1
|
Gupta A, Ghosh A, Sharma N, Gorain B. Advancements in Stem Cell Research for Effective Therapies Against Alzheimer's Disease: Current Investigation and Future Insight. Mol Neurobiol 2025:10.1007/s12035-025-05003-3. [PMID: 40327307 DOI: 10.1007/s12035-025-05003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia in the elderly, affecting approximately 50 million individuals globally with significant impose in health and financial burdens. Despite extensive research, no current treatment effectively halts the progression of AD, primarily due to its complex pathophysiology of the disease and the limitations of available therapeutic approaches. In this context, stem cell transplantation has emerged as a promising treatment strategy, harnessing the regenerative capabilities of various stem cell types, including neural stem cells (NSCs), embryonic stem cells (ESCs), and mesenchymal stem cells (MSCs). This review explores the potential of stem cell-based therapies in AD, emphasizing the necessity for continued innovation to overcome existing challenges and enhance therapeutic efficacy. Briefly, NSCs have shown potential in improving cognitive function and reducing AD pathology through targeted transplantation and neuroprotection; however, challenges such as optimizing transplantation protocols and ensuring effective cell integration persist. Concurrently, ESCs, with their pluripotent nature, present opportunities for modulating AD and generating therapeutic neurons, but ethical concerns and immunogenicity present significant obstacles to clinical application. Moreover, MSCs have demonstrated potential in ameliorating AD-related pathology and promoting neurogenesis, offering a more accessible alternative with fewer ethical constraints. The review concludes that the combinatory approaches of different stem cells may provide synergistic benefits in addressing AD-related pathophysiology, warranting further exploration in future research.
Collapse
Affiliation(s)
- Abhinav Gupta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Kim TY, Kim NH, Chae JA, Oh HK, Yang S, Moon JB, Wi SM, An JH, Yu JM. Evaluation of cognitive and mobility function in geriatric dogs following treatment with stem cell and stem cell extracellular vesicles derived from embryonic stem cells: a pilot study. Front Vet Sci 2025; 12:1549870. [PMID: 40206251 PMCID: PMC11979104 DOI: 10.3389/fvets.2025.1549870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Declining physical or mental health in older dogs can lead to changes in the dog's cognitive and musculoskeletal function. Regrettably, these degenerative changes cannot be remedied. In the present study, geriatric small dogs exhibiting cognitive and behavioral changes were treated with human embryonic stem cell-derived mesenchymal stemcells (ES-MSCs, n = 21) and mesenchymal stem cell-derived extracellular vesicles (ES-MSC-EVs, n = 21). Methods Before and 2 weeks after treatment, the cognitive and mobility status of the dogs were assessed using theCanine Cognitive Dysfunction Rating (CCDR) and the Liverpool Osteoarthritis in Dogs (LOAD) scale. Additionally, safety assessments were conducted through blood tests such as complete blood count and serum chemistry. Results Following an assessment of clinical symptoms and blood tests in both the groups receiving ES-MSC and ES-MSC-EVs treatments, no notable side effects were detected. Moreover, the questionnaire survey revealed that both groups showed alleviation in CCDR and LOAD scores following administration. Discussion These findings suggest that ES-MSC and ES-MSC-EV treatments have the potential to be used as a therapeutic option for improving clinical symptoms of degenerative diseases such as canine cognitive dysfunction and degenerativemusculoskeletal diseases in elderly dogs.
Collapse
Affiliation(s)
- Tae-Yoon Kim
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| | - Nam-Hee Kim
- Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Jin-A Chae
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| | - Hyun-Keun Oh
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| | - Seonghyun Yang
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| | | | - Seon Mi Wi
- Daewoong Pet, Corp., Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Ji Min Yu
- Bio Research and Development Center, Daewoong, Co., Ltd., Yongin, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Chen J, Li Y, Jiao B, Luo S. Disease-modifying therapies for Alzheimer's disease: Clinical trial progress and opportunity. Ageing Res Rev 2025; 103:102595. [PMID: 39581354 DOI: 10.1016/j.arr.2024.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
The U.S. Food and Drug Administration (FDA) recently approved lecanemab and donanemab for the treatment of early symptomatic Alzheimer's disease (AD) after their phase III trials reached endpoints. These two anti-amyloid β monoclonal antibodies represent the latest promise of disease-modifying therapy (DMT) for AD, which undoubtedly reignites new hope for DMTs to combat the staggering financial and human costs of AD. However, in addition to these two successful antibodies, there have been enormous efforts to develop DMTs in various aspects to meet the therapeutic requirement of AD. In this review, we delineate the core principles and methodologies of diverse DMTs, covering the advances in clinical trials of drug candidates that either have been discontinued, completed, or are ongoing, as well as brain stimulation and lifestyle interventions. In addition, by overseeing the fate of various candidate molecules, we hope to provide references and ideas for prospective approaches and promising applications of DTMs for AD, particularly in terms of universality and clinical application economics, to optimize efficacy and maximize AD patient benefits in the future.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Jie Chen
- Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha 410100, PR China
| | - Yanru Li
- Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha 410100, PR China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, PR China; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410000, PR China; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410008, PR China
| | - Shilin Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, PR China; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410000, PR China; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410008, PR China.
