people globally. It is characterized by the presence of extracellular senile plaques and intracellular neurofibrillary tangles, consisting of amyloid-β and hyperphosphorylated tau proteins, respectively. Despite global research efforts, there is currently no cure available, due in part to an incomplete understanding of the disease pathogenesis. Numerous possible mechanisms, or hypotheses, explaining the origins of sporadic or late-onset AD have been proposed, including the amyloid-β, inflammatory, vascular, and infectious hypotheses. However, despite ample evidence, the failure of multiple trial drugs at the clinical stage illuminates the possible pitfalls of these hypotheses. Systems biology is a strategy which aims to elucidate the interactions between parts of a whole. Using this approach, the current paper shows how the four previously mentioned hypotheses of AD pathogenesis can be intricately connected. This approach allows for seemingly contradictory evidence to be unified in a system-focused explanation of sporadic AD development. Within this view, it is seen that infectious agents, such as P. gingivalis, may play a central role. The data presented here shows that when present, P. gingivalis or its virulence factors, such as gingipains, may induce or exacerbate pathologies underlying sporadic AD. This evidence supports the view that infectious agents, and specifically P. gingivalis, may be suitable treatment targets in AD.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Marvi van Tongeren
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
The Utility of Arterial Spin Labeling MRI in Medial Temporal Lobe as a Vascular Biomarker in Alzheimer's Disease Spectrum: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12122967. [PMID: 36552974 PMCID: PMC9776573 DOI: 10.3390/diagnostics12122967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
We sought to systematically review and meta-analy the role of cerebral blood flow (CBF) in the medial temporal lobe (MTL) using arterial spin labeling magnetic resonance imaging (ASL-MRI) and compare this in patients with Alzheimer's disease (AD), individuals with mild cognitive impairment (MCI), and cognitively normal adults (CN). The prevalence of AD is increasing and leading to high healthcare costs. A potential biomarker that can identify people at risk of developing AD, whilst cognition is normal or only mildly affected, will enable risk-stratification and potential therapeutic interventions in the future. All studies investigated the role of CBF in the MTL and compared this among AD, MCI, and CN participants. A total of 26 studies were included in the systematic review and 11 in the meta-analysis. Three separate meta-analyses were conducted. Four studies compared CBF in the hippocampus of AD compared with the CN group and showed that AD participants had 2.8 mL/min/100 g lower perfusion compared with the CN group. Eight studies compared perfusion in the hippocampus of MCI vs. CN group, which showed no difference. Three studies compared perfusion in the MTL of MCI vs. CN participants and showed no statistically significant differences. CBF measured via ASL-MRI showed impairment in AD compared with the CN group in subregions of the MTL. CBF difference was significant in hippocampus between the AD and CN groups. However, MCI and CN group showed no significant difference in subregions of MTL.
Collapse
|
31
|
Tzeng RC, Yang YW, Hsu KC, Chang HT, Chiu PY. Sum of boxes of the clinical dementia rating scale highly predicts conversion or reversion in predementia stages. Front Aging Neurosci 2022; 14:1021792. [PMID: 36212036 PMCID: PMC9537043 DOI: 10.3389/fnagi.2022.1021792] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background The clinical dementia rating (CDR) scale is commonly used to diagnose dementia due to Alzheimer's disease (AD). The sum of boxes of the CDR (CDR-SB) has recently been emphasized and applied to interventional trials for tracing the progression of cognitive impairment (CI) in the early stages of AD. We aimed to study the influence of baseline CDR-SB on disease progression to dementia or reversion to normal cognition (NC). Materials and methods The baseline CDR < 1 cohort registered from September 2015 to August 2020 with longitudinal follow-up in the History-based Artificial Intelligence Clinical Dementia Diagnostic System (HAICDDS) database was retrospectively analyzed for the rates of conversion to CDR ≥ 1. A Cox regression model was applied to study the influence of CDR-SB levels on progression, adjusting for age, education, sex, neuropsychological tests, neuropsychiatric symptoms, parkinsonism, and multiple vascular risk factors. Results A total of 1,827 participants were analyzed, including 1,258 (68.9%) non-converters, and 569 (31.1%) converters with mean follow-up of 2.1 (range 0.4-5.5) and 1.8 (range 0.3-5.0) years, respectively. Conversion rates increased with increasing CDR-SB scores. Compared to a CDR-SB score of 0, the hazard ratios (HR) for conversion to dementia were 1.51, 1.91, 2.58, 2.13, 3.46, 3.85, 3.19, 5.12, and 5.22 for CDR-SB scores of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and ≥4.5, respectively (all p < 0.05 except for CDR-SB score = 0.5). In addition, older age, lower education, lower cognitive performance, and a history of diabetes also increased conversion rates. Furthermore, reversions to NC were 12.5, 5.6, 0.9, and 0% for CDR-SB scores of 0.5, 1.0-2.0, 2.5-3.5 and ≥4.0, respectively (p < 0.001). Conclusion CDR-SB in predementia or very mild dementia (VMD) stages highly predicts progression to dementia or reversion to NC. Therefore, CDR-SB could be a good candidate for tracing the effectiveness of pharmacological and non-pharmacological interventions in populations without dementia.
