1
|
Graham RJ, Amin R, Demirel N, Edel L, Lilien C, MacBean V, Rafferty GF, Sawnani H, Schön C, Smith BK, Syed F, Sarazen M, Prasad S, Rico S, Perez GF. An algorithm for discontinuing mechanical ventilation in boys with x-linked myotubular myopathy after positive response to gene therapy: the ASPIRO experience. Respir Res 2024; 25:342. [PMID: 39285418 PMCID: PMC11406763 DOI: 10.1186/s12931-024-02966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital myopathy. Most (80%) children with XLMTM have profound muscle weakness and hypotonia at birth resulting in severe respiratory insufficiency, the inability to sit up, stand or walk, and early mortality. At birth, 85-90% of children with XLMTM require mechanical ventilation, with more than half requiring invasive ventilator support. Historically, ventilator-dependent children with neuromuscular-derived respiratory failure of this degree and nature, static or progressive, are not expected to achieve complete independence from mechanical ventilator support. In the ASPIRO clinical trial (NCT03199469), participants receiving a single intravenous dose of an investigational gene therapy (resamirigene bilparvovec) started showing significant improvements in daily hours of ventilation support compared with controls by 24 weeks post-dosing, and 16 of 24 dosed participants achieved ventilator independence between 14 and 97 weeks after dosing. At the time, there was no precedent or published guidance for weaning chronically ventilated children with congenital neuromuscular diseases off mechanical ventilation. When the first ASPIRO participants started showing dramatically improved respiratory function, the investigators initiated efforts to safely wean them off ventilator support, in parallel with primary protocol respiratory outcome measures. A group of experts in respiratory care and physiology and management of children with XLMTM developed an algorithm to safely wean children in the ASPIRO trial off mechanical ventilation as their respiratory muscle strength increased. The algorithm developed for this trial provides recommendations for assessing weaning readiness, a stepwise approach to weaning, and monitoring of children during and after the weaning process.
Collapse
Affiliation(s)
- Robert J Graham
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reshma Amin
- Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Lisa Edel
- Great Ormond Street Hospital for Children London, London, UK
| | - Charlotte Lilien
- MDUK Oxford Neuromuscular Centre, Oxford, UK
- Institute I-Motion, Hôpital Armand Trousseau, Paris, France
| | | | | | - Hemant Sawnani
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati, Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carola Schön
- Hauner's Children's Hospital, University of Munich, Munich, Germany
| | | | - Faiza Syed
- Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Suyash Prasad
- Formerly of Astellas Gene Therapies, San Francisco, CA, USA
| | - Salvador Rico
- Formerly of Astellas Gene Therapies, San Francisco, CA, USA
| | - Geovanny F Perez
- Oishei Children's Hospital, Jacobs School of Medicine and Biomedical Sciences, Oishei Children's Hospital University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
2
|
Ma X, Zhuang L, Ma W, Li J, Wang X, Li Z, Jiang X, Wang Y, Du Y, Zhang Y, He F, Zhu Z, Du S, Xu J, Gu R, Zhang Y, Zhang S, Li T, Yang X, Zhang S, Zhu L, Li Q, Dong X, Wu X, Feng Z. Treatment of SMA type 1 infants using a single-dose AAV9-mediated gene therapy via intrathecal injection of GC101: An open-label, single-arm study. Chin Med J (Engl) 2024; 137:1976-1978. [PMID: 39030070 PMCID: PMC11332719 DOI: 10.1097/cm9.0000000000003210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 07/21/2024] Open
Affiliation(s)
- Xiuwei Ma
- Department of Neurodevelopment, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Lu Zhuang
- Department of Neurodevelopment, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
| | - Wenhao Ma
- Research and Development Division, Genecradle Therapeutics Inc., Beijing 100176, China
| | - Jun Li
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
| | - Xiaodong Wang
- Medical Division, Genecradle Therapeutics Inc., Beijing 100176, China
| | - Zhongqiu Li
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
| | - Xinyang Jiang
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
| | - Yongxia Wang
- Department of Neurodevelopment, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Ying Du
- Medical Division, Genecradle Therapeutics Inc., Beijing 100176, China
| | - Yingqian Zhang
- Medical Division, Genecradle Therapeutics Inc., Beijing 100176, China
| | - Fang He
- Department of Neurodevelopment, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Zhiming Zhu
- Medical Division, Genecradle Therapeutics Inc., Beijing 100176, China
| | - Shaopeng Du
- Department of Neurodevelopment, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Juan Xu
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Ruijie Gu
- Department of Neurodevelopment, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yanping Zhang
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
| | - Shan Zhang
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, China
| | - Ting Li
- Department of Neurodevelopment, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Xiao Yang
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
| | - Sheng Zhang
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
| | - Lina Zhu
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
| | - Qiuping Li
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, China
| | - Xiaoyan Dong
