1
|
Saadh MJ, Muhammad FA, Alazzawi TS, Fahdil AA, Athab ZH, Tuxtayev J, Alsaikhan F, Farhood B. Regulation of Apoptotic Pathways by MicroRNAs: A Therapeutic Strategy for Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04833-5. [PMID: 40220245 DOI: 10.1007/s12035-025-04833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder marked by a gradual decline in memory and cognitive functions. It is characterized by the presence of senile plaques, neurofibrillary tangles, and neuronal degeneration, affecting a significant portion of the human population. A key feature of various nervous system disorders, including AD, is extensive cellular death caused by apoptosis, which affects not only neurons but also glial cells. While apoptosis plays a vital role in eliminating certain cells and supporting normal development, alterations or disruptions in apoptotic pathways can lead to harmful neurodegenerative conditions such as AD. Thus, targeting apoptosis presents a promising therapeutic approach for these diseases. MicroRNAs (miRNAs), a class of non-coding RNA, play diverse roles in cellular functions, including proliferation, gene expression regulation, programmed cell death, intercellular communication, and angiogenesis. By modulating regulatory genes, miRNAs can influence apoptosis, either promoting or inhibiting it. Aberrant expression of miRNAs can impact multiple apoptotic pathways, potentially driving the progression of AD and related health issues. This review summarizes recent research on miRNAs and their dual role in exacerbating or protecting against neural cell damage in AD by altering apoptotic pathways. The regulation of apoptosis by miRNAs offers a prospective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Jamshid Tuxtayev
- Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Lu D, Zhang W, Li R, Tan S, Zhang Y. Targeting necroptosis in Alzheimer's disease: can exercise modulate neuronal death? Front Aging Neurosci 2025; 17:1499871. [PMID: 40161268 PMCID: PMC11950841 DOI: 10.3389/fnagi.2025.1499871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/15/2025] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and neuronal degeneration. Emerging evidence implicates necroptosis in AD pathogenesis, driven by the RIPK1-RIPK3-MLKL pathway, which promotes neuronal damage, inflammation, and disease progression. Exercise, as a non-pharmacological intervention, can modulate key inflammatory mediators such as TNF-α, HMGB1, and IL-1β, thereby inhibiting necroptotic signaling. Additionally, exercise enhances O-GlcNAc glycosylation, preventing Tau hyperphosphorylation and stabilizing neuronal integrity. This review explores how exercise mitigates necroptosis and neuroinflammation, offering novel therapeutic perspectives for AD prevention and management.
Collapse
Affiliation(s)
- Donglei Lu
- Tianjin Key Laboratory of Sports and Health Integration and Health Promotion, Tianjin, China
| | - Wenyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyu Li
- Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Sijie Tan
- Tianjin Key Laboratory of Sports and Health Integration and Health Promotion, Tianjin, China
| | - Yan Zhang
- Tianjin Shengzhi Sports Technology Co., Ltd., Tianjin, China
| |
Collapse
|
3
|
Davis MR, Robinson E, Koronyo Y, Salobrar-Garcia E, Rentsendorj A, Gaire BP, Mirzaei N, Kayed R, Sadun AA, Ljubimov AV, Schneider LS, Hawes D, Black KL, Fuchs DT, Koronyo-Hamaoui M. Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease. Acta Neuropathol Commun 2025; 13:31. [PMID: 39955563 PMCID: PMC11829413 DOI: 10.1186/s40478-025-01935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/25/2025] [Indexed: 02/17/2025] Open
Abstract
Pathological tau isoforms, including hyperphosphorylated tau at serine 396 (pS396-tau) and tau oligomers (Oligo-tau), are elevated in the retinas of patients with mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and AD dementia. These patients exhibit significant retinal ganglion cell (RGC) loss, however the presence of tau isoforms in RGCs and their impact on RGC integrity, particularly in early AD, have not been studied. Here, we analyzed retinal superior temporal cross-sections from 25 MCI or AD patients and 16 age- and sex-matched cognitively normal controls. Using the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl staining, we found a 46-56% reduction in RBPMS+ RGCs and Nissl+ neurons in the ganglion cell layer (GCL) of MCI and AD retinas (P < 0.05-0.001). RGC loss was accompanied by soma hypertrophy (10-50% enlargement, P < 0.05-0.0001), nuclear displacement, apoptosis (30-50% increase, P < 0.05-0.01), and prominent expression of granulovacuolar degeneration (GVD) bodies and GVD-necroptotic markers. Both pS396-tau and Oligo-tau were identified in RGCs, including in hypertrophic cells. PS396-tau+ and Oligo-tau+ RGC counts were significantly increased by 2.1-3.5-fold in MCI and AD retinas versus control retinas (P < 0.05-0.0001). Tauopathy-laden RGCs strongly inter-correlated (rP=0.85, P < 0.0001) and retinal tauopathy associated with RGC reduction (rP=-0.40-(-0.64), P < 0.05-0.01). Their abundance correlated with brain pathology and cognitive deficits, with higher tauopathy-laden RGCs in patients with Braak stages (V-VI), clinical dementia ratings (CDR = 3), and mini-mental state examination (MMSE ≤ 26) scores. PS396-tau+ RGCs in the central and mid-periphery showed the closest associations with disease status, while Oligo-tau+ RGCs in the mid-periphery exhibited the strongest correlations with brain pathology (NFTs, Braak stages, ABC scores; rS=0.78-0.81, P < 0.001-0.0001) and cognitive decline (MMSE; rS=-0.79, P = 0.0019). Overall, these findings identify a link between pathogenic tau in RGCs and RGC degeneration in AD, involving apoptotic and GVD-necroptotic cell death pathways. Future research should validate these results in larger and more diverse cohorts and develop RGC tauopathy as a potential noninvasive biomarker for early detection and monitoring of AD progression.
