1
|
Górecki DC, Kalinski P, Pomeroy J. Is dystrophin immunogenicity a barrier to advancing gene therapy for Duchenne muscular dystrophy? Gene Ther 2025:10.1038/s41434-025-00531-y. [PMID: 40181163 DOI: 10.1038/s41434-025-00531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to severe disability and premature death in young men. As DMD is caused by the absence of dystrophin, therapeutic development has focused on strategies to restore dystrophin expression. These include readthrough of premature stop codons, exon skipping to restore the reading frame, and gene therapy. The first two methods are mutation-specific, benefiting only subsets of patients, whereas gene therapy could treat all individuals with DMD. Immunogenicity of dystrophin may challenge these efforts. The immune system can recognize dystrophin as a neo-antigen, just as it can recognize newly arising antigens present on mutated cells. An in-depth evaluation of anti-dystrophin immune response as a factor affecting the treatment effectiveness is needed. Key questions include the underlying mechanisms of immunity induction by antigenic epitopes of the re-expressed dystrophin, the impact of such responses on the therapeutic efficacy, and the role of patient-specific risk factors, such as preimmunization due to revertant fibres, chronic muscle inflammation, pre-existing T lymphocytes reactive to dystrophin, which avoided deletion in dystrophic thymus, or antigen cross-reactivity. Patients' immune status assessment before treatment may help mitigating anti-dystrophin responses. Exploring potential therapeutic strategies to enhance treatment outcomes is also essential: Since DMD can be diagnosed at birth, early dystrophin re-expression could prevent damage and also potentially induce neonatal tolerance. In older patients, carefully managed immunosuppression and tolerogenic protocols could pave the way for more successful dystrophin replacement therapies.
Collapse
Affiliation(s)
- Dariusz C Górecki
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael Bld, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Joanna Pomeroy
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael Bld, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
2
|
Remmel HL, Hammer SS, Neff LA, Dorchies OM, Scapozza L, Fischer D, Quay SC. A Hypothesized Therapeutic Role of (Z)-Endoxifen in Duchenne Muscular Dystrophy (DMD). Degener Neurol Neuromuscul Dis 2025; 15:1-15. [PMID: 40124418 PMCID: PMC11923445 DOI: 10.2147/dnnd.s496904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is an inherited, X-linked disorder that is progressive, debilitating, and ultimately fatal. The current therapeutic landscape offers no cures, but does include palliative treatments that delay disease progression, and there is progress on genetic therapies that have the promise to be curative. There is much room for new therapies, and foundational work with the estrogen receptor modulator tamoxifen suggests the potential of a unique spectrum of therapeutic benefit from endoxifen, a metabolite of tamoxifen. Here we describe the potential for this new DMD therapy in the context of the overall DMD therapeutic landscape.
Collapse
Affiliation(s)
- H Lawrence Remmel
- Atossa Therapeutics, Inc., Seattle, WA, USA
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Drukier Institute for Children’s Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Laurence A Neff
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Université Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Dirk Fischer
- Division of Pediatric Neurology and Developmental Medicine, University Children’s Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | | |
Collapse
|
3
|
Hsu J, Shieh PB. Effect of immunomodulatory agents on the response to COVID-19 vaccination among patients with neuromuscular diseases: A single center experience. Medicine (Baltimore) 2025; 104:e41606. [PMID: 40020121 PMCID: PMC11875606 DOI: 10.1097/md.0000000000041606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
Immunomodulatory agents, commonly used in autoimmune neuromuscular disorders, may significantly attenuate immunological response to vaccines. Yet, the degree to which different classes of these drugs suppress the immune system is unclear. This study aimed to characterize the response to the coronavirus disease 2019 (COVID-19) vaccines among our cohort of patients with neuromuscular diseases, including both patients who are and are not receiving immunomodulatory agents. This was a retrospective chart review of our single-center neuromuscular clinic patients who had undergone semi-quantitative COVID-19 antibody testing. A sum of 111 patients were initially identified, and 44 were excluded because of various reasons (e.g., COVID-19 infection, etc). The remaining 67 patients had undergone antibody testing after receiving one of the FDA-approved COVID-19 vaccines (2 doses of Moderna or Pfizer/BioNTech, or 1 of Janssen). A sum of 52 of these patients were receiving immunomodulatory treatments, and 15 were not. Patients were grouped based on their relative antibody response to vaccination, and the antibody responses of patients on each of the different immunomodulatory treatments were compared to those of patients not on any immunomodulation. Patients receiving B-cell depleting therapies demonstrated the weakest response to vaccination (P = .002), and those on mycophenolate mofetil also displayed a weaker response compared to patients not on immunomodulation (P = .045). Corticosteroids (P = .584) and intravenous immunoglobulin (P = .941) had minimal effect on COVID-19 antibody response. The degree to which a specific agent may affect a patient's immune response to vaccines or infections may play a role in a clinician's choice of treatment.