- Medical Division, Genecradle Therapeutics Inc., Beijing 100176, China
| | - Xiaobing Wu
- Research and Development Division, Genecradle Therapeutics Inc., Beijing 100176, China
| | - Zhichun Feng
- Department of Neurodevelopment, Faculty of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, China
| |
Collapse
|
3
|
Favia M, Tarantino D, Cerbo LD, Sabia A, Campopiano R, Pani M. Onasemnogene Abeparvovec: Post-infusion Efficacy and Safety in Patients With Spinal Muscular Atrophy (SMA)-A Fondazione Policlinico Gemelli IRCCS Experience. Hosp Pharm 2024; 59:39-46. [PMID: 38223869 PMCID: PMC10786062 DOI: 10.1177/00185787231182562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Objective: The term Spinal Muscular Atrophy (SMA) identifies a group of genetic disorders affecting spinal motor neurons. It is caused by the loss of the SMN1 gene, resulting in degeneration of spinal alpha motor neurons and muscle atrophy. This study is focused on innovative gene therapies with onasemnogene abeparvovec approved in Italy in March 2021 with full reimbursement by the National Health Service. The objective pursued is verify, by means of the CHOP-INTEND scores obtained, whether therapy with onasemnogene abeparvovec led to an improvement in the clinical picture of the treated subjects and any adverse reactions that occurred. Methods: this study was conducted by evaluating the scores in the different re-evaluations of individual patients treated in our hospital (Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Rome) and comparing them with the results of the CL-303 study described in SPC (Summary of Product Characteristics). The data were extracted from the patients' clinical records on the AIFA (Agenzia Italiana del Farmaco - Italian Medicines Agency) registries, also collecting information on any post-infusion ADRs. Everything was then represented graphically to have a clear comparison with the data from the study registered for drug approval. Results: from the data obtained, 7 out of 8 patients improved their health status post infusion with, in some cases, a significant increase in score. Conclusions: this result allows us to understand how crucial it is to start treatment as soon as possible after the diagnosis of the condition as the greatest improvements were seen in subjects who received treatment within 2 months of birth.
Collapse
Affiliation(s)
- Michele Favia
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Domenico Tarantino
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Lidia Di Cerbo
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonella Sabia
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Rina Campopiano
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Marcello Pani
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| |
Collapse
|
4
|
Berg AT, Ludwig NN, Wojnaroski M, Chapman CAT, Hommer R, Conecker G, Hecker JZ, Downs J. FDA Patient-Focused Drug Development Guidances: Considerations for Trial Readiness in Rare Developmental and Epileptic Encephalopathies. Neurology 2024; 102:e207958. [PMID: 38165374 PMCID: PMC10834124 DOI: 10.1212/wnl.0000000000207958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 01/03/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are rare, often monogenic neurodevelopmental conditions. Most affected individuals have refractory seizures. All have multiple severe impairments which can be as life-limiting as or more limiting than the seizures themselves. Mechanism- and gene-targeted therapies for these individually rare, genetic conditions hold hope for treatment, amelioration of disease expression, and even cure. The near absence of fit-for-purpose (FFP) clinical outcome assessments (COA) to establish the benefits for nonseizure outcomes of these new therapies in clinical trials poses significant challenges to drug development. The Food and Drug Administration Patient-Focused Drug Development guidance series provides direction for how to overcome these challenges and to ensure FFP measures are available for trials. The goal is to have measures that address outcomes of importance to patients and caregivers, reliably and accurately measure the outcome in the spectrum of abilities for the target disease, and are sensitive to meaningful change over time. The guidances identify 3 primary strategies: (1) directly adopting and implementing available outcome measures; (2) creating measures de novo; and (3) a middle path of adapting or modifying existing measures. Emphasized throughout the guidances is the indispensable and extensive role of the patient or caregiver to assuring the goal of having fit measures is achieved. This review specifically considers the difficulties of adopting available COAs in severely impaired patient groups and ways to adapt or modify existing COAs to be FFP as encouraged in the guidances. Adaptations include alternative scoring, use of assessments in out-of-intended age ranges, and modifications for individuals with sensory or motor impairments. Some additional considerations that may facilitate achieving adequate clinical outcome measures, especially for rare diseases, include use of personalized endpoints, merging of existing COAs, and developing a consortium of rare DEE advocates and researchers to ensure fitness of adapted COAs across multiple rare disease groups. The FDA guidances help ensure that clinical trials targeting nonseizure outcomes, especially in severely impaired populations, will have adequately valid and sensitive outcome measures. This in turn will strengthen the ability of trials to provide informative tests of whether treatments provide meaningful therapeutic efficacy.