Collapse
Affiliation(s)
- Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Elena Salobrar-Garcia
- Institute of Ophthalmologic Research Ramón Castroviejo, Complutense University of Madrid, Madrid, 28040, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute, Clinico San Carlos Hospital (IdISSC), Madrid, 28040, Spain
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Bhakta P Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars- Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Gonen OM, Porter T, Wang B, Xue F, Ma Y, Song L, Sun P, Fan W, Shen Y. Safety, Pharmacokinetics and Target Engagement of a Novel Brain Penetrant RIPK1 Inhibitor (SIR9900) in Healthy Adults and Elderly Participants. Clin Transl Sci 2025; 18:e70151. [PMID: 39960838 PMCID: PMC11832029 DOI: 10.1111/cts.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
Receptor-interacting serine/threonine kinase 1 (RIPK1) regulates inflammatory signaling and induces apoptosis and necroptosis. Pharmacological inhibition of RIPK1 kinase activity has demonstrated efficacy in animal models of neurodegenerative, autoimmune and inflammatory diseases. SIR9900 is a potent and selective novel small molecule RIPK1 inhibitor. This first-in-human, phase I, randomized, double-blind, placebo-controlled study evaluated the safety, pharmacokinetics, and pharmacodynamics of single (3-200 mg) and multiple (3-60 mg daily for 10 days) ascending oral doses of SIR9900 in healthy adult (18-64 years, n = 80) and elderly participants (≥ 65 years, multiple doses 30 mg, n = 8). The study included a food effect component. Overall, SIR9900 was safe and well tolerated with no concerning dose-dependent trends in safety observed. SIR9900 was rapidly absorbed with a plasma maximum concentration time (Tmax) of 3.0-4.0 h and plasma half-life (t1/2) of 31.92-37.75 h following single doses. Similar Tmax and t1/2 results were observed following multiple doses. Systemic exposure to SIR9900 increased in a dose-proportional manner and was similar between adult and elderly participants. No appreciable food effect was observed. The cerebrospinal fluid to unbound plasma ratio was 1.15. A robust pharmacodynamic effect was demonstrated with approximately 90% peripheral target engagement at 3 h post-dose, and sustained RIPK1 inhibition over the 10-day treatment period. The promising safety, pharmacokinetic, and pharmacodynamic profile of SIR9900 with central nervous system penetrating potential in healthy adult and elderly participants supports its further clinical development in patients with inflammatory and degenerative diseases, particularly in the central nervous system.
