1
|
Xu Y, Aung HL, Hesam-Shariati N, Keay L, Sun X, Phu J, Honson V, Tully PJ, Booth A, Lewis E, Anderson CS, Anstey KJ, Peters R. Contrast Sensitivity, Visual Field, Color Vision, Motion Perception, and Cognitive Impairment: A Systematic Review. J Am Med Dir Assoc 2024; 25:105098. [PMID: 38908397 DOI: 10.1016/j.jamda.2024.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/07/2024] [Accepted: 05/12/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVES To examine relationships between visual function (ie, contrast sensitivity, visual field, color vision, and motion perception) and cognitive impairment, including any definition of "cognitive impairment," mild cognitive impairment, or dementia. DESIGN Systematic review and meta-analyses. SETTING AND PARTICIPANTS Any settings; participants with (cases) or without (controls) cognitive impairment. METHODS We searched 4 databases (to January 2024) and included published studies that compared visual function between cases and controls. Standardized mean differences (SMD) with 95% CIs were calculated where data were available. Data were sufficient for meta-analyses when cases were people with dementia. The Joanna Briggs Institute checklists were used for quality assessment. RESULTS Fifty-one studies/69 reports were included. Cross-sectional evidence shows that people with dementia had worse contrast sensitivity function and color vision than controls: measured by contrast sensitivity (log units) on letter charts, SMD -1.22 (95% CI -1.98, -0.47), or at varied spatial frequencies, -0.92 (-1.28, -0.57); and by pseudoisochromatic plates, -1.04 (-1.59, -0.49); color arrangement, -1.30 (-2.31, -0.29); or matching tests, -0.51 (-0.78, -0.24). They also performed more poorly on tests of motion perception, -1.20 (-1.73, -0.67), and visual field: mean deviation, -0.87 (-1.29, -0.46), and pattern standard deviation, -0.69 (-1.24, -0.15). Results were similar when cases were limited to participants with clinically diagnosed Alzheimer disease. Sources of bias included lack of clarity on study populations or settings and definitions of cognitive impairment. The 2 included longitudinal studies with follow-ups of approximately 10 years were of good quality but reported inconsistent results. CONCLUSIONS AND IMPLICATIONS In the lack of longitudinal data, cross-sectional studies indicate that individuals with cognitive impairment have poorer visual function than those with normal cognition. Additional longitudinal data are needed to understand whether poor visual function precedes cognitive impairment and the most relevant aspects of visual function, dementia pathologies, and domains of cognition.
Collapse
Affiliation(s)
- Ying Xu
- Neuroscience Research Australia, Sydney, Australia; School of Psychology, Faculty of Science, UNSW Sydney, Sydney, Australia; The George Institute for Global Health, UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia; Ageing Futures Institute, UNSW Sydney, Sydney, Australia; Centre for Health Systems and Safety Research, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.