Collapse
Affiliation(s)
- Anne T Berg
- From the Department of Neurology (A.T.B.), Northwestern-Feinberg School of Medicine, Chicago, IL; Decoding Developmental Epilepsies (A.T.B., G.C., J.Z.H.), Washington, DC; Department of Neuropsychology (N.N.L.), Kennedy Krieger Institute; Department of Psychiatry and Behavioral Sciences (N.N.L.), The Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychology (M.W.), Nationwide Children's Hospital; Department of Pediatrics (M.W.), The Ohio State University, Columbus; Ardea Outcomes (C.A.T.C.), Halifax, Nova Scotia, Canada; Connections Beyond Sight and Sound Maryland & DC Deaf-Blind Project (R.H.), University of Maryland, College Park; The Inchstone Project (J.Z.H.); Telethon Kids Institute (J.D.), The University of Western Australia; and Curtin School of Allied Health (J.D.), Curtin University, Perth, Western Australia
| | - Natasha N Ludwig
- From the Department of Neurology (A.T.B.), Northwestern-Feinberg School of Medicine, Chicago, IL; Decoding Developmental Epilepsies (A.T.B., G.C., J.Z.H.), Washington, DC; Department of Neuropsychology (N.N.L.), Kennedy Krieger Institute; Department of Psychiatry and Behavioral Sciences (N.N.L.), The Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychology (M.W.), Nationwide Children's Hospital; Department of Pediatrics (M.W.), The Ohio State University, Columbus; Ardea Outcomes (C.A.T.C.), Halifax, Nova Scotia, Canada; Connections Beyond Sight and Sound Maryland & DC Deaf-Blind Project (R.H.), University of Maryland, College Park; The Inchstone Project (J.Z.H.); Telethon Kids Institute (J.D.), The University of Western Australia; and Curtin School of Allied Health (J.D.), Curtin University, Perth, Western Australia
| | - Mary Wojnaroski
- From the Department of Neurology (A.T.B.), Northwestern-Feinberg School of Medicine, Chicago, IL; Decoding Developmental Epilepsies (A.T.B., G.C., J.Z.H.), Washington, DC; Department of Neuropsychology (N.N.L.), Kennedy Krieger Institute; Department of Psychiatry and Behavioral Sciences (N.N.L.), The Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychology (M.W.), Nationwide Children's Hospital; Department of Pediatrics (M.W.), The Ohio State University, Columbus; Ardea Outcomes (C.A.T.C.), Halifax, Nova Scotia, Canada; Connections Beyond Sight and Sound Maryland & DC Deaf-Blind Project (R.H.), University of Maryland, College Park; The Inchstone Project (J.Z.H.); Telethon Kids Institute (J.D.), The University of Western Australia; and Curtin School of Allied Health (J.D.), Curtin University, Perth, Western Australia
| | - Chere A T Chapman
- From the Department of Neurology (A.T.B.), Northwestern-Feinberg School of Medicine, Chicago, IL; Decoding Developmental Epilepsies (A.T.B., G.C., J.Z.H.), Washington, DC; Department of Neuropsychology (N.N.L.), Kennedy Krieger Institute; Department of Psychiatry and Behavioral Sciences (N.N.L.), The Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychology (M.W.), Nationwide Children's Hospital; Department of Pediatrics (M.W.), The Ohio State University, Columbus; Ardea Outcomes (C.A.T.C.), Halifax, Nova Scotia, Canada; Connections Beyond Sight and Sound Maryland & DC Deaf-Blind Project (R.H.), University of Maryland, College Park; The Inchstone Project (J.Z.H.); Telethon Kids Institute (J.D.), The University of Western Australia; and Curtin School of Allied Health (J.D.), Curtin University, Perth, Western Australia
| | - Rebecca Hommer
- From the Department of Neurology (A.T.B.), Northwestern-Feinberg School of Medicine, Chicago, IL; Decoding Developmental Epilepsies (A.T.B., G.C., J.Z.H.), Washington, DC; Department of Neuropsychology (N.N.L.), Kennedy Krieger Institute; Department of Psychiatry and Behavioral Sciences (N.N.L.), The Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychology (M.W.), Nationwide Children's Hospital; Department of Pediatrics (M.W.), The Ohio State University, Columbus; Ardea Outcomes (C.A.T.C.), Halifax, Nova Scotia, Canada; Connections Beyond Sight and Sound Maryland & DC Deaf-Blind Project (R.H.), University of Maryland, College Park; The Inchstone Project (J.Z.H.); Telethon Kids Institute (J.D.), The University of Western Australia; and Curtin School of Allied Health (J.D.), Curtin University, Perth, Western Australia
| | - Gabrielle Conecker