Collapse
Affiliation(s)
- Jaylin Hsu
- Department of Neurology, University of California, Los Angeles, CA
| | - Perry B. Shieh
- Department of Neurology, University of California, Los Angeles, CA
- Department of Pediatrics, University of California, Los Angeles, CA
| |
Collapse
|
4
|
Johnson LM, Pulskamp TG, Berlau DJ. The latest developments in synthetic approaches to Duchenne muscular dystrophy. Expert Rev Neurother 2025:1-11. [PMID: 39899275 DOI: 10.1080/14737175.2025.2462281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a rare X-linked genetic disorder caused by mutations in the dystrophin gene, leading to an almost complete absence of dystrophin, which is essential for muscle cell structure and function. This resulting muscle deterioration and fibrosis, eventually causes respiratory failure and cardiomyopathy. While there is currently no cure, existing therapies aim to prolong survival and alleviate symptoms. AREAS COVERED This paper reviews current and emerging therapies for DMD, focusing on their safety and efficacy. Although corticosteroids remain the standard treatment, newly approved drugs such as exon-skipping therapies, vamorolone, delandistrogene moxeparvovec, and givinostat provide new treatment options. Additionally, future therapies, including gene therapy, stem cell treatments, and anti-fibrotic agents, show promise for clinical application. EXPERT OPINION Advancements in DMD treatments have expanded patient options. While gene therapy offers potential for correcting the genetic defect and alleviating symptoms, corticosteroids remain the most cost-effective and well-researched treatment. This is partly due to the lack of compelling long-term safety and efficacy data for gene therapies. The accelerated FDA review process has enabled faster approval of new medications; however many have provided minimal clinical benefit to patients. Despite these challenges, continued drug development and innovative research offer hope to patients.
Collapse
Affiliation(s)
- Lucy M Johnson
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| | - Tariq G Pulskamp
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| | - Daniel J Berlau
- Department of Pharmaceutical Sciences, Regis University School of Pharmacy, Denver, CO, USA
| |
Collapse
|
5
|
Hakimi M, Burnham T, Ramsay J, Cheung JW, Goyal NA, Jefferies JL, Donaldson D. Electrophysiologic and cardiovascular manifestations of Duchenne and Becker muscular dystrophies. Heart Rhythm 2025; 22:192-202. [PMID: 38997055 DOI: 10.1016/j.hrthm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
There have been significant advances in the diagnosis and management of the hereditary muscular disorders Duchenne and Becker muscular dystrophy (DMD and BMD). Cardiac electrophysiologic and cardiovascular involvement has long been important in the surveillance, care, and prognosis of patients with both BMD and DMD and is the leading cause of mortality in patients with DMD. With improved long-term prognosis, rhythm disorders and progressive cardiomyopathy with resultant heart failure are increasingly common. This review aimed to provide an overview to electrophysiologists and cardiologists of the cardiac electrophysiologic phenotypes and genetics of BMD and DMD and to highlight the recent discoveries that have advanced clinical course and management. A systematic review was performed of the diagnosis and management of DMD and BMD. The Cochrane Library, PubMed, MEDLINE, Europe PubMed Central, AMED, and Embase databases were accessed for available evidence. The research reported in this paper adhered to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Evidence from randomized controlled trials and studies cited in expert consensus and practice guidelines are examined. Advanced imaging techniques and a spectrum of rhythm disorders associated with the progressive cardiomyopathy are presented. Early initiation of heart failure therapies, the role of cardiac implantable devices, and novel gene therapies approved for use with the potential to alter the disease course are discussed. When profound cardiac and cardiac electrophysiologic involvement is diagnosed and treated earlier, outcomes for DMD and BMD patients may be improved.
Collapse
Affiliation(s)
- Matthew Hakimi
- Division of Cardiology, Weill Cornell Medical, New York, New York
| | - Tyson Burnham
- Division of Cardiology, Department of Medicine, University of California at Irvine, Irvine Medical Center, Orange, California.