| |
Collapse
|
4
|
Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, Mousavi SE, Jamalkhani S, Karamzad N, Shamekh A, Mohammadinasab R, Sullman MJM, Şahin F, Kolahi AA. Alzheimer's disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med (Lausanne) 2024; 11:1474043. [PMID: 39736972 PMCID: PMC11682909 DOI: 10.3389/fmed.2024.1474043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as "Alzheimer's disease," "epidemiology," "risk factors," "symptoms," "diagnosis," "management," "caregiving," "treatment," and "novel therapies." Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Collapse
Affiliation(s)
- Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari Jolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asra Fazlollahi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Golabi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh Asghari
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional, Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ou CM, Xue WW, Liu D, Ma L, Xie HT, Ning K. Stem cell therapy in Alzheimer's disease: current status and perspectives. Front Neurosci 2024; 18:1440334. [PMID: 39640295 PMCID: PMC11618239 DOI: 10.3389/fnins.2024.1440334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
An incurable neurogenerative illness, Alzheimer's disease, is the cause of most global health, medical, and social disasters. The two main symptoms are cognitive impairment and neuronal loss. Current medications that target tau protein tangles and Aβ plaques are not very effective because they only slow the symptoms of AD and do not repair damaged cells. Stem cell-based treatments, however, present an alternative strategy in the treatment of AD. They have the capacity to divide into specialized adult cells, have self-renewal abilities, and multiplication. Stem cells can now be employed as a donor source for cell therapy due to developments in stem cell technology. This review covers preclinical and clinical updates on studies based on targeting the tau protein tangles and Aβ plaque, as well as four types of stem cells employed in AD treatment. The review also outlines the two basic pathologic aspects, tau protein tangles and Aβ plaques, of AD.
Collapse
Affiliation(s)
- Chu-Min Ou
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Wei-Wei Xue
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dong Liu
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Liya Ma
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Hai-Tao Xie
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Ke Ning
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
7
|
Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024; 101:102481. [PMID: 39236855 DOI: 10.1016/j.arr.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.
Collapse
Affiliation(s)
- Pushpa Tryphena Kamatham
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rashi Shukla
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK.
| |
Collapse
|
8
|
Pourhadi M, Zali H, Ghasemi R, Faizi M, Mojab F, Soufi Zomorrod M. Restoring Synaptic Function: How Intranasal Delivery of 3D-Cultured hUSSC Exosomes Improve Learning and Memory Deficits in Alzheimer's Disease. Mol Neurobiol 2024; 61:3724-3741. [PMID: 38010560 DOI: 10.1007/s12035-023-03733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Memory problems are often the first signs of cognitive impairment related to Alzheimer's disease (AD), and stem cells and stem cell-derived exosomes (EXOs) have been studied for their therapeutic potential to improve the disease signs. While many studies have shown the anti-inflammatory and immunomodulatory effects of stem cells and exosomes on improving memory in different AD models, there is still insufficient data to determine how they modulate neural plasticity to enhance spatial memory and learning ability. Therefore, we conducted a study to investigate the effects of exosomes derived from 3D-cultured human Unrestricted Somatic Stem Cells (hUSSCs) on spatial memory and neuroplasticity markers in a sporadic rat model of AD. Using male Wistar rats induced by intracerebral ventricle injection of streptozotocin, we demonstrated that intranasal administration of hUSSC-derived exosomes could decrease Aβ accumulation and improve learning and memory in the Morris water maze test. We also observed an increase in the expression of pre-synaptic and post-synaptic molecules involved in neuronal plasticity, including NMDAR1, integrin β1, synaptophysin, pPKCα, and GAP-43, in the hippocampus. Our findings suggest that intranasal administration of exosomes can ameliorate spatial learning and memory deficits in rats, at least in part, by increasing the expression of neuroplasticity proteins. These results may encourage researchers to further investigate the molecular pathways involved in memory improvement after stem cell and exosome therapy, with the goal of increasing the efficacy and safety of exosome-based treatments for AD.