- From the Department of Neurology (A.T.B.), Northwestern-Feinberg School of Medicine, Chicago, IL; Decoding Developmental Epilepsies (A.T.B., G.C., J.Z.H.), Washington, DC; Department of Neuropsychology (N.N.L.), Kennedy Krieger Institute; Department of Psychiatry and Behavioral Sciences (N.N.L.), The Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychology (M.W.), Nationwide Children's Hospital; Department of Pediatrics (M.W.), The Ohio State University, Columbus; Ardea Outcomes (C.A.T.C.), Halifax, Nova Scotia, Canada; Connections Beyond Sight and Sound Maryland & DC Deaf-Blind Project (R.H.), University of Maryland, College Park; The Inchstone Project (J.Z.H.); Telethon Kids Institute (J.D.), The University of Western Australia; and Curtin School of Allied Health (J.D.), Curtin University, Perth, Western Australia
| | - JayEtta Z Hecker
- From the Department of Neurology (A.T.B.), Northwestern-Feinberg School of Medicine, Chicago, IL; Decoding Developmental Epilepsies (A.T.B., G.C., J.Z.H.), Washington, DC; Department of Neuropsychology (N.N.L.), Kennedy Krieger Institute; Department of Psychiatry and Behavioral Sciences (N.N.L.), The Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychology (M.W.), Nationwide Children's Hospital; Department of Pediatrics (M.W.), The Ohio State University, Columbus; Ardea Outcomes (C.A.T.C.), Halifax, Nova Scotia, Canada; Connections Beyond Sight and Sound Maryland & DC Deaf-Blind Project (R.H.), University of Maryland, College Park; The Inchstone Project (J.Z.H.); Telethon Kids Institute (J.D.), The University of Western Australia; and Curtin School of Allied Health (J.D.), Curtin University, Perth, Western Australia
| | - Jenny Downs
- From the Department of Neurology (A.T.B.), Northwestern-Feinberg School of Medicine, Chicago, IL; Decoding Developmental Epilepsies (A.T.B., G.C., J.Z.H.), Washington, DC; Department of Neuropsychology (N.N.L.), Kennedy Krieger Institute; Department of Psychiatry and Behavioral Sciences (N.N.L.), The Johns Hopkins School of Medicine, Baltimore, MD; Department of Psychology (M.W.), Nationwide Children's Hospital; Department of Pediatrics (M.W.), The Ohio State University, Columbus; Ardea Outcomes (C.A.T.C.), Halifax, Nova Scotia, Canada; Connections Beyond Sight and Sound Maryland & DC Deaf-Blind Project (R.H.), University of Maryland, College Park; The Inchstone Project (J.Z.H.); Telethon Kids Institute (J.D.), The University of Western Australia; and Curtin School of Allied Health (J.D.), Curtin University, Perth, Western Australia
| |
Collapse
|
5
|
Shieh PB, Kuntz NL, Dowling JJ, Müller-Felber W, Bönnemann CG, Seferian AM, Servais L, Smith BK, Muntoni F, Blaschek A, Foley AR, Saade DN, Neuhaus S, Alfano LN, Beggs AH, Buj-Bello A, Childers MK, Duong T, Graham RJ, Jain M, Coats J, MacBean V, James ES, Lee J, Mavilio F, Miller W, Varfaj F, Murtagh M, Han C, Noursalehi M, Lawlor MW, Prasad S, Rico S. Safety and efficacy of gene replacement therapy for X-linked myotubular myopathy (ASPIRO): a multinational, open-label, dose-escalation trial. Lancet Neurol 2023; 22:1125-1139. [PMID: 37977713 DOI: 10.1016/s1474-4422(23)00313-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND X-linked myotubular myopathy is a rare, life-threatening, congenital muscle disease observed mostly in males, which is caused by mutations in MTM1. No therapies are approved for this disease. We aimed to assess the safety and efficacy of resamirigene bilparvovec, which is an adeno-associated viral vector serotype 8 delivering human MTM1. METHODS ASPIRO is an open-label, dose-escalation trial at seven academic medical centres in Canada, France, Germany, and the USA. We included boys younger than 5 years with X-linked myotubular myopathy who required mechanical ventilator support. The trial was initially in two parts. Part 1 was planned as a safety and dose-escalation phase in which participants were randomly allocated (2:1) to either the first dose level (1·3 × 1014 vector genomes [vg]/kg bodyweight) of resamirigene bilparvovec or delayed treatment, then, for later participants, to either a higher dose (3·5 × 1014 vg/kg bodyweight) of resamirigene bilparvovec or delayed treatment. Part 2 was intended to confirm the dose selected in part 1. Resamirigene bilparvovec was administered as a single intravenous infusion. An untreated control group comprised boys who participated in a run-in study (INCEPTUS; NCT02704273) or those in the delayed treatment cohort who did not receive any dose. The primary efficacy outcome was the change from baseline to week 24 in hours of daily ventilator support. After three unexpected deaths, dosing