| | - Jay Ramsay
- Division of Cardiology, Department of Medicine, University of California at Irvine, Irvine Medical Center, Orange, California
| | - Jim W Cheung
- Division of Cardiology, Weill Cornell Medical, New York, New York
| | - Namita A Goyal
- Department of Neurology, University of California at Irvine, Irvine Medical Center, Orange, California
| | | | - David Donaldson
- Division of Cardiology, Department of Medicine, University of California at Irvine, Irvine Medical Center, Orange, California
| |
Collapse
|
6
|
Lalunio H, Stupka N, Goodman CA, Hayes A. The Potential of Targeting APE1/Ref-1 as a Therapeutic Intervention for Duchenne Muscular Dystrophy. Antioxid Redox Signal 2024. [PMID: 39729027 DOI: 10.1089/ars.2024.0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Significance: Inflammation and oxidative stress play crucial roles in the development and progression of skeletal muscle diseases. This review aims to examine the existing evidence regarding the involvement and inhibition of APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1/redox factor 1) in diseases, then extrapolate this evidence to the context of skeletal muscle and discuss the potential beneficial effects of APE1/Ref-1 inhibition in ameliorating myopathy with a particular focus on dystrophic pathology. Critical Issues: Currently, therapeutic interventions targeting pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), have shown limited efficacy in both clinical and preclinical settings. Thus, there is a need for a more comprehensive treatment approach. Recent Advances: APE1/Ref-1 is a multifunctional protein that was initially identified as being involved in DNA repair. However, newer research has revealed its additional role as a redox-sensitive regulator of transcription factors, including NF-κB and NRF2. Numerous studies have reported increased expression of APE1/Ref-1 in various disorders and have demonstrated the beneficial effects of inhibiting its redox function using the small molecular inhibitor, APX3330. Although these pathways are similarly dysregulated in neuromuscular disorders, the specific role of APE1/Ref-1 in skeletal muscle remains unclear, with only a limited number of studies noting its presence in this tissue. Future Directions: Further studies investigating the role of APE1/Ref-1 in skeletal muscle and identifying whether APE1/Ref-1 is up- or downregulated in dystrophic skeletal muscle would be required to determine whether upregulating or inhibiting the redox function of APE1/Ref-1 will alleviate chronic inflammation and heightened oxidative stress. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Hannah Lalunio
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
| | - Nicole Stupka
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
| | - Craig A Goodman
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, Australia
| | - Alan Hayes
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
7
|
Rosen HG, Berger NJ, Hodge SN, Fujishiro A, Lourie J, Kapadia V, Linden MA, Jee E, Kim J, Kim Y, Zou K. Inhibition of Mitochondrial Fission Protein Drp1 Ameliorates Myopathy in the D2-mdx Model of Duchenne Muscular Dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.628172. [PMID: 39763900 PMCID: PMC11703253 DOI: 10.1101/2024.12.26.628172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Although current treatments for Duchenne Muscular Dystrophy (DMD) have proven to be effective in delaying myopathy, there remains a strong need to identify novel targets to develop additional therapies. Mitochondrial dysfunction is an early pathological feature of DMD. A fine balance of mitochondrial dynamics (fission and fusion) is crucial to maintain mitochondrial function and skeletal muscle health. Excessive activation of Dynamin-Related Protein 1 (Drp1)-mediated mitochondrial fission was reported in animal models of DMD. However, whether Drp1-mediated mitochondrial fission is a viable target for treating myopathy in DMD remains unknown. Here, we treated a D2-mdx model of DMD (9-10 weeks old) with Mdivi-1, a selective Drp1 inhibitor, every other day (i.p. injection) for 5 weeks. We demonstrated that Mdivi-1 effectively improved skeletal muscle strength and reduced serum creatine kinase concentration. Mdivi-1 treatment also effectively inhibited mitochondrial fission regulatory protein markers, Drp1(Ser616) phosphorylation and Fis1 in skeletal muscles from D2-mdx mice, which resulted in reduced content of damaged and fragmented mitochondria. Furthermore, Mdivi-1 treatment attenuated lipid peroxidation product, 4-HNE, in skeletal muscle from D2-mdx mice, which was inversely correlated with muscle grip strength. Finally, we revealed that Mdivi-1 treatment downregulated Alpha 1 Type I Collagen (Col1a1) protein expression, a marker of fibrosis, and Interleukin-6 (IL-6) mRNA expression, a marker of inflammation. In summary, these results demonstrate that inhibition of Drp1-mediated mitochondrial fission by Mdivi-1 is effective in improving muscle strength and alleviating muscle damage in D2-mdx mice. These improvements are associated with improved skeletal muscle mitochondrial integrity, leading to attenuated lipid peroxidation.
Collapse
Affiliation(s)
- H. Grace Rosen
- Department of Biology, University of Massachusetts Boston, Boston, MA
| | - Nicolas J. Berger
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | - Shantel N. Hodge
- Department of Biology, University of Massachusetts Boston, Boston, MA
| | - Atsutaro Fujishiro
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | - Jared Lourie
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | - Vrusti Kapadia
- Department of Biology, University of Massachusetts Boston, Boston, MA
| | - Melissa A. Linden
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | - Eunbin Jee
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Yuho Kim
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA
| | - Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| |
Collapse
|
8
|
Bonato A, Raparelli G, Caruso M. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy. Front Physiol 2024; 15:1496870. [PMID: 39717824 PMCID: PMC11663947 DOI: 10.3389/fphys.2024.1496870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.