Collapse
Affiliation(s)
- Ray-Chang Tzeng
- Department of Neurology, Tainan Municipal Hospital, Tainan, Taiwan
| | - Yu-Wan Yang
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Kai-Cheng Hsu
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
- Artificial Intelligence Center for Medical Diagnosis, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Te Chang
- Department of Psychology, College of Science, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Applied Mathematics, Tunghai University, Taichung, Taiwan
| |
Collapse
|
32
|
Selbaek G, Stuebs J, Engedal K, Hachinski V, Hestad K, Trevino CS, Skjellegrind H, Wedatilake Y, Strand BH. Blood pressure trajectories over 35 years and dementia risk: A retrospective study: The HUNT study. Front Aging Neurosci 2022; 14:931715. [PMID: 36185489 PMCID: PMC9522576 DOI: 10.3389/fnagi.2022.931715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
High blood pressure is a well-established risk factor of dementia. However, the timing of the risk remains controversial. The aim of the present study was to compare trajectories of systolic blood pressure (SBP) over a 35-year follow-up period in the Health Survey in Trøndelag (HUNT) from study wave 1 to 4 in people with and without a dementia diagnosis at wave 4 (HUNT4). This is a retrospective cohort study of participants aged ≥ 70 years in HUNT4, where 9,720 participants were assessed for dementia. In the HUNT study all residents aged ≥ 20 years have been invited to four surveys: HUNT1 1984–86, HUNT2 1995–97, HUNT3 2006–08 and HUNT4 2017–19. The study sample was aged 70–102 years (mean 77.6, SD 6.0) at HUNT4, 54% were women and 15.5% had dementia, 8.8% had Alzheimer’s disease (AD), 1.6% had vascular dementia (VaD) and 5.1% had other types of dementia. Compared to those without dementia at HUNT4, those with dementia at HUNT4 had higher SBP at HUNT1 and HUNT2, but lower SBP at HUNT4. These differences at HUNT1 and 2 were especially pronounced among women. Results did not differ across birth cohorts. For dementia subtypes at HUNT4, the VaD group had a higher SBP than the AD group at HUNT2 and 3. Age trajectories in SBP showed that the dementia group experienced a steady increase in SBP until 65 years of age and a decrease from 70 to 90 years. SBP in the no- dementia group increased until 80 years before it leveled off from 80 to 90 years. The present study confirms findings of higher midlife SBP and lower late-life SBP in people with dementia. This pattern may have several explanations and it highlights the need for close monitoring of BP treatment in older adults, with frequent reappraisal of treatment needs.
Collapse
Affiliation(s)
- Geir Selbaek
- Norwegian National Centre for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Geir Selbaek,
| | - Josephine Stuebs
- Norwegian National Centre for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Engedal
- Norwegian National Centre for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Knut Hestad
- Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
- Department of Health and Nursing Science, Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
| | - Cathrine Selnes Trevino
- Norwegian National Centre for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Håvard Skjellegrind
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Yehani Wedatilake
- Norwegian National Centre for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
- The Research Centre for Age-Related Functional Decline and Disease, Innlandet Hospital Trust, Ottestad, Norway
| | - Bjørn Heine Strand
- Norwegian National Centre for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physical Health and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
33
|
Wang X, Wang Y, Liu H, Zhu X, Hao X, Zhu Y, Xu B, Zhang S, Jia X, Weng L, Liao X, Zhou Y, Tang B, Zhao R, Jiao B, Shen L. Macular Microvascular Density as a Diagnostic Biomarker for Alzheimer’s Disease. J Alzheimers Dis 2022; 90:139-149. [DOI: 10.3233/jad-220482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Some previous studies showed abnormal pathological and vascular changes in the retina of patients with Alzheimer’s disease (AD). However, whether retinal microvascular density is a diagnostic indicator for AD remains unclear. Objective: This study evaluated the macular vessel density (m-VD) in the superficial capillary plexus and fovea avascular zone (FAZ) area in AD, explored their correlations with clinical parameters, and finally confirmed an optimal machine learning model for AD diagnosis. Methods: 77 patients with AD and 145 healthy controls (HCs) were enrolled. The m-VD and the FAZ area were measured using optical coherence tomography angiography (OCTA) in all participants. Additionally, AD underwent neuropsychological assessment, brain magnetic resonance imaging scan, cerebrospinal fluid (CSF) biomarker detection, and APOE ɛ4 genotyping. Finally, the performance of machine learning algorithms based on the OCTA measurements was evaluated by Python programming language. Results: The m-VD was noticeably decreased in AD compared with HCs. Moreover, m-VD in the fovea, superior inner, inferior inner, nasal inner subfields, and the whole inner ring declined significantly in mild AD, while it was more serious in moderate/severe AD. However, no significant difference in the FAZ was noted between AD and HCs. Furthermore, we found that m-VD exhibited a significant correlation with cognitive function, medial temporal atrophy and Fazekas scores, and APOE ɛ4 genotypes. No significant correlations were observed between m-VD and CSF biomarkers. Furthermore, results revealed the Adaptive boosting algorithm exhibited the best diagnostic performance for AD. Conclusion: Macular vascular density could serve as a diagnostic biomarker for AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Yaqin Wang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Xiangyu Zhu
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Bei Xu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Sizhe Zhang
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Xiaoliang Jia
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
| | - Rongchang Zhao
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
34
|
Nordestgaard LT, Christoffersen M, Frikke-Schmidt R. Shared Risk Factors between Dementia and Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2022; 23:9777. [PMID: 36077172 PMCID: PMC9456552 DOI: 10.3390/ijms23179777] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, and the prodromal phases of Alzheimer's disease can last for decades. Vascular dementia is the second most common form of dementia and is distinguished from Alzheimer's disease by evidence of previous stroke or hemorrhage and current cerebrovascular disease. A compiled group of vascular-related dementias (vascular dementia and unspecified dementia) is often referred to as non-Alzheimer dementia. Recent evidence indicates that preventing dementia by lifestyle interventions early in life with a focus on reducing cardiovascular risk factors is a promising strategy for reducing future risk. Approximately 40% of dementia cases is estimated to be preventable by targeting modifiable, primarily cardiovascular risk factors. The aim of this review is to describe the association between risk factors for atherosclerotic cardiovascular disease and the risk of Alzheimer's disease and non-Alzheimer dementia by providing an overview of the current evidence and to shed light on possible shared pathogenic pathways between dementia and cardiovascular disease. The included risk factors are body mass index (BMI); plasma triglyceride-, high-density lipoprotein (HDL) cholesterol-, low-density lipoprotein (LDL) cholesterol-, and total cholesterol concentrations; hypertension; diabetes; non-alcoholic fatty liver disease (NAFLD); physical inactivity; smoking; diet; the gut microbiome; and genetics. Furthermore, we aim to disentangle the difference between associations of risk factors in midlife as compared with in late life.