at the higher dose was stopped and the two-part feature of the study design was eliminated. Because of changes to the study design during its implementation, analyses were done on an as-treated basis and are deemed exploratory. All treated and control participants were included in the safety analysis. The trial is registered with ClinicalTrials.gov, NCT03199469. Outcomes are reported as of Feb 28, 2022. ASPIRO is currently paused while deaths in dosed participants are investigated. FINDINGS Between Aug 3, 2017 and June 1, 2021, 30 participants were screened for eligibility, of whom 26 were enrolled; six were allocated to the lower dose, 13 to the higher dose, and seven to delayed treatment. Of the seven children whose treatment was delayed, four later received the higher dose (n=17 total in the higher dose cohort), one received the lower dose (n=7 total in the lower dose cohort), and two received no dose and joined the control group (n=14 total, including 12 children from INCEPTUS). Median age at dosing or enrolment was 12·1 months (IQR 10·0-30·9; range 9·5-49·7) in the lower dose cohort, 31·1 months (16·0-64·7; 6·8-72·7) in the higher dose cohort, and 18·7 months (10·1-31·5; 5·9-39·3) in the control cohort. Median follow-up was 46·1 months (IQR 41·0-49·5; range 2·1-54·7) for lower dose participants, 27·6 months (24·6-29·1; 3·4-41·0) for higher dose participants, and 28·3 months (9·7-46·9; 5·7-32·7) for control participants. At week 24, lower dose participants had an estimated 77·7 percentage point (95% CI 40·22 to 115·24) greater reduction in least squares mean hours per day of ventilator support from baseline versus controls (p=0·0002), and higher dose participants had a 22·8 percentage point (6·15 to 39·37) greater reduction from baseline versus controls (p=0·0077). One participant in the lower dose cohort and three in the higher dose cohort died; at the time of death, all children had cholestatic liver failure following gene therapy (immediate causes of death were sepsis; hepatopathy, severe immune dysfunction, and pseudomonal sepsis; gastrointestinal haemorrhage; and septic shock). Three individuals in the control group died (haemorrhage presumed related to hepatic peliosis; aspiration pneumonia; and cardiopulmonary failure). INTERPRETATION Most children with X-linked myotubular myopathy who received MTM1 gene replacement therapy had important improvements in ventilator dependence and motor function, with more than half of dosed participants achieving ventilator independence and some attaining the ability to walk independently. Investigations into the risk for underlying hepatobiliary disease in X-linked myotubular myopathy, and the need for monitoring of liver function before gene replacement therapy, are ongoing. FUNDING Astellas Gene Therapies.
Collapse
Affiliation(s)
- Perry B Shieh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Nancy L Kuntz
- Division of Neurology, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - James J Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wolfgang Müller-Felber
- Department of Paediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | | | - Laurent Servais
- I-Motion, Hôpital Armand Trousseau, Paris, France; Neuromuscular Reference Center, Department of Pediatrics, University Hospital Liège, University of Liège, Liège, Belgium; Department of Paediatrics, MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Francesco Muntoni
- NIHR, Great Ormond Street Hospital Biomedical Research Centre, University College London Institute of Child Health, London, UK
| | - Astrid Blaschek
- Department of Paediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | - Dimah N Saade
- Division of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sarah Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, USA
| | - Lindsay N Alfano
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Buj-Bello
- Généthon, Evry, France; Integrare Research Unit UMR_S951, Université Paris-Saclay, Université d'Evry, Inserm, Généthon, Evry, France
| | - Martin K Childers
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Tina Duong
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Robert J Graham
- Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Minal Jain
- Rehabilitation Medicine Department, NIH Hatfield Clinical Research Center, Bethesda, MD, USA
| | - Julie Coats
- Astellas Gene Therapies, San Francisco, CA, USA
| | - Vicky MacBean
- Department of Health Sciences, Brunel University London, London, UK