Collapse
Affiliation(s)
| | | | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy
| |
Collapse
|
9
|
Hurley-Novatny A, Chang D, Murakami K, Wang L, Li H. Poor bone health in Duchenne muscular dystrophy: a multifactorial problem beyond corticosteroids and loss of ambulation. Front Endocrinol (Lausanne) 2024; 15:1398050. [PMID: 39669499 PMCID: PMC11634624 DOI: 10.3389/fendo.2024.1398050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, fatal muscle wasting disease caused by X-linked mutations in the dystrophin gene. Alongside the characteristic muscle weakness, patients face a myriad of skeletal complications, including osteoporosis/osteopenia, high susceptibility to vertebral and long bone fractures, fat embolism post-fracture, scoliosis, and growth retardation. Those skeletal abnormalities significantly compromise quality of life and are sometimes life-threatening. These issues were traditionally attributed to loss of ambulation and chronic corticosteroid use, but recent investigations have unveiled a more intricate etiology. Factors such as vitamin D deficiency, hormonal imbalances, systemic inflammation, myokine release from dystrophic muscle, and vascular dysfunction are emerging as significant contributors as well. This expanded understanding illuminates the multifaceted pathogenesis underlying skeletal issues in DMD. Present therapeutic options are limited and lack specificity. Advancements in understanding the pathophysiology of bone complications in DMD will offer promising avenues for novel treatment modalities. In this review, we summarize the current understanding of factors contributing to bone problems in DMD and delineate contemporary and prospective multidisciplinary therapeutic approaches.
Collapse
Affiliation(s)
- Amelia Hurley-Novatny
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - David Chang
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Katsuhiro Murakami
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Ling Wang
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Hongshuai Li
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Armytasari I, Sutomo R, Triono A. Longitudinal management in Duchenne muscular dystrophy with exon 63 duplication. BMJ Case Rep 2024; 17:e260706. [PMID: 39353675 DOI: 10.1136/bcr-2024-260706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
A boy with nonambulatory Duchenne muscular dystrophy (DMD) tested positive for exon 63 duplication and exhibited intellectual disability, overweight and dyslipidaemia. The patient underwent a comprehensive multidisciplinary approach involving pharmacological and non-pharmacological interventions. Despite challenges, such as socioeconomic constraints and limited access to advanced therapies, the patient received tailored care. The management included prednisone medication, dietary modifications and psychological support. The patient's journey highlighted the complex interplay of medical and psychosocial factors affecting DMD patients in resource-limited settings. Regular monitoring and the involvement of the patient's family in a peer group were arranged to improve overall quality of life. The case underscores the need for accessible and holistic care for DMD patients, addressing both medical and psychosocial challenges.
Collapse
Affiliation(s)
- Inggar Armytasari
- Department of Child Health, Public Hospital Dr Sardjito, Sleman, Indonesia
- Department of Child Health, Gadjah Mada University, Faculty of Medicine Public Health and Nursing, Sleman, Indonesia
| | - Retno Sutomo
- Department of Child Health, Public Hospital Dr Sardjito, Sleman, Indonesia
- Department of Child Health, Gadjah Mada University, Faculty of Medicine Public Health and Nursing, Sleman, Indonesia
| | - Agung Triono
- Department of Child Health, Public Hospital Dr Sardjito, Sleman, Indonesia
- Department of Child Health, Gadjah Mada University, Faculty of Medicine Public Health and Nursing, Sleman, Indonesia
| |
Collapse
|
11
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
12
|
Servais L, Lair LL, Connolly AM, Byrne BJ, Chen KS, Coric V, Qureshi I, Durham S, Campbell DJ, Maclaine G, Marin J, Bechtold C. Taldefgrobep Alfa and the Phase 3 RESILIENT Trial in Spinal Muscular Atrophy. Int J Mol Sci 2024; 25:10273. [PMID: 39408601 PMCID: PMC11477173 DOI: 10.3390/ijms251910273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a rare, genetic neurodegenerative disorder caused by insufficient production of survival motor neuron (SMN) protein. Diminished SMN protein levels lead to motor neuron loss, causing muscle atrophy and weakness that impairs daily functioning and reduces quality of life. SMN upregulators offer clinical improvements and increased survival in SMA patients, although significant unmet needs remain. Myostatin, a TGF-β superfamily signaling molecule that binds to the activin II receptor, negatively regulates muscle growth; myostatin inhibition is a promising therapeutic strategy for enhancing muscle. Combining myostatin inhibition with SMN upregulation, a comprehensive therapeutic strategy targeting the whole motor unit, offers promise in SMA. Taldefgrobep alfa is a novel, fully human recombinant protein that selectively binds to myostatin and competitively inhibits other ligands that signal through the activin II receptor. Given a robust scientific and clinical rationale and the favorable safety profile of taldefgrobep in patients with neuromuscular disease, the RESILIENT phase 3, randomized, placebo-controlled trial is investigating taldefgrobep as an adjunct to SMN upregulators in SMA (NCT05337553). This manuscript reviews the role of myostatin in muscle, explores the preclinical and clinical development of taldefgrobep and introduces the phase 3 RESILIENT trial of taldefgrobep in SMA.