Collapse
Affiliation(s)
- Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Mojab
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Esmaeili A, Eteghadi A, Landi FS, Yavari SF, Taghipour N. Recent approaches in regenerative medicine in the fight against neurodegenerative disease. Brain Res 2024; 1825:148688. [PMID: 38042394 DOI: 10.1016/j.brainres.2023.148688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Neurodegenerative diseases arise due to slow and gradual loss of structure and/or function of neurons and glial cells and cause different degrees of loss of cognition abilities and sensation. The little success in developing effective treatments imposes a high and regressive economic impact on society, patients and their families. In recent years, regenerative medicine has provided a great opportunity to research new innovative strategies with strong potential to treatleva these diseases. These effects are due to the ability of suitable cells and biomaterials to regenerate damaged nerves with differentiated cells, creating an appropriate environment for recovering or preserving existing healthy neurons and glial cells from destruction and damage. Ultimately, a better understanding and thus a further investigation of stem cell technology, tissue engineering, gene therapy, and exosomes allows progress towards practical and effective treatments for neurodegenerative diseases. Therefore, in this review, advances currently being developed in regenerative medicine using animal models and human clinical trials in neurological disorders are summarized.
Collapse
Affiliation(s)
- Ali Esmaeili
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Eteghadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Saeedi Landi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadnaz Fakhteh Yavari
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Taninokuchi Tomassoni M, Zhou Y, Braccischi L, Modestino F, Fukuda J, Mosconi C. Trans-Arterial Stem Cell Injection (TASI): The Role of Interventional Radiology in Regenerative Medicine. J Clin Med 2024; 13:910. [PMID: 38337604 PMCID: PMC10856532 DOI: 10.3390/jcm13030910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Regenerative medicine is taking a step forward in treating multiple diseases. The possibility of renewing damaged tissues with stem cells has become a topic of interest in recent decades. Still a relatively new research topic, many issues in this discipline are being addressed, from cell culturing to the study of different graft materials, and, moreover, cell delivery. For instance, direct intravenous injection has a big downfall regarding its lack of precision and poorly targeted treatment. Trans-arterial and direct percutaneous infusion to the aimed tissue/organ are both considered ideal for reaching the desired region but require image guidance to be performed safely and precisely. In this context, interventional radiology becomes pivotal for providing different cell delivery possibilities in every case. In this review, we analyze different basic stem cell therapy concepts and the current and future role of interventional radiology with a focus on trans-arterial delivery.
Collapse
Affiliation(s)
- Makoto Taninokuchi Tomassoni
- Department of Radiology, IRRCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (L.B.)
| | - Yinghui Zhou
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Kanagawa, Japan (J.F.)
| | - Lorenzo Braccischi
- Department of Radiology, IRRCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (L.B.)
| | - Francesco Modestino
- Department of Radiology, IRRCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (L.B.)
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Kanagawa, Japan (J.F.)
| | - Cristina Mosconi
- Department of Radiology, IRRCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (L.B.)
| |
Collapse
|
11
|
Jeon SH, Kim H, Sung JH. Hypoxia enhances the hair growth-promoting effects of embryonic stem cell-derived mesenchymal stem cells via NADPH oxidase 4. Biomed Pharmacother 2023; 159:114303. [PMID: 36706635 DOI: 10.1016/j.biopha.2023.114303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Human embryonic stem cell (hES)-derived mesenchymal stem cells (-MSCs) are an unlimited source of MSCs. The hair growth-promoting effects of diverse MSCs have been reported, but not that of hES-MSCs. In the present study, we investigated the hair growth-promoting effects of hES-MSCs and their underlying mechanisms. hES-MSCs or conditioned medium of hES-MSCs exhibited hair-growth effects, which increased the length of mouse vibrissae and human hair follicles. hES-MSCs accelerated the telogen-to-anagen transition in C3H mice and were more effective than adipose-derived stem cells. We further examined whether hypoxia could enhance the hair-growth promoting effects of hES-MSCs. The injection of hES-MSCs or conditioned medium (Hyp-CM) cultured under hypoxia (2% O2) enhanced the telogen-to-anagen transition in C3H mice. Additionally, Hyp-CM increased the length of mouse vibrissae, human hair follicles, and the proliferation of human dermal papilla and outer root sheath cells. Moreover, fibroblast growth factor 7, interleukin 12B, and teratocarcinoma-derived growth factor 1 were upregulated under hypoxia, and the co-treatment with these three proteins increased the hair length and induced telogen-to-anagen transition. Hypoxia increased reactive oxygen species (ROS) production, and ROS scavenging attenuated the secretion of growth factors. NADPH oxidase 4 was primarily expressed in hES-MSCs and generated ROS under hypoxia. Collectively, our results suggest that hES-MSCs exhibit hair-growth effects, which is enhanced by hypoxia.