| | | | - Jun Lee
- Astellas Gene Therapies, San Francisco, CA, USA
| | - Fulvio Mavilio
- Astellas Gene Therapies, San Francisco, CA, USA; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | - Cong Han
- Astellas Pharma Global Development, Northbrook, IL, USA
| | | | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | | | | |
Collapse
|
6
|
Bouma S, Cobben N, Bouman K, Gaytant M, van de Biggelaar R, van Doorn J, Reumers SFI, Voet NB, Doorduin J, Erasmus CE, Kamsteeg EJ, Jungbluth H, Wijkstra P, Voermans NC. Respiratory features of centronuclear myopathy in the Netherlands. Neuromuscul Disord 2023; 33:580-588. [PMID: 37364426 DOI: 10.1016/j.nmd.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Centronuclear myopathy (CNM) is a heterogeneous group of muscle disorders primarily characterized by muscle weakness and variable degrees of respiratory dysfunction caused by mutations in MTM1, DNM2, RYR1, TTN and BIN1. X-linked myotubular myopathy has been the focus of recent natural history studies and clinical trials. Data on respiratory function for other genotypes is limited. To better understand the respiratory properties of the CNM spectrum, we performed a retrospective study in a non-selective Dutch CNM cohort. Respiratory dysfunction was defined as an FVC below 70% of predicted and/or a daytime pCO2 higher than 6 kPa. We collected results of other pulmonary function values (FEV1/FVC ratio) and treatment data from the home mechanical ventilation centres. Sixty-one CNM patients were included. Symptoms of respiratory weakness were reported by 15/47 (32%) patients. Thirty-three individuals (54%) with different genotypes except autosomal dominant (AD)-BIN1-related CNM showed respiratory dysfunction. Spirometry showed decreased FVC, FEV1 & PEF values in all but two patients. Sixteen patients were using HMV (26%), thirteen of them only during night-time. In conclusion, this study provides insight into the prevalence of respiratory symptoms in four genetic forms of CNM in the Netherlands and offers the basis for future natural history studies.
Collapse
Affiliation(s)
- Sietse Bouma
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicolle Cobben
- Department of Pulmonary Diseases & Home Mechanical Ventilation, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Gaytant
- Center for Home Mechanical Ventilation, Department of Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ries van de Biggelaar
- Department of Pulmonary Diseases & Home Mechanical Ventilation, Erasmus MC, Rotterdam, the Netherlands
| | - Jeroen van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stacha F I Reumers
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicoline Bm Voet
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Rehabilitation Center Klimmendaal, Arnhem, the Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center - Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, FoLSM, King's College, London, UK
| | - Peter Wijkstra
- Department of Pulmonary Diseases & Home Mechanical Ventilation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Centre Groningen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Horton RH, Saade D, Markati T, Harriss E, Bönnemann CG, Muntoni F, Servais L. A systematic review of adeno-associated virus gene therapies in neurology: the need for consistent safety monitoring of a promising treatment. J Neurol Neurosurg Psychiatry 2022; 93:1276-1288. [PMID: 36190933 DOI: 10.1136/jnnp-2022-329431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Adeno-associated virus (AAV) gene therapies are generating much excitement in the rare disease field, particularly for previously untreatable neurological conditions. Efficacy has been claimed for several gene therapy products and the number of trials is rapidly increasing. However, reports of severe treatment-related adverse reactions are emerging, including death. There is still insufficient knowledge about their aetiology, prevention and treatment. We therefore undertook to systematically review publicly available data on AAV gene therapies in order to collate existing information on both safety and efficacy. Here, we review emerging efficacy reports of these novel therapies, many of which show promise. We also collate an increasing number of adverse reactions. Overwhelmingly, these results make a case for unified reporting of adverse events. This is likely to be critical for improving the safety of these promising treatments.