Collapse
Affiliation(s)
- Laurent Servais
- Department of Pediatrics, University of Oxford, Oxford OX3 9DU, UK
- Division of Child Neurology, Department of Paediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital of Liège, University of Liège, Boulevard Du 12e De Ligne, 4000 Liege, Belgium
| | | | | | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Karen S. Chen
- Spinal Muscular Atrophy Foundation, 970 W Broadway STE E, PMB 140, Jackson, WY 83001, USA
| | - Vlad Coric
- Biohaven Pharmaceuticals Inc., New Haven, CT 06510, USA
| | - Irfan Qureshi
- Biohaven Pharmaceuticals Inc., New Haven, CT 06510, USA
| | - Susan Durham
- Biohaven Pharmaceuticals Inc., New Haven, CT 06510, USA
| | | | | | - Jackie Marin
- Biohaven Pharmaceuticals Inc., New Haven, CT 06510, USA
| | | |
Collapse
|
13
|
Lloyd EM, Crew RC, Haynes VR, White RB, Mark PJ, Jackaman C, Papadimitriou JM, Pinniger GJ, Murphy RM, Watt MJ, Grounds MD. Pilot investigations into the mechanistic basis for adverse effects of glucocorticoids in dysferlinopathy. Skelet Muscle 2024; 14:19. [PMID: 39123261 PMCID: PMC11312411 DOI: 10.1186/s13395-024-00350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by gene mutations resulting in deficiency of the membrane-associated protein dysferlin. They manifest post-growth and are characterised by muscle wasting (primarily in the limb and limb-gridle muscles), inflammation, and replacement of myofibres with adipose tissue. The precise pathomechanism for dysferlinopathy is currently unclear; as such there are no treatments currently available. Glucocorticoids (GCs) are widely used to reduce inflammation and treat muscular dystrophies, but when administered to patients with dysferlinopathy, they have unexpected adverse effects, with accelerated loss of muscle strength. METHODS To investigate the mechanistic basis for the adverse effects of GCs in dysferlinopathy, the potent GC dexamethasone (Dex) was administered for 4-5 weeks (0.5-0.75 µg/mL in drinking water) to dysferlin-deficient BLA/J and normal wild-type (WT) male mice, sampled at 5 (Study 1) or 10 months (Study 2) of age. A wide range of analyses were conducted. Metabolism- and immune-related gene expression was assessed in psoas muscles at both ages and in quadriceps at 10 months of age. For the 10-month-old mice, quadriceps and psoas muscle histology was assessed. Additionally, we investigated the impact of Dex on the predominantly slow and fast-twitch soleus and extensor digitorum longus (EDL) muscles (respectively) in terms of contractile function, myofibre-type composition, and levels of proteins related to contractile function and metabolism, plus glycogen. RESULTS At both ages, many complement-related genes were highly expressed in BLA/J muscles, and WT mice were generally more responsive to Dex than BLA/J. The effects of Dex on BLA/J mice included (i) increased expression of inflammasome-related genes in muscles (at 5 months) and (ii) exacerbated histopathology of quadriceps and psoas muscles at 10 months. A novel observation was pronounced staining for glycogen in many myofibres of the damaged quadriceps muscles, with large pale vacuolated myofibres, suggesting possible myofibre death by oncosis. CONCLUSION These pilot studies provide a new focus for further investigation into the adverse effects of GCs on dysferlinopathic muscles.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Rachael C Crew
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Vanessa R Haynes
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Robert B White
- MD Education Unit, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Peter J Mark
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - John M Papadimitriou
- Department of Pathology and Laboratory Medicine, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
14
|
Krishna L, Prashant A, Kumar YH, Paneyala S, Patil SJ, Ramachandra SC, Vishwanath P. Molecular and Biochemical Therapeutic Strategies for Duchenne Muscular Dystrophy. Neurol Int 2024; 16:731-760. [PMID: 39051216 PMCID: PMC11270304 DOI: 10.3390/neurolint16040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Significant progress has been achieved in understanding Duchenne muscular dystrophy (DMD) mechanisms and developing treatments to slow disease progression. This review article thoroughly assesses primary and secondary DMD therapies, focusing on innovative modalities. The primary therapy addresses the genetic abnormality causing DMD, specifically the absence or reduced expression of dystrophin. Gene replacement therapies, such as exon skipping, readthrough, and gene editing technologies, show promise in restoring dystrophin expression. Adeno-associated viruses (AAVs), a recent advancement in viral vector-based gene therapies, have shown encouraging results in preclinical and clinical studies. Secondary therapies aim to maintain muscle function and improve quality of life by mitigating DMD symptoms and complications. Glucocorticoid drugs like prednisone and deflazacort have proven effective in slowing disease progression and delaying loss of ambulation. Supportive treatments targeting calcium dysregulation, histone deacetylase, and redox imbalance are also crucial for preserving overall health and function. Additionally, the review includes a detailed table of ongoing and approved clinical trials for DMD, exploring various therapeutic approaches such as gene therapies, exon skipping drugs, utrophin modulators, anti-inflammatory agents, and novel compounds. This highlights the dynamic research field and ongoing efforts to develop effective DMD treatments.