Collapse
Affiliation(s)
| | - Tim Porter
- Avance Clinical Pty LtdAdelaideSouth AustraliaAustralia
| | - Buwei Wang
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Fenchao Xue
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Yongfen Ma
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Linan Song
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Pei Sun
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Weiliang Fan
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Yang Shen
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| |
Collapse
|
5
|
Nasser S, El-Abhar HS, El-Maraghy N, Abdallah DM, Wadie W, Mansour S. Neuroprotective role of mirabegron: Targeting beta-3 adrenergic receptors to alleviate ulcerative colitis-associated cognitive impairment. Biomed Pharmacother 2025; 183:117816. [PMID: 39809125 DOI: 10.1016/j.biopha.2025.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
While cognitive impairment has been documented in ulcerative colitic patients, the possible influence of central β3-adrenergic receptor (β3-AR) signaling on this extraintestinal manifestation remains unclear. Previously, we identified an imperative role for mirabegron (MA) as an agonist of β3-AR, in decreasing the BACE-1/beta-amyloid (Aβ) cue in the colons of UC rats. Consequently, we investigated its therapeutic potential for alleviating cognitive impairment associated with UC. To fulfil our aim, rats administered iodoacetamide were treated with the β3-AR agonist (MA) alone, with the antagonist (SR59230A) for 8 days, or kept untreated. The animals' behavior (MWM and NOR tests) and hippocampal structure were assessed. Mechanistically, necroptosis, ER stress (ERS), Aβ-amyloidosis, inflammation/oxidative burden, and gut/BBB dysfunction were analyzed. Post-administration of MA improved weight gain, colon/hippocampal structures, and memory. Additionally, it inhibited serum levels of lipopolysaccharide and Annexin-1, indicating recovered gut and BBB integrity. MA turned off the pathogenic BACE-1/Aβ axis in the hippocampus, necroptosis trajectory (TNFR-1/RIPK1/RIPK3/MLKL), and the IRE-1α/JNK signal. Moreover, MA enhanced the transcription factor PPAR-γ, decreased NF-κΒ/TNF-α inflammatory hub, and modulated the redox imbalance by decreasing malondialdehyde and increasing catalase. Notably, MA's behavioral, structural, and molecular beneficial actions were hindered by the pre-administration of SR59230A. From a novel standpoint, we recognized the β3-AR as a therapeutic target for UC-associated cognitive impairment in the hippocampus. In this context, the aptitude of MA to inhibit UC-induced hippocampal amyloidogenesis, alongside its anti-necroptotic, anti-ERS, anti-inflammatory, and antioxidant effects, contribute to these central enhancements, while also regulating permeability in both gut and BBB barriers.
Collapse
MESH Headings
- Animals
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/etiology
- Cognitive Dysfunction/metabolism
- Cognitive Dysfunction/prevention & control
- Acetanilides/pharmacology
- Acetanilides/therapeutic use
- Male
- Neuroprotective Agents/pharmacology
- Thiazoles/pharmacology
- Thiazoles/therapeutic use
- Rats
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/pathology
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/metabolism
- Amyloid beta-Peptides/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/drug effects
- Rats, Wistar
- Disease Models, Animal
- Behavior, Animal/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Oxidative Stress/drug effects
- Amyloid Precursor Protein Secretases/metabolism
Collapse
Affiliation(s)
- Salma Nasser
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt.
| | - Hanan S El-Abhar
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Nabila El-Maraghy
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa Wadie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Suzan Mansour
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Glover S, Illyuk J, Hill C, McGuinness B, McKnight AJ, Hunter RF. A systematic review of associations between the environment, DNA methylation, and cognition. ENVIRONMENTAL EPIGENETICS 2024; 11:dvae027. [PMID: 39882510 PMCID: PMC11776599 DOI: 10.1093/eep/dvae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025]
Abstract
The increasing prevalence of neurodegenerative diseases poses a significant public health challenge, prompting a growing focus on addressing modifiable risk factors of disease (e.g. physical inactivity, mental illness, and air pollution). The environment is a significant contributor of risk factors which are known to impact the brain and contribute to disease risk (e.g. air pollution, noise pollution, green and blue spaces). Epigenetics can offer insights into how various environmental exposures impact the body to contribute to cognitive outcomes. In this systematic review, we examined studies which have associated an environmental exposure to a type of epigenetic modification, DNA methylation, and a cognitive outcome. We searched four databases with keywords "environmental exposures," "epigenetics," and "cognition." We yielded 6886 studies that we screened by title/abstract followed by full text. We included 14 studies which focused on four categories of environmental exposure: air pollution (n = 3), proximity to roads (n = 1), heavy metals (n = 6), and pesticides (n = 4). Overall, n = 10/14 studies provided evidence that DNA methylation is statistically significant in the association between the environment and a cognitive outcome. Furthermore, we identified that n = 5/14 studies performed a type of biological pathway analysis to determine the presence of biological pathways between their environmental exposure and cognitive outcome. Our findings underscore the need for methodological improvements and considerations in future studies, including investigation of other environmental exposures considering tissue-specificity of methylation profiles and stratifying analysis by sex, ethnicity and socioeconomic determinants of disease. This review demonstrates that further investigation is warranted, the findings of which may be of use in the development of preventative measures and risk management strategies for neurodegenerative disease.