Collapse
Affiliation(s)
- Liv Tybjærg Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Mette Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
35
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
36
|
Mason SA, Al Saikhan L, Jones S, James SN, Murray-Smith H, Rapala A, Williams S, Sudre C, Wong B, Richards M, Fox NC, Hardy R, Schott JM, Chaturvedi N, Hughes AD. Association between carotid atherosclerosis and brain activation patterns during the Stroop task in older adults: An fNIRS investigation. Neuroimage 2022; 257:119302. [PMID: 35595200 PMCID: PMC10466022 DOI: 10.1016/j.neuroimage.2022.119302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
There is an increasing body of evidence suggesting that vascular disease could contribute to cognitive decline and overt dementia. Of particular interest is atherosclerosis, as it is not only associated with dementia, but could be a potential mechanism through which cardiovascular disease directly impacts brain health. In this work, we evaluated the differences in functional near infrared spectroscopy (fNIRS)-based measures of brain activation, task performance, and the change in central hemodynamics (mean arterial pressure (MAP) and heart rate (HR)) during a Stroop color-word task in individuals with atherosclerosis, defined as bilateral carotid plaques (n = 33) and healthy age-matched controls (n = 33). In the healthy control group, the left prefrontal cortex (LPFC) was the only region showing evidence of activation when comparing the incongruous with the nominal Stroop test. A smaller extent of brain activation was observed in the Plaque group compared with the healthy controls (1) globally, as measured by oxygenated hemoglobin (p = 0.036) and (2) in the LPFC (p = 0.02) and left sensorimotor cortices (LMC)(p = 0.008) as measured by deoxygenated hemoglobin. There were no significant differences in HR, MAP, or task performance (both in terms of the time required to complete the task and number of errors made) between Plaque and control groups. These results suggest that carotid atherosclerosis is associated with altered functional brain activation patterns despite no evidence of impaired performance of the Stroop task or central hemodynamic changes.
Collapse
Affiliation(s)
- Sarah A Mason
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom.
| | - Lamia Al Saikhan
- Department of Cardiac Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, 2835 King Faisal Street, Damman, Kingdom of Saudi Arabia
| | - Siana Jones
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom; Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Heidi Murray-Smith
- Centre for Medical Image Computing, Department of Computer Science, University College London, London UK
| | - Alicja Rapala
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Suzanne Williams
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Carole Sudre
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom; Centre for Medical Image Computing, Department of Computer Science, University College London, London UK; School of Biomedical Engineering, King's College, London UK
| | - Brian Wong
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Nick C Fox
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Jonathan M Schott
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom; Centre for Medical Image Computing, Department of Computer Science, University College London, London UK
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Alun D Hughes
- MRC Unit for Lifelong Health and Ageing at University College London, Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom.
| |
Collapse
|
37
|
Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 2022; 43:481-496. [PMID: 35503338 PMCID: PMC9113964 DOI: 10.24272/j.issn.2095-8137.2021.479] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Adult neurogenesis is the creation of new neurons which integrate into the existing neural circuit of the adult brain. Recent evidence suggests that adult hippocampal neurogenesis (AHN) persists throughout life in mammals, including humans. These newborn neurons have been implicated to have a crucial role in brain functions such as learning and memory. Importantly, studies have also found that hippocampal neurogenesis is impaired in neurodegenerative and neuropsychiatric diseases. Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people. Cognitive dysfunction is a common symptom of AD patients and progressive memory loss has been attributed to the degeneration of the hippocampus. Therefore, there has been growing interest in identifying how hippocampal neurogenesis is affected in AD. However, the link between cognitive decline and changes in hippocampal neurogenesis in AD is poorly understood. In this review, we summarized the recent literature on AHN and its impairments in AD.