Collapse
Affiliation(s)
- Lakshmi Krishna
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
| | - Akila Prashant
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
- Department of Medical Genetics, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Yogish H. Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Shasthara Paneyala
- Department of Neurology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Siddaramappa J. Patil
- Department of Medical Genetics, Narayana Hrudalaya Health Hospital/Mazumdar Shah, Bengaluru 560099, Karnataka, India;
| | - Shobha Chikkavaddaragudi Ramachandra
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
| | - Prashant Vishwanath
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
| |
Collapse
|
15
|
Hu J, Gao L, Fu S, Wang W, Xie C, Zhang Y, Ke H, Gong F. The impact of glucocorticoids therapy on cutaneous wounds in Kawasaki disease: A meta-analysis of randomized controlled trials. Int Wound J 2024; 21:e14812. [PMID: 38444059 PMCID: PMC10915126 DOI: 10.1111/iwj.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Kawasaki disease (KD) is one of the most challenging diseases that is defined as an acute vasculitis that affects the coronary arteries primarily in children. It causes complications if left untreated at early stages, ultimately leading to death. Corticosteroids have been recognized to treat and cause great impact on the patients with KD. Glucocorticoid is one of the main corticosteroids that are being used to treat KD and cutaneous wounds. However, ineffectiveness of a few glucocorticoids can limit the efficacy of this treatment. This study particularly aimed to elucidate the impact of glucocorticoids on cutaneous wounds in KD. To perform the meta-analysis, a comprehensive literature survey was conducted to unveil the studies and research conducted on Kawasaki patients that revealed different glucocorticoids in the form of specific interventions influencing KD. The literature was searched using numerous keywords, screened and data was extracted to perform the meta-analysis and then it was conducted using the metabin function of R package meta. A total of 2000 patients from both intervention and control groups were employed to carry out the meta-analysis to analyse and evaluate the impact of glucocorticoids on curing KD and cutaneous wounds in patients. The results disclosed that glucocorticoids along with other steroids, mainly IVIG (intravenous immunoglobulin), was an effective intervention to patients suffering from Kawasaki. The results depicted significant outcomes with the values (risk ratio [RR]: 1.08, 95% confidence interval [CI]: 0.58-2.00, p < 0.01) and enlightened the fact that adopting different glucocorticoids may significantly improve the efficacy of skin lesions along with KD. Hence, interventions of glucocorticoids must be utilized in the clinical practice to reduce the incidence of skin wounds and adverse effects caused due to KD.
Collapse
Affiliation(s)
- Jian Hu
- Department of Cardiology, Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Lichao Gao
- Department of Cardiology, Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Songling Fu
- Department of Cardiology, Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Wei Wang
- Department of Cardiology, Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Chunhong Xie
- Department of Cardiology, Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yiying Zhang
- Department of Cardiology, Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Haiyan Ke
- Department of PediatricsTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Fangqi Gong
- Department of Cardiology, Children's HospitalZhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| |
Collapse
|
16
|
Krishna S, Quindry JC, Valentine RJ, Selsby JT. The Interaction of Duchenne Muscular Dystrophy and Insulin Resistance. Exerc Sport Sci Rev 2024; 52:31-38. [PMID: 38126403 DOI: 10.1249/jes.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Duchenne muscular dystrophy (DMD), caused by deficiency of functional dystrophin protein, is a fatal, progressive muscle disease that frequently includes metabolic dysregulation. Herein, we explore the physiologic consequences of dystrophin deficiency within the context of obesity and insulin resistance. We hypothesized that dystrophin deficiency increases the frequency of insulin resistance, and insulin resistance potentiates muscle pathology caused by dystrophin deficiency.
Collapse
Affiliation(s)
- Swathy Krishna
- Departments of Animal Science and Kinesiology, Iowa State University, Ames, IA
| | - John C Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Rudy J Valentine
- Departments of Animal Science and Kinesiology, Iowa State University, Ames, IA
| | - Joshua T Selsby
- Departments of Animal Science and Kinesiology, Iowa State University, Ames, IA
| |
Collapse
|
17
|
Wenbo Z, Yan Z. The Uses of Anabolic Androgenic Steroids Among Athletes; Its Positive and Negative Aspects- A Literature Review. J Multidiscip Healthc 2023; 16:4293-4305. [PMID: 38170017 PMCID: PMC10759908 DOI: 10.2147/jmdh.s439384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The use of anabolic androgenic steroids (AAS) for strength training and muscle building is a widespread practice among athletes and young individuals. Athletes and bodybuilders are using these substances for various purposes, such as enhancing muscle mass, strengthening their bodies, and enhancing their performances. AAS exert a wide range of physiological effects that result in the activation of central signaling, resulting in adverse effects. Moreover, excessive use of AAS which can be categorized as AAS abuse; is linked to biological and psychological pathologies, which can lead to mortality. Complications arising from steroid abuse involve both cellular and physiological complications. Cellular complications arise when activation of signaling proteins like mTOR, Akt, etc. leads to alteration in protein synthesis pathways, cell cycle, oxidative stress, and apoptosis, contributing to damage at the cellular level. Physiological complications are evident with cardiovascular pathologies, including an altered lipid profile, cardiac hypertrophy, hypogonadism after discontinuation of AAS, and modulation of GABA receptors in the brain, all contributed by the androgen receptor signaling. Clinical complications budding from these altered physiological processes lead to clinical effects like testicular dysfunction, acne, gynecomastia, and neuropsychiatric disorders. Despite potential therapeutic benefits, AAS use is prohibited by the World Anti-Doping Agency (WADA) due to concerns over adverse health effects. This review highlights the molecular mechanisms, physiological processes, and clinical complications arising from the excessive use of AAS among athletes.