Collapse
Affiliation(s)
- Sophie Glover
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Jacob Illyuk
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Claire Hill
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Bernadette McGuinness
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Amy Jayne McKnight
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| | - Ruth F Hunter
- Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens’ University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom
| |
Collapse
|
7
|
Park JS, Leem YH, Kim DY, Park JM, Kim SE, Kim HS. Neuroprotective and anti-inflammatory effects of the RIPK3 inhibitor GSK872 in an MPTP-induced mouse model of Parkinson's disease. Neurochem Int 2024; 181:105896. [PMID: 39491747 DOI: 10.1016/j.neuint.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder triggered by the loss of dopaminergic neurons in the substantia nigra (SN). Recent studies have demonstrated that necroptosis is involved in dopaminergic neuronal cell death and the resulting neuroinflammation. During the process of necroptosis, a necrosome complex is formed consisting of the proteins receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). Although the neuroprotective effects of the RIPK1-specific inhibitor necrostatin-1, as well as RIPK3 and MLKL knockout in mice, have been described, the effects of RIPK3 pharmacological inhibitors have not yet been reported in animal models of PD. In the present study, we investigated the neuroprotective effects of GSK872, a specific RIPK3 inhibitor, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. GSK872 rescued MPTP-induced motor impairment and inhibited tyrosine hydroxylase-positive dopaminergic cell death in the SN and striatum. Additionally, GSK872 inhibited the MPTP-induced increase in the expression of p-RIPK3 and p-MLKL in both the dopaminergic neurons and microglia, as assessed by biochemical and histological analyses. GSK872 further inhibited microglial activation and the expression of inflammatory mediators including NLRP3, interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha, and inducible nitric oxide synthase in the SN region of MPTP mice. Using in vitro experiments, we validated the effects of GSK872 on necroptosis in SH-SY5Y neuronal and BV2 microglial cells. Overall, our results suggest that GSK872 exerts neuroprotective and anti-inflammatory effects, and may thus have therapeutic potential for PD.
Collapse
Affiliation(s)
- Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Do-Yeon Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jae-Min Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
8
|
Li CL, Wang Q, Wu L, Hu JY, Gao QC, Jiao XL, Zhang YX, Tang S, Yu Q, He PF. The PANoptosis-related hippocampal molecular subtypes and key biomarkers in Alzheimer's disease patients. Sci Rep 2024; 14:23851. [PMID: 39394418 PMCID: PMC11470079 DOI: 10.1038/s41598-024-75377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder, and various molecules associated with PANoptosis are involved in neuroinflammation and neurodegenerative diseases. This work aims to identify key genes, and characterize PANoptosis-related molecular subtypes in AD. Moreover, we establish a scoring system for distinguishing PANoptosis molecular subtypes and constructing diagnostic models for AD differentiation. A total of 5 hippocampal datasets were obtained from the Gene Expression Omnibus (GEO) database. In total, 1324 protein-encoding genes associated with PANoptosis (1313 apoptosis genes, 11 necroptosis genes, and 31 pyroptosis genes) were extracted from the GeneCards database. The Limma package was used to identify differentially expressed genes. Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to identify gene modules significantly associated with AD. The ConsensusClusterPlus algorithm was used to identify AD subtypes. Gene Set Variation Analysis (GSVA) was used to assess functional and pathway differences among the subtypes. The Boruta, Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to select the three PANoptosis-related Key AD genes (PKADg). A scoring model was constructed based on the Boruta algorithm. PANoptosis diagnostic models were developed using the RF, SVM-RFE, and Logistic Regression (LR) algorithms. The ROC curves were used to assess the model performance. A total of 48 important genes were identified by intersecting 725 differentially expressed genes and 2127 highly correlated module genes from WGCNA with 1324 protein-encoding genes related to PANoptosis. Machine learning algorithms identified 3 key AD genes related to PANoptosis, including ANGPT1, STEAP3, and TNFRSF11B. These genes had strong discriminatory capacities among samples, with Receiver Operating Characteristic Curve (ROC) analysis indicating Area Under the Curve (AUC) values of 0.839, 0.8, and 0.868, respectively. Using the 48 important genes, the ConsensusClusterPlus algorithm identified 2 PANoptosis subtypes among AD patients, i.e., apoptosis subtype and mild subtype. Apoptosis subtype patients displayed evident cellular apoptosis and severe functionality damage in the hippocampal tissue. Meanwhile, mild subtype patients showed milder functionality damage. These two subtypes had significant differences in apoptosis and necroptosis; however, there was no apparent variation in pyroptosis functionality. The scoring model achieved an AUC of 100% for sample differentiation. The RF PANoptosis diagnostic model demonstrated an AUC of 100% in the training set and 85.85% in the validation set for distinguishing AD. This study identified two PANoptosis-related hippocampal molecular subtypes of AD, identified key genes, and established machine learning models for subtype differentiation and discrimination of AD. We found that in the context of AD, PANoptosis may influence disease progression through the modulation of apoptosis and necrotic apoptosis.