Collapse
Affiliation(s)
- Thomas A Kim
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at SUNY, Stony Brook, Stony Brook, NY 11794, USA
| | - Michelle D Syty
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Kaitlyn Wu
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA. E-mail:
| |
Collapse
|
38
|
Scheel N, Tarumi T, Tomoto T, Cullum CM, Zhang R, Zhu DC. Resting-state functional MRI signal fluctuation amplitudes are correlated with brain amyloid- β deposition in patients with mild cognitive impairment. J Cereb Blood Flow Metab 2022; 42:876-890. [PMID: 34861133 PMCID: PMC9254039 DOI: 10.1177/0271678x211064846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mounting evidence suggests that amyloid-β (Aβ) and vascular etiologies are intertwined in the pathogenesis of Alzheimer's disease (AD). Blood-oxygen-level-dependent (BOLD) signals, measured by resting-state functional MRI (rs-fMRI), are associated with neuronal activity and cerebrovascular hemodynamics. Nevertheless, it is unclear if BOLD fluctuations are associated with Aβ deposition in individuals at high risk of AD. Thirty-three patients with amnestic mild cognitive impairment underwent rs-fMRI and AV45 PET. The AV45 standardized uptake value ratio (AV45-SUVR) was calculated using cerebral white matter as reference, to assess Aβ deposition. The whole-brain normalized amplitudes of low-frequency fluctuations (sALFF) of local BOLD signals were calculated in the frequency band of 0.01-0.08 Hz. Stepwise increasing physiological/vascular signal regressions on the rs-fMRI data examined whether sALFF-AV45 correlations were driven by vascular hemodynamics, neuronal activities, or both. We found that sALFF and AV45-SUVR were negatively correlated in regions of default-mode and visual networks (precuneus, angular, lingual and fusiform gyri). Regions with higher sALFF had less Aβ accumulation. Correlated cluster sizes in MNI space (r ≈ -0.47) were reduced from 3018 mm3 to 1072 mm3 with stronger cardiovascular regression. These preliminary findings imply that local brain blood fluctuations due to vascular hemodynamics or neuronal activity can affect Aβ homeostasis.
Collapse
Affiliation(s)
- Norman Scheel
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI, USA
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
39
|
Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, Khoo CS, Kumar J. Alzheimer's Disease: An Update and Insights Into Pathophysiology. Front Aging Neurosci 2022; 14:742408. [PMID: 35431894 PMCID: PMC9006951 DOI: 10.3389/fnagi.2022.742408] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder associated with slow, progressive loss of brain functions mostly in older people. The disease processes start years before the symptoms are manifested at which point most therapies may not be as effective. In the hippocampus, the key proteins involved in the JAK2/STAT3 signaling pathway, such as p-JAK2-Tyr1007 and p-STAT3-Tyr705 were found to be elevated in various models of AD. In addition to neurons, glial cells such as astrocytes also play a crucial role in the progression of AD. Without having a significant effect on tau and amyloid pathologies, the JAK2/STAT3 pathway in reactive astrocytes exhibits a behavioral impact in the experimental models of AD. Cholinergic atrophy in AD has been traced to a trophic failure in the NGF metabolic pathway, which is essential for the survival and maintenance of basal forebrain cholinergic neurons (BFCN). In AD, there is an alteration in the conversion of the proNGF to mature NGF (mNGF), in addition to an increase in degradation of the biologically active mNGF. Thus, the application of exogenous mNGF in experimental studies was shown to improve the recovery of atrophic BFCN. Furthermore, it is now coming to light that the FGF7/FGFR2/PI3K/Akt signaling pathway mediated by microRNA-107 is also involved in AD pathogenesis. Vascular dysfunction has long been associated with cognitive decline and increased risk of AD. Vascular risk factors are associated with higher tau and cerebral beta-amyloid (Aβ) burden, while synergistically acting with Aβ to induce cognitive decline. The apolipoprotein E4 polymorphism is not just one of the vascular risk factors, but also the most prevalent genetic risk factor of AD. More recently, the research focus on AD shifted toward metabolisms of various neurotransmitters, major and minor nutrients, thus giving rise to metabolomics, the most important "omics" tool for the diagnosis and prognosis of neurodegenerative diseases based on an individual's metabolome. This review will therefore proffer a better understanding of novel signaling pathways associated with neural and glial mechanisms involved in AD, elaborate potential links between vascular dysfunction and AD, and recent developments in "omics"-based biomarkers in AD.
Collapse
Affiliation(s)
- Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ching Soong Khoo
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Hardy-Sosa A, León-Arcia K, Llibre-Guerra JJ, Berlanga-Acosta J, Baez SDLC, Guillen-Nieto G, Valdes-Sosa PA. Diagnostic Accuracy of Blood-Based Biomarker Panels: A Systematic Review. Front Aging Neurosci 2022; 14:683689. [PMID: 35360215 PMCID: PMC8963375 DOI: 10.3389/fnagi.2022.683689] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Background Because of high prevalence of Alzheimer's disease (AD) in low- and middle-income countries (LMICs), there is an urgent need for inexpensive and minimally invasive diagnostic tests to detect biomarkers in the earliest and asymptomatic stages of the disease. Blood-based biomarkers are predicted to have the most impact for use as a screening tool and predict the onset of AD, especially in LMICs. Furthermore, it has been suggested that panels of markers may perform better than single protein candidates. Methods Medline/Pubmed was searched to identify current relevant studies published from January 2016 to December 2020. We included all full-text articles examining blood-based biomarkers as a set of protein markers or panels to aid in AD's early diagnosis, prognosis, and characterization. Results Seventy-six articles met the inclusion criteria for systematic review. Majority of the studies reported plasma and serum as the main source for biomarker determination in blood. Protein-based biomarker panels were reported to aid in AD diagnosis and prognosis with better accuracy than individual biomarkers. Conventional (amyloid-beta and tau) and neuroinflammatory biomarkers, such as amyloid beta-42, amyloid beta-40, total tau, phosphorylated tau-181, and other tau isoforms, were the most represented. We found the combination of amyloid beta-42/amyloid beta-40 ratio and APOEε4 status to be most represented with high accuracy for predicting amyloid beta-positron emission tomography status. Conclusion Assessment of Alzheimer's disease biomarkers in blood as a non-invasive and cost-effective alternative will potentially contribute to early diagnosis and improvement of therapeutic interventions. Given the heterogeneous nature of AD, combination of markers seems to perform better in the diagnosis and prognosis of the disease than individual biomarkers.