Collapse
Affiliation(s)
- Seng-Ho Jeon
- Daewoong Pharmaceutical, South Korea; College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| | - Hyunju Kim
- Epi Biotech Co., Ltd. Incheon, South Korea.
| | - Jong-Hyuk Sung
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; Epi Biotech Co., Ltd. Incheon, South Korea.
| |
Collapse
|
12
|
Duan Y, Lyu L, Zhan S. Stem Cell Therapy for Alzheimer's Disease: A Scoping Review for 2017-2022. Biomedicines 2023; 11:120. [PMID: 36672626 PMCID: PMC9855936 DOI: 10.3390/biomedicines11010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) has been a major causal factor for mortality among elders around the world. The treatments for AD, however, are still in the stage of development. Stem cell therapy, compared to drug therapies and many other therapeutic options, has many advantages and is very promising in the future. There are four major types of stem cells used in AD therapy: neural stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. All of them have applications in the treatments, either at the (1) cellular level, in an (2) animal model, or at the (3) clinical level. In general, many more types of stem cells were studied on the cellular level and animal model, than the clinical level. We suggest for future studies to increase research on various types of stem cells and include cross-disciplinary research with other diseases. In the future, there could also be improvements in the timeliness of research and individualization for stem cell therapies for AD.
Collapse
Affiliation(s)
- Yunxiao Duan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Linshuoshuo Lyu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
13
|
Zeng XX, Zeng JB. Systems Medicine as a Strategy to Deal with Alzheimer's Disease. J Alzheimers Dis 2023; 96:1411-1426. [PMID: 37980671 DOI: 10.3233/jad-230739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The traits of Alzheimer's disease (AD) include amyloid plaques made of Aβ1-40 and Aβ1-42, and neurofibrillary tangles by the hyperphosphorylation of tau protein. AD is a complex disorder that is heterogenous in genetical, neuropathological, and clinical contexts. Current available therapeutics are unable to cure AD. Systems medicine is a strategy by viewing the body as a whole system, taking into account each individual's unique health profile, provide treatment and associated nursing care clinically for the patient, aiming for precision. Since the onset of AD can lead towards cognitive impairment, it is vital to intervene and diagnose early and prevent further progressive loss of neurons. Moreover, as the individual's brain functions are impaired due to neurodegeneration in AD, it is essential to reconstruct the neurons or brain cells to enable normal brain functions. Although there are different subtypes of AD due to varied pathological lesions, in the majority cases of AD, neurodegeneration and severe brain atrophy develop at the chronic stage. Novel approaches including RNA based gene therapy, stem cell based technology, bioprinting technology, synthetic biology for brain tissue reconstruction are researched in recent decades in the hope to decrease neuroinflammation and restore normal brain function in individuals of AD. Systems medicine include the prevention of disease, diagnosis and treatment by viewing the individual's body as a whole system, along with systems medicine based nursing as a strategy against AD that should be researched further.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Lishui Town, Nanhai District, Foshan City, Guangdong Province, P.R. China
| | - Jie Bangzhe Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
14
|
Rahbaran M, Zekiy AO, Bahramali M, Jahangir M, Mardasi M, Sakhaei D, Thangavelu L, Shomali N, Zamani M, Mohammadi A, Rahnama N. Therapeutic utility of mesenchymal stromal cell (MSC)-based approaches in chronic neurodegeneration: a glimpse into underlying mechanisms, current status, and prospects. Cell Mol Biol Lett 2022; 27:56. [PMID: 35842587 PMCID: PMC9287902 DOI: 10.1186/s11658-022-00359-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Recently, mesenchymal stromal cell (MSC)-based therapy has become an appreciated therapeutic approach in the context of neurodegenerative disease therapy. Accordingly, a myriad of studies in animal models and also some clinical trials have evinced the safety, feasibility, and efficacy of MSC transplantation in neurodegenerative conditions, most importantly in Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). The MSC-mediated desired effect is mainly a result of secretion of immunomodulatory factors in association with release of various neurotrophic factors (NTFs), such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Thanks to the secretion of protein-degrading molecules, MSC therapy mainly brings about the degradation of pathogenic protein aggregates, which is a typical appearance of chronic neurodegenerative disease. Such molecules, in turn, diminish neuroinflammation and simultaneously enable neuroprotection, thereby alleviating disease pathological symptoms and leading to cognitive and functional recovery. Also, MSC differentiation into neural-like cells in vivo has partially been evidenced. Herein, we focus on the therapeutic merits of MSCs and also their derivative exosome as an innovative cell-free approach in AD, HD, PD, and ALS conditions. Also, we give a brief glimpse into novel approaches to potentiate MSC-induced therapeutic merits in such disorders, most importantly, administration of preconditioned MSCs.