Collapse
Affiliation(s)
- Chen-Long Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Jing-Yi Hu
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Xin-Long Jiao
- School of Medical Science, Shanxi Medical University, Taiyuan, China
| | - Yu-Xiang Zhang
- Second Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Shan Tang
- First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Qi Yu
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China.
- School of Management, Shanxi Medical University, Taiyuan, China.
| | - Pei-Feng He
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China.
- School of Management, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Davis MR, Robinson E, Koronyo Y, Salobrar-Garcia E, Rentsendorj A, Gaire BP, Mirzaei N, Kayed R, Sadun AA, Ljubimov AV, Schneider LS, Hawes D, Black KL, Fuchs DT, Koronyo-Hamaoui M. Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613293. [PMID: 39345568 PMCID: PMC11430098 DOI: 10.1101/2024.09.17.613293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Accumulation of pathological tau isoforms, especially hyperphosphorylated tau at serine 396 (pS396-tau) and tau oligomers, has been demonstrated in the retinas of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Previous studies have noted a decrease in retinal ganglion cells (RGCs) in AD patients, but the presence and impact of pathological tau isoforms in RGCs and RGC integrity, particularly in early AD stages, have not been explored. To investigate this, we examined retinal superior temporal cross-sections from 25 patients with MCI (due to AD) or AD dementia and 16 cognitively normal (CN) controls, matched for age and gender. We utilized the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl staining to assess neuronal density in the ganglion cell layer (GCL). Our study found that hypertrophic RGCs containing pS396-tau and T22-positive tau oligomers were more frequently observed in MCI and AD patients compared to CN subjects. Quantitative analyses indicated a decline in RGC integrity, with 46-55% and 55-56% reductions of RBPMS+ RGCs (P<0.01) and Nissl+ GCL neurons (P<0.01-0.001), respectively, in MCI and AD patients. This decrease in RGC count was accompanied by increases in necroptotic-like morphology and the cleaved caspase-3 apoptotic marker in RGCs of AD patients. Furthermore, there was a 2.1 to 3.1-fold increase (P<0.05-0.0001) in pS396-tau-laden RGCs in MCI and AD patients, with a greater abundance observed in individuals with higher Braak stages (V-VI), more severe clinical dementia ratings (CDR=3), and lower mini-mental state examination (MMSE) scores. Strong correlations were noted between the decline in RGCs and the total amount of retinal pS396-tau and pS396-tau+ RGCs, with pS396-tau+ RGC counts correlating significantly with brain neurofibrillary tangle scores (r= 0.71, P= 0.0001), Braak stage (r= 0.65, P= 0.0009), and MMSE scores (r= -0.76, P= 0.0004). These findings suggest that retinal tauopathy, characterized by pS396-tau and oligomeric tau in hypertrophic RGCs, is associated with and may contribute to RGC degeneration in AD. Future research should validate these findings in larger cohorts and explore noninvasive retinal imaging techniques that target tau pathology in RGCs to improve AD detection and monitor disease progression.