Collapse
Affiliation(s)
- Zhang Wenbo
- Department of Physical Education, Changchun Institute of Education, Changchun, Jilin, 130033, People’s Republic of China
| | - Zhang Yan
- School of Physical Education, Inner Mongolia Minzu University, Tongliao, Neimeng, 028000, People’s Republic of China
| |
Collapse
|
18
|
Krishna S, Echevarria KG, Reed CH, Eo H, Wintzinger M, Quattrocelli M, Valentine RJ, Selsby JT. A fat- and sucrose-enriched diet causes metabolic alterations in mdx mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R692-R711. [PMID: 37811713 PMCID: PMC11178302 DOI: 10.1152/ajpregu.00246.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
Duchenne muscular dystrophy (DMD), a progressive muscle disease caused by the absence of functional dystrophin protein, is associated with multiple cellular, physiological, and metabolic dysfunctions. As an added complication to the primary insult, obesity/insulin resistance (O/IR) is frequently reported in patients with DMD; however, how IR impacts disease severity is unknown. We hypothesized a high-fat, high-sucrose diet (HFHSD) would induce O/IR, exacerbate disease severity, and cause metabolic alterations in dystrophic mice. To test this hypothesis, we treated 7-wk-old mdx (disease model) and C57 mice with a control diet (CD) or an HFHSD for 15 wk. The HFHSD induced insulin resistance, glucose intolerance, and hyperglycemia in C57 and mdx mice. Of note, mdx mice on CD were also insulin resistant. In addition, visceral adipose tissue weights were increased with HFHSD in C57 and mdx mice though differed by genotype. Serum creatine kinase activity and histopathological analyses using Masson's trichrome staining in the diaphragm indicated muscle damage was driven by dystrophin deficiency but was not augmented by diet. In addition, markers of inflammatory signaling, mitochondrial abundance, and autophagy were impacted by disease but not diet. Despite this, in addition to disease signatures in CD-fed mice, metabolomic and lipidomic analyses demonstrated a HFHSD caused some common changes in C57 and mdx mice and some unique signatures of O/IR within the context of dystrophin deficiency. In total, these data revealed that in mdx mice, 15 wk of HFHSD did not overtly exacerbate muscle injury but further impaired the metabolic status of dystrophic muscle.
Collapse
Affiliation(s)
- Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | | | - Carter H Reed
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
19
|
Prabakaran AD, McFarland K, Miz K, Durumutla HB, Piczer K, El Abdellaoui Soussi F, Latimer H, Werbrich C, Blair NS, Millay DP, Prideaux B, Finck BN, Quattrocelli M. Glucocorticoid intermittence coordinates rescue of energy and mass in aging-related sarcopenia through the myocyte-autonomous PGC1alpha-Lipin1 transactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562573. [PMID: 37905062 PMCID: PMC10614926 DOI: 10.1101/2023.10.16.562573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Sarcopenia burdens the elderly population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are missing. The glucocorticoid prednisone remodels muscle metabolism based on frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone rescued muscle quality in aged 24-month-old mice to levels comparable to young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing PGC1alpha and its co-factor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1alpha, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed the myocyte-specific Lipin1 as non-redundant factor coaxing PGC1alpha upregulation to the stimulation of both oxidative and anabolic capacities. Our study unveils an aging-resistant druggable program in myocytes to coordinately rescue energy and mass in sarcopenia.