Collapse
Affiliation(s)
- Anette Hardy-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | | | | | - Saiyet de la C. Baez
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Neurociencias de Cuba, La Habana, Cuba
| |
Collapse
|
41
|
Xiao Z, Ren X, Zhao Q, Wu W, Liang X, Tang J, Zhang M, Xue Y, Luo J, Ding D, Fu J. Relation of middle cerebral artery flow velocity and risk of cognitive decline: A prospective community-based study. J Clin Neurosci 2022; 97:56-61. [PMID: 35033782 DOI: 10.1016/j.jocn.2021.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/15/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Hemodynamic parameters measured by the Transcranial Doppler Ultrasound (TCD) are related to cognitive impairment in many cross-sectional studies, but the longitudinal evidence is scarce. In this study, we aim to verify the association between flow velocity of Middle Cerebral Artery (MCA) and the longitudinal cognitive decline in community dwelling older adults. MATERIALS AND METHODS Participants were administered TCD examination at the baseline. The Peak Systolic Velocity (PSV), Mean Flow Velocity (MFV), and Pulsatility Index (PI) of MCA segments on left middle (LmMCA), left proximal (LpMCA), right middle (RmMCA), and right proximal (RpMCA) were obtained. Mini-mental state examination (MMSE) were conducted at both baseline and follow-up. RESULTS One hundred and thirteen participants without dementia were followed up for 6.3 years in average. The mean annual rate of decline in the MMSE score was 0.15 (min to max: -1.0 to 1.2). LpMCA PSV (β = -0.0034, r = -0.231, P = 0.022) and LpMCA MFV (β = -0.0049, r = -0.217, P = 0.031) were inversely associated with annual rate of decline in the MMSE score after adjusting for age, gender, education year, APOE ε4, obesity, hypertension, diabetes mellitus, stroke, and coronary heart disease. CONCLUSIONS Blood flow velocity of left proximal MCA was inversely related to global cognitive decline. Cerebral blood flow velocity may impact the cognitive function.
Collapse
Affiliation(s)
- Zhenxu Xiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xue Ren
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Miaoyi Zhang
- Department of Neurology, North Huashan Hospital, Fudan University, No.108 Lu Xiang Road, Shanghai, China
| | - Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China; Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Ding Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Badji A, Pereira JB, Shams S, Skoog J, Marseglia A, Poulakis K, Rydén L, Blennow K, Zetterberg H, Kern S, Zettergren A, Wahlund LO, Girouard H, Skoog I, Westman E. Cerebrospinal Fluid Biomarkers, Brain Structural and Cognitive Performances Between Normotensive and Hypertensive Controlled, Uncontrolled and Untreated 70-Year-Old Adults. Front Aging Neurosci 2022; 13:777475. [PMID: 35095467 PMCID: PMC8791781 DOI: 10.3389/fnagi.2021.777475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Hypertension is an important risk factor for Alzheimer's disease (AD). The pathophysiological mechanisms underlying the relationship between AD and hypertension are not fully understood, but they most likely involve microvascular dysfunction and cerebrovascular pathology. Although previous studies have assessed the impact of hypertension on different markers of brain integrity, no study has yet provided a comprehensive comparison of cerebrospinal fluid (CSF) biomarkers and structural brain differences between normotensive and hypertensive groups in a single and large cohort of older adults in relationship to cognitive performances. Objective: The aim of the present work was to investigate the differences in cognitive performances, CSF biomarkers and magnetic resonance imaging (MRI) of brain structure between normotensive, controlled hypertensive, uncontrolled hypertensive, and untreated hypertensive older adults from the Gothenburg H70 Birth Cohort Studies. Methods: As an indicator of vascular brain pathology, we measured white matter hyperintensities (WMHs), lacunes, cerebral microbleeds, enlarged perivascular space (epvs), and fractional anisotropy (FA). To assess markers of AD pathology/neurodegeneration, we measured hippocampal volume, temporal cortical thickness on MRI, and amyloid-β42, phosphorylated tau, and neurofilament light protein (NfL) in cerebrospinal fluid. Various neuropsychological tests were used to assess performances in memory, attention/processing speed, executive function, verbal fluency, and visuospatial abilities. Results: We found more white matter pathology in hypertensive compared to normotensive participants, with the highest vascular burden in uncontrolled participants (e.g., lower FA, more WMHs, and epvs). No significant difference was found in any MRI or CSF markers of AD pathology/neurodegeneration when comparing normotensive and hypertensive participants, nor among hypertensive groups. No significant difference was found in most cognitive functions between groups. Conclusion: Our results suggest that good blood pressure control may help prevent cerebrovascular pathology. In addition, hypertension may contribute to cognitive decline through its effect on cerebrovascular pathology rather than AD-related pathology. These findings suggest that hypertension is associated with MRI markers of vascular pathology in the absence of a significant decline in cognitive functions.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Joana B. Pereira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sara Shams
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Stanford Medicine, Stanford, CA, United States
| | - Johan Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Marseglia
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Poulakis
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lina Rydén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Groupe de Recherche sur le Systéme Nerveux Central (GRSNC), Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Correia SC, Moreira PI. Oxygen Sensing and Signaling in Alzheimer's Disease: A Breathtaking Story! Cell Mol Neurobiol 2022; 42:3-21. [PMID: 34510330 PMCID: PMC11441261 DOI: 10.1007/s10571-021-01148-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Oxygen sensing and homeostasis is indispensable for the maintenance of brain structural and functional integrity. Under low-oxygen tension, the non-diseased brain has the ability to cope with hypoxia by triggering a homeostatic response governed by the highly conserved hypoxia-inducible family (HIF) of transcription factors. With the advent of advanced neuroimaging tools, it is now recognized that cerebral hypoperfusion, and consequently hypoxia, is a consistent feature along the Alzheimer's disease (AD) continuum. Of note, the reduction in cerebral blood flow and tissue oxygenation detected during the prodromal phases of AD, drastically aggravates as disease progresses. Within this scenario a fundamental question arises: How HIF-driven homeostatic brain response to hypoxia "behaves" during the AD continuum? In this sense, the present review is aimed to critically discuss and summarize the current knowledge regarding the involvement of hypoxia and HIF signaling in the onset and progression of AD pathology. Importantly, the promises and challenges of non-pharmacological and pharmacological strategies aimed to target hypoxia will be discussed as a new "hope" to prevent and/or postpone the neurodegenerative events that occur in the AD brain.