Collapse
Affiliation(s)
- Mohaddeseh Rahbaran
- Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mahta Bahramali
- Biotechnology Department, University of Tehran, Tehran, Iran
| | | | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Delaram Sakhaei
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Mohammadi
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran.
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
15
|
Li Y, Wu H, Jiang X, Dong Y, Zheng J, Gao J. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: combining with intranasal delivery. Acta Pharm Sin B 2022; 12:3215-3232. [PMID: 35967290 PMCID: PMC9366301 DOI: 10.1016/j.apsb.2022.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022] Open
Abstract
The clinical translation of stem cells and their extracellular vesicles (EVs)-based therapy for central nervous system (CNS) diseases is booming. Nevertheless, the insufficient CNS delivery and retention together with the invasiveness of current administration routes prevent stem cells or EVs from fully exerting their clinical therapeutic potential. Intranasal (IN) delivery is a possible strategy to solve problems as IN route could circumvent the brain‒blood barrier non-invasively and fit repeated dosage regimens. Herein, we gave an overview of studies and clinical trials involved with IN route and discussed the possibility of employing IN delivery to solve problems in stem cells or EVs-based therapy. We reviewed relevant researches that combining stem cells or EVs-based therapy with IN administration and analyzed benefits brought by IN route. Finally, we proposed possible suggestions to facilitate the development of IN delivery of stem cells or EVs.
Collapse
Affiliation(s)
- Yaosheng Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghui Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunfei Dong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juanjuan Zheng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. Tel.: +86 571 88208436.
| |
Collapse
|
16
|
Ding Y, Botchway BOA, Zhang Y, Jin T, Liu X. The combination of autologous mesenchymal stem cell-derived exosomes and neurotrophic factors as an intervention for amyotrophic lateral sclerosis. Ann Anat 2022; 242:151921. [PMID: 35278658 DOI: 10.1016/j.aanat.2022.151921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
Amyotrophic lateral sclerosis is a chronic progressive degeneration of motor neurons and has a high mortality. Riluzole and edaravone are the only approved medications currently being used for amyotrophic lateral sclerosis in clinical settings. However, they can lead to serious complications, such as injuries to the liver and kidney. To date, there is no effective treatment for amyotrophic lateral sclerosis. In this regard, investigations concerning the employment of exosomes, mesenchymal stem cells, and neurotrophic factors to ameliorate amyotrophic lateral sclerosis are attracting considerable attention in the scientific community. Herein, we systematically analyze the relationship relevant to autologous mesenchymal stem cell derived-exosomes, neurotrophic factors and amyotrophic lateral sclerosis. Mesenchymal stem cells modulate immune response, mitigate oxidative stress, promote neuronal regeneration, and differentiate into neuronal and glial cells. Furthermore, exosomes from mesenchymal stem cells exert beneficial effects on their mother cells by preventing abnormal differentiation of mesenchymal stem cells. Similarly, neurotrophic factors regulate inflammatory response, stimulate the neuron repair, and the recovery of neuronal functioning. Therefore, autologous mesenchymal stem cells-derived exosomes combined with neurotrophic factors could potentially be an effective interventional medium for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China; School of Basic Medical Sciences, Hangzhou Normal University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
17
|
Liu TM. Application of mesenchymal stem cells derived from human pluripotent stem cells in regenerative medicine. World J Stem Cells 2021; 13:1826-1844. [PMID: 35069985 PMCID: PMC8727229 DOI: 10.4252/wjsc.v13.i12.1826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.