Collapse
Affiliation(s)
| | - Dimah Saade
- Division of Neurology, University of Iowa, Iowa, USA
| | | | - Elinor Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Francesco Muntoni
- Dubowtiz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, UK, London, UK
| | - Laurent Servais
- Department of Paediatrics, University of Oxford, Oxford, UK .,Neuromuscular Reference Center, Department of Paediatrics, CHU of Liège, Liège, Belgium
| |
Collapse
|
8
|
Dowling JJ, Müller-Felber W, Smith BK, Bönnemann CG, Kuntz NL, Muntoni F, Servais L, Alfano LN, Beggs AH, Bilder DA, Blaschek A, Duong T, Graham RJ, Jain M, Lawlor MW, Lee J, Coats J, Lilien C, Lowes LP, MacBean V, Neuhaus S, Noursalehi M, Pitts T, Finlay C, Christensen S, Rafferty G, Seferian AM, Tsuchiya E, James ES, Miller W, Sepulveda B, Vila MC, Prasad S, Rico S, Shieh PB. INCEPTUS Natural History, Run-in Study for Gene Replacement Clinical Trial in X-Linked Myotubular Myopathy. J Neuromuscul Dis 2022; 9:503-516. [PMID: 35694931 PMCID: PMC9398079 DOI: 10.3233/jnd-210781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND X-linked myotubular myopathy (XLMTM) is a life-threatening congenital myopathy that, in most cases, is characterized by profound muscle weakness, respiratory failure, need for mechanical ventilation and gastrostomy feeding, and early death. OBJECTIVE We aimed to characterize the neuromuscular, respiratory, and extramuscular burden of XLMTM in a prospective, longitudinal study. METHODS Thirty-four participants < 4 years old with XLMTM and receiving ventilator support enrolled in INCEPTUS, a prospective, multicenter, non-interventional study. Disease-related adverse events, respiratory and motor function, feeding, secretions, and quality of life were assessed. RESULTS During median (range) follow-up of 13.0 (0.5, 32.9) months, there were 3 deaths (aspiration pneumonia; cardiopulmonary failure; hepatic hemorrhage with peliosis) and 61 serious disease-related events in 20 (59%) participants, mostly respiratory (52 events, 18 participants). Most participants (80%) required permanent invasive ventilation (>16 hours/day); 20% required non-invasive support (6-16 hours/day). Median age at tracheostomy was 3.5 months (95% CI: 2.5, 9.0). Thirty-three participants (97%) required gastrostomy. Thirty-one (91%) participants had histories of hepatic disease and/or prospectively experienced related adverse events or laboratory or imaging abnormalities. CHOP INTEND scores ranged from 19-52 (mean: 35.1). Seven participants (21%) could sit unsupported for≥30 seconds (one later lost this ability); none could pull to stand or walk with or without support. These parameters remained static over time across the INCEPTUS cohort. CONCLUSIONS INCEPTUS confirmed high medical impact, static respiratory, motor and feeding difficulties, and early death in boys with XLMTM. Hepatobiliary disease was identified as an under-recognized comorbidity. There are currently no approved disease-modifying treatments.
Collapse
Affiliation(s)
| | | | | | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Nancy L Kuntz
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Francesco Muntoni
- National Institute for Health Research (NIHR) Great Ormond Street (GOS) Hospital Biomedical Research Centre, University College London Institute of Child Health, London, UK
| | - Laurent Servais
- I-Motion, Hôpital Armand Trousseau, Paris, France.,Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| | | | - Alan H Beggs
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Astrid Blaschek
- Dr. v. Haunersches Kinderspital, Klinikum der Universität München, Munich, Germany
| | | | - Robert J Graham
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Minal Jain
- NIH Hatfield Clinical Research Center, Bethesda, MD, USA
| | | | - Jun Lee
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Julie Coats
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | | | | | - Victoria MacBean
- Brunel University London, London, UK and King's College 32 London, London, UK
| | - Sarah Neuhaus
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Mojtaba Noursalehi
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | | | - Caroline Finlay
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | - Sarah Christensen
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | | | | | | | - Emma S James
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA.,University of Louisville, Louisville, KY, USA
| | - Weston Miller
- Astellas Gene Therapies (formerly Audentes Therapeutics), San Francisco, CA, USA
| | - Bryan Sepulveda
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Maria Candida Vila
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Suyash Prasad
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | - Salvador Rico
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics) San Francisco, CA, USA
| | | | | |
Collapse
|
9
|
Lawlor MW, Dowling JJ. X-linked myotubular myopathy. Neuromuscul Disord 2021; 31:1004-1012. [PMID: 34736623 DOI: 10.1016/j.nmd.2021.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022]
Abstract
X-linked myotubular myopathy (XLMTM) is a severe congenital muscle disease caused by mutation in the MTM1 gene. MTM1 encodes myotubularin (MTM1), an endosomal phosphatase that acts to dephosphorylate key second messenger lipids PI3P and PI3,5P2. XLMTM is clinically characterized by profound muscle weakness and associated with multiple disabilities (including ventilator and wheelchair dependence) and early death in most affected individuals. The disease is classically defined by characteristic changes observed on muscle biopsy, including centrally located nuclei, myofiber hypotrophy, and organelle disorganization. In this review, we highlight the clinical and pathologic features of the disease, present concepts related to disease pathomechanisms, and present recent advances in therapy development.
Collapse
Affiliation(s)
- Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James J Dowling
- Division of Neurology and Program for Genetics and Genome Biology, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Departments of Paediatrics and Molecular Genetics, University of Toronto, Canada.