| | - Htein Linn Aung
- Neuroscience Research Australia, Sydney, Australia; Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Negin Hesam-Shariati
- Neuroscience Research Australia, Sydney, Australia; School of Psychology, Faculty of Science, UNSW Sydney, Sydney, Australia
| | - Lisa Keay
- The George Institute for Global Health, UNSW Sydney, Sydney, Australia; Ageing Futures Institute, UNSW Sydney, Sydney, Australia; School of Optometry and Vision Science, UNSW Sydney, Sydney, Australia
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Jack Phu
- School of Optometry and Vision Science, UNSW Sydney, Sydney, Australia; Center for Eye Health, UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Concord Clinical School, Concord Repatriation General Hospital, Sydney, Australia
| | - Vanessa Honson
- School of Optometry and Vision Science, UNSW Sydney, Sydney, Australia
| | - Phillip J Tully
- School of Psychology, The University of New England, Armidale, Australia
| | - Andrew Booth
- School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom
| | - Ebony Lewis
- Neuroscience Research Australia, Sydney, Australia; School of Psychology, Faculty of Science, UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia; Ageing Futures Institute, UNSW Sydney, Sydney, Australia
| | - Craig S Anderson
- The George Institute for Global Health, UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia; The George Institute China, Peking University Health Science Center, Beijing, China; Neurology Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Kaarin J Anstey
- Neuroscience Research Australia, Sydney, Australia; School of Psychology, Faculty of Science, UNSW Sydney, Sydney, Australia; Ageing Futures Institute, UNSW Sydney, Sydney, Australia
| | - Ruth Peters
- Neuroscience Research Australia, Sydney, Australia; School of Psychology, Faculty of Science, UNSW Sydney, Sydney, Australia; The George Institute for Global Health, UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia; Ageing Futures Institute, UNSW Sydney, Sydney, Australia; School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Koppelmans V, Ruitenberg MF, Schaefer SY, King JB, Jacobo JM, Silvester BP, Mejia AF, van der Geest J, Hoffman JM, Tasdizen T, Duff K. Classification of Mild Cognitive Impairment and Alzheimer's Disease Using Manual Motor Measures. NEURODEGENER DIS 2024; 24:54-70. [PMID: 38865972 PMCID: PMC11381162 DOI: 10.1159/000539800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION Manual motor problems have been reported in mild cognitive impairment (MCI) and Alzheimer's disease (AD), but the specific aspects that are affected, their neuropathology, and potential value for classification modeling is unknown. The current study examined if multiple measures of motor strength, dexterity, and speed are affected in MCI and AD, related to AD biomarkers, and are able to classify MCI or AD. METHODS Fifty-three cognitively normal (CN), 33 amnestic MCI, and 28 AD subjects completed five manual motor measures: grip force, Trail Making Test A, spiral tracing, finger tapping, and a simulated feeding task. Analyses included (1) group differences in manual performance; (2) associations between manual function and AD biomarkers (PET amyloid β, hippocampal volume, and APOE ε4 alleles); and (3) group classification accuracy of manual motor function using machine learning. RESULTS Amnestic MCI and AD subjects exhibited slower psychomotor speed and AD subjects had weaker dominant hand grip strength than CN subjects. Performance on these measures was related to amyloid β deposition (both) and hippocampal volume (psychomotor speed only). Support vector classification well-discriminated control and AD subjects (area under the curve of 0.73 and 0.77, respectively) but poorly discriminated MCI from controls or AD. CONCLUSION Grip strength and spiral tracing appear preserved, while psychomotor speed is affected in amnestic MCI and AD. The association of motor performance with amyloid β deposition and atrophy could indicate that this is due to amyloid deposition in and atrophy of motor brain regions, which generally occurs later in the disease process. The promising discriminatory abilities of manual motor measures for AD emphasize their value alongside other cognitive and motor assessment outcomes in classification and prediction models, as well as potential enrichment of outcome variables in AD clinical trials.