Collapse
Affiliation(s)
- Miyah R. Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elena Salobrar-Garcia
- Institute of Ophthalmologic Research Ramón Castroviejo, Complutense University of Madrid, 28040 Madrid, Spain. Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain. Health Research Institute, Clinico San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bhakta P. Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo A. Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Alexander V. Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S. Schneider
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Debra Hawes
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Zhang H, Huang D, Chen E, Cao D, Xu T, Dizdar B, Li G, Chen Y, Payne P, Province M, Li F. mosGraphGPT: a foundation model for multi-omic signaling graphs using generative AI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606222. [PMID: 39149314 PMCID: PMC11326168 DOI: 10.1101/2024.08.01.606222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Generative pretrained models represent a significant advancement in natural language processing and computer vision, which can generate coherent and contextually relevant content based on the pre-training on large general datasets and fine-tune for specific tasks. Building foundation models using large scale omic data is promising to decode and understand the complex signaling language patterns within cells. Different from existing foundation models of omic data, we build a foundation model, mosGraphGPT, for multi-omic signaling (mos) graphs, in which the multi-omic data was integrated and interpreted using a multi-level signaling graph. The model was pretrained using multi-omic data of cancers in The Cancer Genome Atlas (TCGA), and fine-turned for multi-omic data of Alzheimer's Disease (AD). The experimental evaluation results showed that the model can not only improve the disease classification accuracy, but also is interpretable by uncovering disease targets and signaling interactions. And the model code are uploaded via GitHub with link: https://github.com/mosGraph/mosGraphGPT.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Di Huang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Emily Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Tim Xu
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Ben Dizdar
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Yixin Chen
- Department of Computer Science and Engineering
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | | | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
11
|
Lian P, Cai X, Yang X, Ma Z, Wang C, Liu K, Wu Y, Cao X, Xu Y. Analysis and experimental validation of necroptosis-related molecular classification, immune signature and feature genes in Alzheimer's disease. Apoptosis 2024; 29:726-742. [PMID: 38478169 PMCID: PMC11055779 DOI: 10.1007/s10495-024-01943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 04/28/2024]
Abstract
Necroptosis, a programmed cell death pathway, has been demonstrated to be activated in Alzheimer's disease (AD). However, the precise role of necroptosis and its correlation with immune cell infiltration in AD remains unclear. In this study, we conducted non-negative matrix factorization clustering analysis to identify three subtypes of AD based on necroptosis-relevant genes. Notably, these subtypes exhibited varying necroptosis scores, clinical characteristics and immune infiltration signatures. Cluster B, characterized by high necroptosis scores, showed higher immune cell infiltration and was associated with a more severe pathology, potentially representing a high-risk subgroup. To identify potential biomarkers for AD within cluster B, we employed two machine learning algorithms: the least absolute shrinkage and selection operator regression and Random Forest. Subsequently, we identified eight feature genes (CARTPT, KLHL35, NRN1, NT5DC3, PCYOX1L, RHOQ, SLC6A12, and SLC38A2) that were utilized to develop a diagnosis model with remarkable predictive capacity for AD. Moreover, we conducted validation using bulk RNA-seq, single-nucleus RNA-seq, and in vivo experiments to confirm the expression of these feature genes. In summary, our study identified a novel necroptosis-related subtype of AD and eight diagnostic biomarkers, explored the roles of necroptosis in AD progression and shed new light for the clinical diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cai
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Martinez-Feduchi P, Jin P, Yao B. Epigenetic modifications of DNA and RNA in Alzheimer's disease. Front Mol Neurosci 2024; 17:1398026. [PMID: 38726308 PMCID: PMC11079283 DOI: 10.3389/fnmol.2024.1398026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common form of dementia. There are two main types of AD: familial and sporadic. Familial AD is linked to mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). On the other hand, sporadic AD is the more common form of the disease and has genetic, epigenetic, and environmental components that influence disease onset and progression. Investigating the epigenetic mechanisms associated with AD is essential for increasing understanding of pathology and identifying biomarkers for diagnosis and treatment. Chemical covalent modifications on DNA and RNA can epigenetically regulate gene expression at transcriptional and post-transcriptional levels and play protective or pathological roles in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Du Y, Geng P, Chen Q, Han L, Liu L, Yang M, Tan M, Meng J, Sun X, Feng L. Associations of vitamin D receptor polymorphisms with risk of Alzheimer's disease, Parkinson's disease, and mild cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1377058. [PMID: 38681668 PMCID: PMC11047136 DOI: 10.3389/fnagi.2024.1377058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Vitamin D is a lipid soluble steroid hormone, which plays a critical role in the calcium homeostasis, neuronal development, cellular differentiation, and growth by binding to vitamin D receptor (VDR). Associations between VDR gene polymorphism and Alzheimer's disease (AD), Parkinson's disease (PD), and mild cognitive impairment (MCI) risk has been investigated extensively, but the results remain ambiguous. The aim of this study was to comprehensively assess the correlations between four VDR polymorphisms (FokI, BsmI, TaqI, and ApaI) and susceptibility to AD, PD, and MCI. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the relationship of interest. Pooled analyses suggested that the ApaI polymorphism decreased the overall AD risk, and the TaqI increased the overall PD susceptibility. In addition, the BsmI and ApaI polymorphisms were significantly correlated with the overall MCI risk. Stratified analysis by ethnicity further showed that the TaqI and ApaI genotypes reduced the AD predisposition among Caucasians, while the TaqI polymorphism enhanced the PD risk among Asians. Intriguingly, carriers with the BB genotype significantly decreased the MCI risk in Asian descents, and the ApaI variant elevated the predisposition to MCI in Caucasians and Asians. Further studies are need to identify the role of VDR polymorphisms in AD, PD, and MCI susceptibility.