| |
Collapse
|
10
|
Dangouloff T, Boemer F, Servais L. Newborn screening of neuromuscular diseases. Neuromuscul Disord 2021; 31:1070-1080. [PMID: 34620514 DOI: 10.1016/j.nmd.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Neuromuscular diseases represent an heterogenous group of more than 400 diseases, with a very broad phenotypic spectrum. Given their rarity and complexity, neuromuscular diseases are often diagnosed with a very significant delay after which irreversible muscle damage may limit the efficacy of treatments when available. In this context, neonatal screening could constitute a solution for early detection and treatment. A systematic review of the literature in PubMed up to May 1, 2021, was conducted according to PRISMA guidelines, including classical neuromuscular diseases and diseases with a clear peripheral nervous system involvement (including central nervous system disease with severe neuropathy). We found seven diseases for which newborn screening data were reported: spinal muscular atrophy (9), Duchenne muscular dystrophy (9), Pompe disease (8), X-linked adrenoleukodystrophy (5), Krabbe disease (4), myotonic dystrophy type 1 (1), metachromatic leukodystrophy (1). The future of newborn screening for neuromuscular disorders pass through a global technological switch, from a biochemical to a genetic-based approach. The rapid development of therapy also requires the possibility to quickly adapt the list of treated conditions, to allow innovative therapies to achieve their best efficacy.
Collapse
Affiliation(s)
- Tamara Dangouloff
- Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium.
| | - François Boemer
- Biochemical Genetics Lab, Department of Human Genetics, CHU of Liège, University of Liège, Liège, Belgium
| | - Laurent Servais
- Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium; MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, UK.
| |
Collapse
|
11
|
Blaschek A, Hesse N, Warken B, Vill K, Well T, Hodek C, Heinen F, Müller-Felber W, Schroeder AS. Quantitative Motion Measurements Based on Markerless 3D Full-Body Tracking in Children with SMA Highly Correlate with Standardized Motor Assessments. J Neuromuscul Dis 2021; 9:121-128. [PMID: 34308910 DOI: 10.3233/jnd-200619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) is the most common neurodegenerative disease in childhood. New therapeutic interventions have been developed to interrupt rapid motor deterioration. The current standard of clinical evaluation for severely weak infants is the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND), originally developed for SMA type 1. This test however, remains subjective and requires extensive training to be performed reliably. OBJECTIVE Proof of principle of the motion tracking method for capturing complex movement patterns in ten children with SMA. METHODS We have developed a system for tracking full-body motion in infants (KineMAT) using a commercially available, low-cost RGB-depth sensor. Ten patients with SMA (2-46 months of age; CHOP INTEND score 10-50) were recorded for 2 minutes during unperturbed spontaneous whole-body activity. Five predefined motion parameters representing 56 degrees of freedom of upper, lower extremities and trunk joints were correlated with CHOP INTEND scores using Pearson product momentum correlation (r). Test-retest analysis in two patients used descriptive statistics. RESULTS 4/5 preselected motion parameters highly correlated with CHOP INTEND: 1. Standard deviation of joint angles (r = 0.959, test-retest range 1.3-1.9%), 2. Standard deviation of joint position (r = 0.933, test-retest range 2.9%), 3. Absolute distance of hand/foot travelled (r = 0.937, test-retest range 6-10.5%), 4. Absolute distance of hand/foot travelled against gravity (r = 0.923; test-retest range 4.8-8.5%). CONCLUSIONS Markerless whole-body motion capture using the KineMAT proved to objectively capture motor performance in infants and children with SMA across different severity and ages.
Collapse
Affiliation(s)
- Astrid Blaschek
- Ludwig Maximilian University of Munich (LMU), Hauner Children's Hospital, Paediatric Neurology and Developmental Medicine, Munich, Germany
| | - Nikolas Hesse
- Swiss Children's Rehab, University Children's Hospital Zurich, Affoltern am Albis, Switzerland
| | - Birgit Warken
- Ludwig Maximilian University of Munich (LMU), Hauner Children's Hospital, Paediatric Neurology and Developmental Medicine, Munich, Germany
| | - Katharina Vill
- Ludwig Maximilian University of Munich (LMU), Hauner Children's Hospital, Paediatric Neurology and Developmental Medicine, Munich, Germany
| | - Therese Well
- Ludwig Maximilian University of Munich (LMU), Hauner Children's Hospital, Paediatric Neurology and Developmental Medicine, Munich, Germany
| | - Claudia Hodek
- Ludwig Maximilian University of Munich (LMU), Hauner Children's Hospital, Paediatric Neurology and Developmental Medicine, Munich, Germany
| | - Florian Heinen
- Ludwig Maximilian University of Munich (LMU), Hauner Children's Hospital, Paediatric Neurology and Developmental Medicine, Munich, Germany
| | - Wolfgang Müller-Felber
- Ludwig Maximilian University of Munich (LMU), Hauner Children's Hospital, Paediatric Neurology and Developmental Medicine, Munich, Germany
| | - Andreas Sebastian Schroeder
- Ludwig Maximilian University of Munich (LMU), Hauner Children's Hospital, Paediatric Neurology and Developmental Medicine, Munich, Germany
| |
Collapse
|