Collapse
Affiliation(s)
- Vincent Koppelmans
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Marit F.L. Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Sydney Y. Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jace B. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jasmine M. Jacobo
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin P. Silvester
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Amanda F. Mejia
- Department of Statistics, University of Indiana, Bloomington, IN, USA
| | | | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tolga Tasdizen
- Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kevin Duff
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Leng J, Zhu J, Yan Y, Yu X, Liu M, Lou Y, Liu Y, Gao L, Sun Y, He T, Yang Q, Feng C, Wang D, Zhang Y, Xu Q, Xu F. Multilevel Laser-Induced Pain Measurement with Wasserstein Generative Adversarial Network - Gradient Penalty Model. Int J Neural Syst 2024; 34:2350067. [PMID: 38149912 DOI: 10.1142/s0129065723500673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pain is an experience of unpleasant sensations and emotions associated with actual or potential tissue damage. In the global context, billions of people are affected by pain disorders. There are particular challenges in the measurement and assessment of pain, and the commonly used pain measuring tools include traditional subjective scoring methods and biomarker-based measures. The main tools for biomarker-based analysis are electroencephalography (EEG), electrocardiography and functional magnetic resonance. The EEG-based quantitative pain measurements are of immense value in clinical pain management and can provide objective assessments of pain intensity. The assessment of pain is now primarily limited to the identification of the presence or absence of pain, with less research on multilevel pain. High power laser stimulation pain experimental paradigm and five pain level classification methods based on EEG data augmentation are presented. First, the EEG features are extracted using modified S-transform, and the time-frequency information of the features is retained. Based on the pain recognition effect, the 20-40[Formula: see text]Hz frequency band features are optimized. Afterwards the Wasserstein generative adversarial network with gradient penalty is used for feature data augmentation. It can be inferred from the good classification performance of features in the parietal region of the brain that the sensory function of the parietal lobe region is effectively activated during the occurrence of pain. By comparing the latest data augmentation methods and classification algorithms, the proposed method has significant advantages for the five-level pain dataset. This research provides new ways of thinking and research methods related to pain recognition, which is essential for the study of neural mechanisms and regulatory mechanisms of pain.
Collapse
Affiliation(s)
- Jiancai Leng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jianqun Zhu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yihao Yan
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xin Yu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Ming Liu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yitai Lou
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yanbing Liu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Licai Gao
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yuan Sun
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Tianzheng He
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Qingbo Yang
- School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Chao Feng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Dezheng Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Yang Zhang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Qing Xu
- Shandong Institute of Scientific and Technical Information, Jinan 250101, P. R. China
| | - Fangzhou Xu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| |
Collapse
|
4
|
Suh A, Ong J, Kamran SA, Waisberg E, Paladugu P, Zaman N, Sarker P, Tavakkoli A, Lee AG. Retina Oculomics in Neurodegenerative Disease. Ann Biomed Eng 2023; 51:2708-2721. [PMID: 37855949 DOI: 10.1007/s10439-023-03365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023]
Abstract
Ophthalmic biomarkers have long played a critical role in diagnosing and managing ocular diseases. Oculomics has emerged as a field that utilizes ocular imaging biomarkers to provide insights into systemic diseases. Advances in diagnostic and imaging technologies including electroretinography, optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy, fluorescence lifetime imaging ophthalmoscopy, and OCT angiography have revolutionized the ability to understand systemic diseases and even detect them earlier than clinical manifestations for earlier intervention. With the advent of increasingly large ophthalmic imaging datasets, machine learning models can be integrated into these ocular imaging biomarkers to provide further insights and prognostic predictions of neurodegenerative disease. In this manuscript, we review the use of ophthalmic imaging to provide insights into neurodegenerative diseases including Alzheimer Disease, Parkinson Disease, Amyotrophic Lateral Sclerosis, and Huntington Disease. We discuss recent advances in ophthalmic technology including eye-tracking technology and integration of artificial intelligence techniques to further provide insights into these neurodegenerative diseases. Ultimately, oculomics opens the opportunity to detect and monitor systemic diseases at a higher acuity. Thus, earlier detection of systemic diseases may allow for timely intervention for improving the quality of life in patients with neurodegenerative disease.
Collapse
Affiliation(s)
- Alex Suh
- Tulane University School of Medicine, New Orleans, LA, USA.