Collapse
Affiliation(s)
- Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
44
|
Cerebral perfusion and the risk of cognitive decline and dementia in community dwelling older people. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100125. [PMID: 36324415 PMCID: PMC9616444 DOI: 10.1016/j.cccb.2022.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 02/19/2022] [Indexed: 11/23/2022]
Abstract
Cerebral blood flow (CBF) and spatial coefficient of variation of the arterial transit time (ATT) are less sensitive markers of cognitive impairment and clinical dementia. Greater white matter hyperintensity volume (WMHV) was consistently associated with cognitive impairment and dementia, rendering it as a more sensitive longitudinal marker.
Background The arterial spin labeling-spatial coefficient of variation (sCoV) is a new vascular magnetic resonance imaging (MRI) parameter that could be a more sensitive marker for dementia-associated cerebral microvascular disease than the commonly used MRI markers cerebral blood flow (CBF) and white matter hyperintensity volume (WMHV). Methods 195 community-dwelling older people with hypertension were invited to undergo MRI twice, with a three-year interval. Cognition was evaluated every two years for 6-8 years using the mini-mental state examination (MMSE). We assessed relations of sCoV, CBF and WMHV with cognitive decline during follow-up. We also registered dementia diagnoses, up to 9 years after the first scan. In an additional analysis, we compared these MRI parameters between participants that did and did not develop dementia. Results 136/195 completed the second scan. sCoV and CBF were not associated with MMSE changes during 6-8 years of follow-up. Higher WMHV was associated with declining MMSE scores (-0.02 points/year/ml, 95%CI=-0.03 to -0.00). ScOv and CBF did not differ between participants who did (n=15) and did not (n=180) develop dementia, whereas higher WMHV was reported in participants who developed dementia after the first MRI (13.3 vs 6.1mL, p<0.001). There were no associations between longitudinal change in any of the MRI parameters and cognitive decline or subsequent dementia. Conclusion Global sCoV and CBF were less sensitive longitudinal markers of cognitive decline and dementia compared to WMHV in community-dwelling older people with hypertension. Larger longitudinal MRI perfusion studies are needed to identify possible (regional) patterns of cerebral perfusion preceding cognitive decline and dementia diagnosis.
Collapse
|
45
|
Peng SY, Wu IW, Sun CC, Lee CC, Liu CF, Lin YZ, Yeung L. Investigation of Possible Correlation Between Retinal Neurovascular Biomarkers and Early Cognitive Impairment in Patients With Chronic Kidney Disease. Transl Vis Sci Technol 2021; 10:9. [PMID: 34902002 PMCID: PMC8684295 DOI: 10.1167/tvst.10.14.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose To investigate the association between retinal neurovascular biomarkers and early cognitive impairment among patients with chronic kidney disease (CKD). Methods Patients with CKD stage ≥3 were evaluated using the standardized Mini-Mental State Examination (MMSE). Patients were classified as having a low (<24), middle (24 to 27), and high (>27) MMSE level. Retinal nerve fiber layer thickness, ganglion cell complex (GCC) thickness, GCC global loss volume, and GCC focal loss volume were measured using optical coherence tomography (OCT). Superficial vascular plexus vessel density, deep vascular plexus vessel density (DVP-VD), and size of the foveal avascular zone were obtained by OCT angiography. Results The study enrolled 177 patients with a mean ± SD age of 64.7 ± 6.6 years. The mean ± SD MMSE score was 27.25 ± 2.30. Thirteen, 65, and 99 patients were classified as having a low, middle, and high MMSE level, respectively. The patients with a high MMSE level were younger, had more years of education, had less severe CKD, and had higher DVP-VD than patients with a low MMSE level. The multivariable regression revealed that age (coefficient, 0.294; 95% confidence interval [CI], 0.195–0.393; P = 0.041), years of education (coefficient, 0.294; 95% CI, 0.195–0.393; P < 0.001), estimated glomerular filtration rate (coefficient, 0.019; 95% CI, 0.004–0.035; P = 0.016), and DVP-VD (coefficient, 0.109; 95% CI, 0.007–0.212; P = 0.037) were independent factors associated with MMSE score. Conclusions Retinal DVP-VD was associated with early cognitive impairment among patients with CKD. Translational Relevance DVP-VD measured by OCT angiography may facilitate early detection of cognitive impairment.