Collapse
Affiliation(s)
- Yanjun Du
- Department of Encephalopathy, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Peizhen Geng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Qunqun Chen
- Department of Rehabilitation, Weifang Brain Hospital, Weifang, Shandong, China
| | - Laixi Han
- Department of Rehabilitation, Weifang Brain Hospital, Weifang, Shandong, China
| | - Lu Liu
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Maoquan Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Mingzhu Tan
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Jun Meng
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Xiaojuan Sun
- Department of Occupational Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Lidan Feng
- Department of Rehabilitation, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
14
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
15
|
Yeerlan J, He B, Hu X, Zhang L. Global Research Trends and Hotspots for Ferroptosis, Necroptosis, and Pyroptosis in Alzheimer's Disease from the Past to 2023: A Combined Bibliometric Review. J Alzheimers Dis Rep 2024; 8:129-142. [PMID: 38312529 PMCID: PMC10836606 DOI: 10.3233/adr-230092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Background Alzheimer's disease (AD) is a genetically intricate neurodegenerative disorder. Studies on "Ferroptosis in AD", "Pyroptosis in AD", and "Necroptosis in AD" are becoming more prevalent and there is increasing evidence that they are closely related to AD. However, there has not yet been a thorough bibliometrics-based investigation on this subject. Objective This study uses a bibliometric approach to visualize and analyze the literature within the field of three distinct types of cell death in AD and explores the current research hotspots and prospective research directions. Methods We collected relevant articles from the Web of Science and used CiteSpace, VOS viewer, and Pajek to perform a visual analysis. Results A total of 123, 95, and 84 articles were published in "Ferroptosis in AD", "Pyroptosis in AD", and "Necroptosis in AD", respectively. Based on keywords analysis, we can observe that "oxidative stress" and "lipid peroxidation", "cell death" and "activation", and "Nlrp3 inflammasome" and "activation" were the three most prominent words in the field of "Ferroptosis in AD", "Pyroptosis in AD", and "Necroptosis in AD", respectively. Focusing on the breakout words in the keyword analysis, we reviewed the mechanisms of ferroptosis, pyroptosis, and necroptosis in AD. By mapping the time zones of the keywords, we speculated on the evolutionary trends of ferroptosis, pyrotosis, and necroptosis in AD. Conclusions Our findings can help researchers grasp the research status of three types of cell death in AD and determine new directions for future research as soon as possible.
Collapse
Affiliation(s)
| | - Binhong He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xianliang Hu
- Chengdu Eighth People’s Hospital, Geriatric Hospital of Chengdu Medical College, Chengdu, China
| | - LuShun Zhang
- Department of Neurobiology, Department of Pathology and Pathophysiology, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
16
|
Paudel B, Jeong SY, Martinez CP, Rickman A, Haluck-Kangas A, Bartom ET, Fredriksen K, Affaneh A, Kessler JA, Mazzulli JR, Murmann AE, Rogalski E, Geula C, Ferreira A, Heckmann BL, Green DR, Sadleir KR, Vassar R, Peter ME. Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer's disease and aging. Nat Commun 2024; 15:264. [PMID: 38238311 PMCID: PMC10796375 DOI: 10.1038/s41467-023-44465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aβ42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aβ42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aβ42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Bidur Paudel
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Si-Yeon Jeong
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ministry of Food and Drug Safety, Pharmaceutical Safety Bureau, Pharmaceutical Policy Division 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Carolina Pena Martinez
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Alexis Rickman
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Ashley Haluck-Kangas
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Preventive Medicine/Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kristina Fredriksen
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amira Affaneh
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Kessler
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea E Murmann
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Healthy Aging & Alzheimer's Research Care (HAARC) Center, Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Adriana Ferreira
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradlee L Heckmann
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine R Sadleir
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert Vassar
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
17
|
Wu L, Jin L, Li L, Yu K, Wu J, Lei Y, Jiang S, He J. An examination of Alzheimer's disease and white matter from 1981 to 2023: a Bibliometric and visual analysis. Front Neurol 2023; 14:1268566. [PMID: 38033779 PMCID: PMC10683644 DOI: 10.3389/fneur.2023.1268566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
Background Alzheimer's disease (AD) is characterized by the presence of gray matter lesions and alterations in white matter. This study aims to investigate the research related to white matter in the context of AD from a Bibliometric standpoint. Methods Regular and review articles focusing on the research pertaining to Alzheimer's disease (AD) and white matter were extracted from the Web of Science Core Collection (WOSCC) database, covering the period from its inception to 10th July 2023. The "Bibliometrix" R package was employed to summarize key findings, to quantify the occurrence of top keywords, and to visualize the collaborative network among countries. Furthermore, VOSviewer software was utilized to conduct co-authorship and co-occurrence analyses. CiteSpace was employed to identify the most influential references and keywords based on their citation bursts. The retrieval of AD- and white matter-related publications was conducted by the Web of Science Core Collection. Bibliometric analysis and visualization, including the examination of annual publication distribution, prominent countries, active institutions and authors, core journals, co-cited references, and keywords, were carried out by using VOSviewer, CiteSpace, the Bibliometrix Package, and the ggplot2 Package. The quality and impact of publications were assessed using the total global citation score and total local citation score. Results A total of 5,714 publications addressing the intersection of Alzheimer's disease (AD) and white matter were included in the analysis. The majority of publications originated from the United States, China, and the United Kingdom. Prominent journals were heavily featured in the publication output. In addition to "Alzheimer's disease" and "white matter," "mild cognitive impairment," "MRI" and "atrophy" had been frequently utilized as "keywords." Conclusion This Bibliometric investigation delineated a foundational knowledge framework that encompasses countries, institutions, authors, journals, and articles within the AD and white matter research domain spanning from 1981 to 2023. The outcomes provide a comprehensive perspective on the broader landscape of this research field.