Collapse
Affiliation(s)
- Tong-Ming Liu
- Agency for Science, Technology and Research, Institute of Molecular and Cell Biology, Singapore 138648, Singapore.
| |
Collapse
|
18
|
Kouchakian MR, Baghban N, Moniri SF, Baghban M, Bakhshalizadeh S, Najafzadeh V, Safaei Z, Izanlou S, Khoradmehr A, Nabipour I, Shirazi R, Tamadon A. The Clinical Trials of Mesenchymal Stromal Cells Therapy. Stem Cells Int 2021; 2021:1634782. [PMID: 34745268 PMCID: PMC8566082 DOI: 10.1155/2021/1634782] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population of adult stem cells, which are multipotent and possess the ability to differentiate/transdifferentiate into mesodermal and nonmesodermal cell lineages. MSCs display broad immunomodulatory properties since they are capable of secreting growth factors and chemotactic cytokines. Safety, accessibility, and isolation from patients without ethical concern make MSCs valuable sources for cell therapy approaches in autoimmune, inflammatory, and degenerative diseases. Many studies have been conducted on the application of MSCs as a new therapy, but it seems that a low percentage of them is related to clinical trials, especially completed clinical trials. Considering the importance of clinical trials to develop this type of therapy as a new treatment, the current paper is aimed at describing characteristics of MSCs and reviewing relevant clinical studies registered on the NIH database during 2016-2020 to discuss recent advances on MSC-based therapeutic approaches being used in different diseases.
Collapse
Affiliation(s)
- Mohammad Reza Kouchakian
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Farzaneh Moniri
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, Anatomy & Biochemistry Section, University of Copenhagen, Copenhagen, Denmark
| | - Zahra Safaei
- Department of Obstetrics and Gynecology, School of Medicine, Amir Al Mo'menin Hospital, Amir Al Mo'menin IVF Center, Arak University of Medical Sciences, Arak, Iran
| | - Safoura Izanlou
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
19
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Sha S, Shen X, Cao Y, Qu L. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer's disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway. Aging (Albany NY) 2021; 13:15285-15306. [PMID: 34086603 PMCID: PMC8221351 DOI: 10.18632/aging.203088] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Currently, Alzheimer's disease (AD) cannot be treated effectively. Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) (MSC-EVs) exhibit therapeutic effects on many diseases. This study investigated the mechanism of bone marrow MSC-EVs (BM-MSC-EVs) in a rat model of AD. The cognitive function, amyloid-β (Aβ) plaques, Aβ deposition areas and levels of Aβ1-42, Aβ decomposition-related factors (NEP and IDE), and inflammatory cytokines in BM-MSC-EVs-treated AD rats were measured. The effect of BM-MSC-EVs was studied in AD neuron model. microRNA (miR)-29c-3p and BACE1 expression, as well as levels of Wnt/β-catenin pathway-related factors in AD and EVs-treated AD models were detected. miR-29c-3p relationship with BACE1 was predicted and confirmed. miR-29c-3p and BACE1 were interfered to verify the mechanism of EVs in AD. The Wnt/β-catenin pathway inhibitor DKK1 was further added to EVs-treated AD neurons. BM-MSC-EVs showed therapeutic effects on AD rats and neurons. BM-MSC-EVs carried miR-29c-3p into AD neurons. miR-29c-3p targeted BACE1. Silencing miR-29c-3p in BM-MSCs reduced BM-MSC-EV therapeutic effect on AD, which was reversed after BACE1 knockdown. miR-29c-3p targeted BACE1 and activated the Wnt/β-catenin pathway, and the Wnt/β-catenin pathway inhibition impaired EV therapeutic effects on AD. We highlighted that BM-MSC-EVs delivered miR-29c-3p to neurons to inhibit BACE1 expression and activate the Wnt/β-catenin pathway, thereby playing a therapeutic role in AD. This study may provide a novel perspective for elucidating the mechanism of MSCs in the treatment of AD.
Collapse
Affiliation(s)
- Sha Sha
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xueli Shen
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yunpeng Cao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Le Qu
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|