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sharif Amit Kamran
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Ethan Waisberg
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Phani Paladugu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, 6560 Fannin St #450, Houston, TX, 77030, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
5
|
Elvira-Hurtado L, López-Cuenca I, de Hoz R, Salas M, Sánchez-Puebla L, Ramírez-Toraño F, Matamoros JA, Fernández-Albarral JA, Rojas P, Alfonsín S, Delgado-Losada ML, Ramírez AI, Salazar JJ, Maestu F, Gil P, Ramírez JM, Salobrar-García E. Alzheimer's disease: a continuum with visual involvements. Front Psychol 2023; 14:1124830. [PMID: 37484098 PMCID: PMC10359162 DOI: 10.3389/fpsyg.2023.1124830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most common form of dementia affecting the central nervous system, and alteration of several visual structures has been reported. Structural retinal changes are usually accompanied by changes in visual function in this disease. The aim of this study was to analyse the differences in visual function at different stages of the pathology (family history group (FH+), mild cognitive impairment (MCI), mild AD and moderate AD) in comparison with a control group of subjects with no cognitive decline and no family history of AD. Methods We included 53 controls, 13 subjects with FH+, 23 patients with MCI, 25 patients with mild AD and, 21 patients with moderate AD. All were ophthalmologically healthy. Visual acuity (VA), contrast sensitivity (CS), colour perception, visual integration, and fundus examination were performed. Results The analysis showed a statistically significant decrease in VA, CS and visual integration score between the MCI, mild AD and moderate AD groups compared to the control group. In the CS higher frequencies and in the colour perception test (total errors number), statistically significant differences were also observed in the MCI, mild AD and moderate AD groups with respect to the FH+ group and also between the control and AD groups. The FH+ group showed no statistically significant difference in visual functions compared to the control group. All the test correlated with the Mini Mental State Examination score and showed good predictive value when memory decline was present, with better values when AD was at a more advanced stage. Conclusion Alterations in visual function appear in subjects with MCI and evolve when AD is established, being stable in the initial stages of the disease (mild AD and moderate AD). Therefore, visual psychophysical tests are a useful, simple and complementary tool to neuropsychological tests to facilitate diagnosis in the preclinical and early stages of AD.
Collapse
Affiliation(s)
- Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Mario Salas
- Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pilar Rojas
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Madrid Eye Institute, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Soraya Alfonsín
- Center for Cognitive and Computational Neuroscience, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - María Luisa Delgado-Losada
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Fernando Maestu
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Pedro Gil
- Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Medicine, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Latina V, De Introna M, Caligiuri C, Loviglio A, Florio R, La Regina F, Pignataro A, Ammassari-Teule M, Calissano P, Amadoro G. Immunotherapy with Cleavage-Specific 12A12mAb Reduces the Tau Cleavage in Visual Cortex and Improves Visuo-Spatial Recognition Memory in Tg2576 AD Mouse Model. Pharmaceutics 2023; 15:pharmaceutics15020509. [PMID: 36839831 PMCID: PMC9965010 DOI: 10.3390/pharmaceutics15020509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Tau-targeted immunotherapy is a promising approach for treatment of Alzheimer's disease (AD). Beyond cognitive decline, AD features visual deficits consistent with the manifestation of Amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFT) in the eyes and higher visual centers, both in animal models and affected subjects. We reported that 12A12-a monoclonal cleavage-specific antibody (mAb) which in vivo neutralizes the neurotoxic, N-terminal 20-22 kDa tau fragment(s)-significantly reduces the retinal accumulation in Tg(HuAPP695Swe)2576 mice of both tau and APP/Aβ pathologies correlated with local inflammation and synaptic deterioration. Here, we report the occurrence of N-terminal tau cleavage in the primary visual cortex (V1 area) and the beneficial effect of 12A12mAb treatment on phenotype-associated visuo-spatial deficits in this AD animal model. We found out that non-invasive administration of 12 A12mAb markedly reduced the pathological accumulation of both truncated tau and Aβ in the V1 area, correlated to significant improvement in visual recognition memory performance along with local increase in two direct readouts of cortical synaptic plasticity, including the dendritic spine density and the expression level of activity-regulated cytoskeleton protein Arc/Arg3.1. Translation of these findings to clinical therapeutic interventions could offer an innovative tau-directed opportunity to delay or halt the visual impairments occurring during AD progression.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Margherita De Introna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Chiara Caligiuri
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Alessia Loviglio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Martine Ammassari-Teule
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Ercole Ramarini 32, 00015 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-49255252
| |
Collapse
|