Collapse
Affiliation(s)
- Linman Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Nanchong Mental Health Center of Sichuan Province, Nanchong, China
| | - Liuyin Jin
- Lishui Second People’s Hospital, Wenzhou Medical University, Lishui, China
| | - Lixia Li
- Nanchong Mental Health Center of Sichuan Province, Nanchong, China
| | - Kai Yu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Junnan Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yuying Lei
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Shulan Jiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jue He
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Xiong S, Su X, Kang Y, Si J, Wang L, Li X, Ma K. Effect and mechanism of chlorogenic acid on cognitive dysfunction in mice by lipopolysaccharide-induced neuroinflammation. Front Immunol 2023; 14:1178188. [PMID: 37292216 PMCID: PMC10244504 DOI: 10.3389/fimmu.2023.1178188] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Background Neuroinflammation is an important factor causing numerous neurodegenerative pathologies. Inflammation can lead to abnormal neuronal structure and function and even death, followed by cognitive dysfunction. There is growing evidence that chlorogenic acid has anti-inflammatory effects and immunomodulatory activity. Purpose The aim of this study was to elucidate the potential targets and molecular mechanisms of chlorogenic acid in the treatment of neuroinflammation. Methods We used the lipopolysaccharide-induced neuroinflammation mouse model and the lipopolysaccharide-stimulated BV-2 cells in vitro model. Behavioral scores and experiments were used to assess cognitive dysfunction in mice. HE staining and immunohistochemistry were used to assess neuronal damage in the mouse brain. Immunofluorescence detected microglia polarization in mouse brain. Western blot and flow cytometry detected the polarization of BV-2 cells. The migration of BV-2 cells was detected by wound healing assay and transwell assay. Potential targets for chlorogenic acid to exert protective effects were predicted by network pharmacology. These targets were then validated using molecular docking and experiments. Results The results of in vivo experiments showed that chlorogenic acid had an obvious ameliorating effect on neuroinflammation-induced cognitive dysfunction. We found that chlorogenic acid was able to inhibit BV-2 cells M1 polarization and promote BV-2 cells M2 polarization in vitro while also inhibiting the abnormal migration of BV-2 cells. Based on the network pharmacology results, we identified the TNF signaling pathway as a key signaling pathway in which chlorogenic acid exerts anti-neuroinflammatory effects. Among them, Akt1, TNF, MMP9, PTGS2, MAPK1, MAPK14, and RELA are the core targets for chlorogenic acid to function. Conclusion Chlorogenic acid can inhibit microglial polarization toward the M1 phenotype and improve neuroinflammation-induced cognitive dysfunction in mice by modulating these key targets in the TNF signaling pathway.
Collapse
Affiliation(s)
- Siyuan Xiong
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Xuyang Su
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Yingjie Kang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Lu Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pharmacology and Clinical Pharmacy, Shihezi University School of Pharmacy, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
- National Health Commission (NHC) Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
19
|
Kosagisharaf JR, Hegde ML. Introduction to The Special Issue: Novel Molecular Pathways and Therapeutic Challenges in Neurodegenerative Diseases. J Alzheimers Dis 2023; 94:S3-S7. [PMID: 37393511 PMCID: PMC10473067 DOI: 10.3233/jad-230622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Affiliation(s)
- Jagannatha Rao Kosagisharaf
- Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University, Vaddeswaram, Andhra Pradesh, India
- SNI, INDICASAT AIP, Panama
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Division of DNA Repair Research, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|