Collapse
Affiliation(s)
- Shu-Yen Peng
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Ophthalmology, Jen-Ai Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - I-Wen Wu
- Department of Nephrology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chi-Chin Sun
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Chan Lee
- Department of Nephrology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Fu Liu
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Zi Lin
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ling Yeung
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
46
|
Qiao Y, Sun Y, Guo J, Chen Y, Hou W, Zhang J, Peng D. Disrupted White Matter Integrity and Cognitive Functions in Amyloid-β Positive Alzheimer's Disease with Concomitant Lobar Cerebral Microbleeds. J Alzheimers Dis 2021; 85:369-380. [PMID: 34842192 DOI: 10.3233/jad-215251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lobar cerebral microbleeds (CMBs), which can impair white matter (WM), are often concomitant with definite Alzheimer's disease (AD). OBJECTIVE To explore the features of cognitive impairments and WM disruptions due to lobar CMBs in patients with AD. METHODS There were 310 participants who underwent Florbetapir F18 (AV45) amyloid PET and susceptibility-weighted imaging. Participants with cognitive impairment and amyloid-β positive (ADCI) were included into three groups: ADCI without CMBs, with strictly lobar CMBs (SL-CMBs), and with mixed CMBs (M-CMBs). Tract-based spatial statistics were performed to detect the group differences in WM integrity. RESULTS There were 82 patients and 29 healthy controls finally included. A decreasing tendency in memory and executive performance can be found among HCs > no CMBs (n = 16) >SL-CMBs (n = 41) >M-CMBs (n = 25) group. Compared to no CMBs, M-CMBs group had significantly decreased fractional anisotropy in left anterior thalamic radiation (ATR), forceps major, forceps minor and inferior longitudinal fasciculus, bilateral inferior fronto-occipital fasciculus (IFOF), and superior longitudinal fasciculus. M-CMBs group also had lower fractional anisotropy in left ATR, IFOF, uncinate fasciculus, and forceps minor compared with SL-CMBs. Furthermore, analysis of Pearson correlation indicated damages in discrepant WMs were positively associated with impairment of memory, executive function, and attention. CONCLUSION This study showed lobar CMBs had intensively aggravated cognitive impairments associated with extensive WM damages in definite AD. These findings highlight that lobar CMBs play an important role in AD progression and need to be taken into consideration for the early detection of AD.
Collapse
Affiliation(s)
- Yanan Qiao
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yu Sun
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Wenjie Hou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
47
|
Beydoun MA, Noren Hooten N, Maldonado AI, Beydoun HA, Weiss J, Evans MK, Zonderman AB. BMI and Allostatic Load Are Directly Associated with Longitudinal Increase in Plasma Neurofilament Light among Urban Middle-Aged Adults. J Nutr 2021; 152:535-549. [PMID: 34718678 PMCID: PMC8826916 DOI: 10.1093/jn/nxab381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Plasma neurofilament light chain (NfL) is a novel biomarker for age-related neurodegenerative disease. We tested whether NfL may be linked to cardiometabolic risk factors, including BMI, the allostatic load (AL) total score (ALtotal), and related AL continuous components (ALcomp). We also tested whether these relations may differ by sex or by race. METHODS We used data from the HANDLS (Healthy Aging in Neighborhoods of Diversity across the Life Span) study [n = 608, age at visit 1 (v1: 2004-2009): 30-66 y, 42% male, 58% African American] to investigate associations of initial cardiometabolic risk factors and time-dependent plasma NfL concentrations over 3 visits (2004-2017; mean ± SD follow-up time: 7.72 ± 1.28 y), with outcomes being NfLv1 and annualized change in NfL (δNfL). We used mixed-effects linear regression and structural equations modeling (SM). RESULTS BMI was associated with lower initial (γ01 = -0.014 ± 0.002, P < 0.001) but faster increase in plasma NfL over time (γ11 = +0.0012 ± 0.0003, P < 0.001), a pattern replicated for ALtotal. High-sensitivity C-reactive protein (hsCRP), serum total cholesterol, and resting heart rate at v1 were linked with faster plasma NfL increase over time, overall, while being uncorrelated with NfLv1 (e.g., hsCRP × Time, full model: γ11 = +0.004 ± 0.002, P = 0.015). In SM analyses, BMI's association with δNfL was significantly mediated through ALtotal among women [total effect (TE) = +0.0014 ± 0.00038, P < 0.001; indirect effect = +0.00042 ± 0.00019, P = 0.025; mediation proportion = 30%], with only a direct effect (DE) detected among African American adults (TE = +0.0011 ± 0.0004, P = 0.015; DE = +0.0010 ± 0.00048, P = 0.034). The positive associations between ALtotal/BMI and δNfL were mediated through increased glycated hemoglobin (HbA1c) concentrations, overall. CONCLUSIONS Cardiometabolic risk factors, particularly elevated HbA1c, should be screened and targeted for neurodegenerative disease, pending comparable longitudinal studies. Other studies examining the clinical utility of plasma NfL as a neurodegeneration marker should account for confounding effects of BMI and AL.
Collapse
Affiliation(s)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| | - Ana I Maldonado
- Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Jordan Weiss
- Department of Demography, University of California, Berkeley, Berkeley, CA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
48
|
Chen Z, Schwulst SJ, Mentis AFA. APOE4-mediated Alzheimer disease and "Vascular"-"Meningeal Lymphatic" components: towards a novel therapeutic era? Mol Psychiatry 2021; 26:5472-5474. [PMID: 34376823 PMCID: PMC8354095 DOI: 10.1038/s41380-021-01242-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 01/21/2023]
Abstract
A three-dimensional graphic design representation of the potential role of meningeal vessels in Alzheimer disease. Although there are major differences between APOE4(+) and APOE4(−) Alzheimer disease cases (described in detail in the Comment article by Mentis and colleagues), the figure depicts the clearance of macromolecules and other solutes from meningeal lymphatic vessels. Cover image: Ella Maru Studio.
Collapse
Affiliation(s)
- Zhangying Chen
- Division of Trauma and Critical Care, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Steven J Schwulst
- Division of Trauma and Critical Care, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, Athens, Greece.
- UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
49
|
Aguilar-Pineda JA, Vera-Lopez KJ, Shrivastava P, Chávez-Fumagalli MA, Nieto-Montesinos R, Alvarez-Fernandez KL, Goyzueta Mamani LD, Davila Del-Carpio G, Gomez-Valdez B, Miller CL, Malhotra R, Lindsay ME, Lino Cardenas CL. Vascular smooth muscle cell dysfunction contribute to neuroinflammation and Tau hyperphosphorylation in Alzheimer disease. iScience 2021; 24:102993. [PMID: 34505007 PMCID: PMC8417400 DOI: 10.1016/j.isci.2021.102993] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/17/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the emerging evidence implying early vascular contributions to neurodegenerative syndromes, the role of vascular smooth muscle cells (VSMCs) in the pathogenesis of Alzheimer disease (AD) is still not well understood. Herein, we show that VSMCs in brains of patients with AD and animal models of the disease are deficient in multiple VSMC contractile markers which correlated with Tau accumulation in brain arterioles. Ex vivo and in vitro experiments demonstrated that VSMCs undergo dramatic phenotypic transitions under AD-like conditions, adopting pro-inflammatory phenotypes. Notably, these changes coincided with Tau hyperphosphorylation at residues Y18, T205, and S262. We also observed that VSMC dysfunction occurred in an age-dependent manner and that expression of Sm22α protein was inversely correlated with CD68 and Tau expression in brain arterioles of the 3xTg-AD and 5xFAD mice. Together, these findings further support the contribution of dysfunctional VSMCs in AD pathogenesis and nominate VSMCs as a potential therapeutic target in AD. Loss of VSMC contractile phenotypes correlates with Tau accumulation in brain arterioles VSMC dysfunction promotes the hyperphosphorylation of Tau protein at multiple residues VSMC dysfunction occurs in an age-dependent manner in brain arterioles of patients with AD Vascular smooth muscle cell is a promising therapeutic target in AD
Collapse
Affiliation(s)
- Jorge A Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Karin J Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Pallavi Shrivastava
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Miguel A Chávez-Fumagalli
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Rita Nieto-Montesinos
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Karla L Alvarez-Fernandez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Luis D Goyzueta Mamani
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Gonzalo Davila Del-Carpio
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Badhin Gomez-Valdez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mark E Lindsay
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA.,Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| |
Collapse
|
50
|
Esteban de Antonio E, Pérez-Cordón A, Gil S, Orellana A, Cano A, Alegret M, Espinosa A, Alarcón-Martín E, Valero S, Martínez J, de Rojas I, Sotolongo-Grau Ó, Martín E, Vivas A, Gomez-Chiari M, Tejero MÁ, Bernuz M, Tárraga L, Ruiz A, Marquié M, Boada M. BIOFACE: A Prospective Study of Risk Factors, Cognition, and Biomarkers in a Cohort of Individuals with Early-Onset Mild Cognitive Impairment. Study Rationale and Research Protocols. J Alzheimers Dis 2021; 83:1233-1249. [PMID: 34420953 PMCID: PMC8543256 DOI: 10.3233/jad-210254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) diagnosis is based on cerebrospinal fluid (CSF) or neuroimaging biomarkers. Currently, non-invasive and inexpensive blood-based biomarkers are being investigated, such as neuronal-derived plasma exosomes (NPEs). Neuroinflammation and early vascular changes have been described in AD pathogenesis and can be traced in plasma and NPEs. However, they have not been studied in early onset MCI (EOMCI). Objective: To describe the rationale, design, and baseline characteristics of the participants from the BIOFACE cohort, a two-year observational study on EOMCI conducted at Fundació ACE. The study goal is to characterize the different phenotypes from a clinical, neuropsychological, and biomarker point of view and to investigate the CSF and plasma proteomics as well as the role of NPEs as early biomarkers of AD. Methods: Participants underwent extended neurological and neuropsychological batteries, multimodal biomarkers including brain MRI, blood, saliva, CSF, anthropometric, and neuro-ophthalmological examinations. Results: Ninety-seven patients with EOMCI were recruited. 59.8%were women. Mean age at symptom onset was 57 years; mean MMSE was 28. First degree and presenile family history of dementia was present in 60.8%and 15.5%, respectively. Depressive and anxiety disorders along with vascular risk factors were the most frequent comorbidities. 29%of participants were APOE ɛ4 carriers, and 67%showed a CSF normal ATN profile. Conclusion: BIOFACE is a two-year study of clinical, cognition, and biomarkers that will shed light on the physiopathology and the potential utility of plasma and NPEs as non-invasive early diagnostic and prognostic biomarkers in people younger than 65 years.
Collapse
Affiliation(s)
- Ester Esteban de Antonio
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Silvia Gil
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Amanda Cano
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Espinosa
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Martínez
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar Sotolongo-Grau
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elvira Martín
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Assumpta Vivas
- Departament de Diagnòstic per la Imatge, Clínica Corachan, Barcelona, Spain
| | - Marta Gomez-Chiari
- Departament de Diagnòstic per la Imatge, Clínica Corachan, Barcelona, Spain
| | | | - Mireia Bernuz
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lluis Tárraga
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|