Collapse
Affiliation(s)
- Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Karen Miz
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin Piczer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fadoua El Abdellaoui Soussi
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cole Werbrich
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - N. Scott Blair
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Douglas P Millay
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St Louis, MO, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
20
|
Georgantopoulos A, Vougioukas A, Kalousi FD, Tsialtas I, Psarra AMG. Comparative Studies on the Anti-Inflammatory and Apoptotic Activities of Four Greek Essential Oils: Involvement in the Regulation of NF-κΒ and Steroid Receptor Signaling. Life (Basel) 2023; 13:1534. [PMID: 37511910 PMCID: PMC10381560 DOI: 10.3390/life13071534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Essential oils (EOs) are well-known for their anti-fungal, anti-microbial, anti-inflammatory and relaxing activities. Steroid hormones, especially glucocorticoids, are also well-known for their anti-inflammatory activities and control of the hypothalamus-pituitary-adrenal (HPA) axis and glucose homeostasis. The biological activities of glucocorticoids render them the most widely prescribed anti-inflammatory drugs, despite their adverse side effects. In this study, comparative studies of the anti-inflammatory activities and interference with glucocorticoids receptor (GR) and estrogen receptor (ER) signaling of EOs from Greek Oregano, Melissa officinalis, Lavender and from the Chios Mastic, produced from the Greek endemic mastic tree, were performed in Human Embryonic Kidney 293 (HEK-293) cells. Chios Mastic (Mastiha) and oregano EOs exhibited the highest anti-inflammatory activities. The former showed a reduction in both NF-κB activity and protein levels. Mastic essential oil also caused a reduction in GR protein levels that may compensate for its boosting effect on dexamethasone (DEX)-induced GR transcriptional activation, ending up in no induction of the gluconeogenic phoshoenolpyruvate carboxykinase (PEPCK) protein levels that constitute the GR target. Oregano, Melissa officinalis and lavender EOs caused the suppression of the transcriptional activation of GR. Furthermore, the most active EO, that taken from Melissa officinalis, showed a reduction in both GR and PEPCK protein levels. Thus, the anti-inflammatory and anti-gluconeogenic activities of the EOs were uncovered, possibly via the regulation of GR signaling. Moreover, cytotoxic actions of Melissa officinalis and lavender EOs via the induction of mitochondrial-dependent apoptosis were revealed. Our results highlight these essentials oils' anti-inflammatory and apoptotic actions in relation to their implication on the regulation of steroid hormones' actions, uncovering their potential use in steroid therapy, with many applications in pharmaceutical and health industries as anti-cancer, anti-hyperglycemic and anti-inflammatory supplements.
Collapse
Affiliation(s)
- Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Athanasios Vougioukas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Foteini D Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
21
|
Sheptulina AF, Antyukh KY, Kiselev AR, Mitkovskaya NP, Drapkina OM. Possible Mechanisms Linking Obesity, Steroidogenesis, and Skeletal Muscle Dysfunction. Life (Basel) 2023; 13:1415. [PMID: 37374197 DOI: 10.3390/life13061415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing evidence suggests that skeletal muscles may play a role in the pathogenesis of obesity and associated conditions due to their impact on insulin resistance and systemic inflammation. Skeletal muscles, as well as adipose tissue, are largely recognized as endocrine organs, producing biologically active substances, such as myokines and adipokines. They may have either beneficial or harmful effects on the organism and its functions, acting through the endocrine, paracrine, and autocrine pathways. Moreover, the collocation of adipose tissue and skeletal muscles, i.e., the amount of intramuscular, intermuscular, and visceral adipose depots, may be of major importance for metabolic health. Traditionally, the generalized and progressive loss of skeletal muscle mass and strength or physical function, named sarcopenia, has been thought to be associated with age. That is why most recently published papers are focused on the investigation of the effect of obesity on skeletal muscle function in older adults. However, accumulated data indicate that sarcopenia may arise in individuals with obesity at any age, so it seems important to clarify the possible mechanisms linking obesity and skeletal muscle dysfunction regardless of age. Since steroids, namely, glucocorticoids (GCs) and sex steroids, have a major impact on the amount and function of both adipose tissue and skeletal muscles, and are involved in the pathogenesis of obesity, in this review, we will also discuss the role of steroids in the interaction of these two metabolically active tissues in the course of obesity.
Collapse
Affiliation(s)
- Anna F Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Karina Yu Antyukh
- Republican Scientific and Practical Center of Cardiology, 220036 Minsk, Belarus
| | - Anton R Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Natalia P Mitkovskaya
- Republican Scientific and Practical Center of Cardiology, 220036 Minsk, Belarus
- Department of Cardiology and Internal Diseases, Belarusian State Medical University, 220116 Minsk, Belarus
| | - Oxana M Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
22
|
Zabłocki K, Górecki DC. The Role of P2X7 Purinoceptors in the Pathogenesis and Treatment of Muscular Dystrophies. Int J Mol Sci 2023; 24:ijms24119434. [PMID: 37298386 DOI: 10.3390/ijms24119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Muscular dystrophies are inherited neuromuscular diseases, resulting in progressive disability and often affecting life expectancy. The most severe, common types are Duchenne muscular dystrophy (DMD) and Limb-girdle sarcoglycanopathy, which cause advancing muscle weakness and wasting. These diseases share a common pathomechanism where, due to the loss of the anchoring dystrophin (DMD, dystrophinopathy) or due to mutations in sarcoglycan-encoding genes (LGMDR3 to LGMDR6), the α-sarcoglycan ecto-ATPase activity is lost. This disturbs important purinergic signaling: An acute muscle injury causes the release of large quantities of ATP, which acts as a damage-associated molecular pattern (DAMP). DAMPs trigger inflammation that clears dead tissues and initiates regeneration that eventually restores normal muscle function. However, in DMD and LGMD, the loss of ecto-ATPase activity, that normally curtails this extracellular ATP (eATP)-evoked stimulation, causes exceedingly high eATP levels. Thus, in dystrophic muscles, the acute inflammation becomes chronic and damaging. The very high eATP over-activates P2X7 purinoceptors, not only maintaining the inflammation but also tuning the potentially compensatory P2X7 up-regulation in dystrophic muscle cells into a cell-damaging mechanism exacerbating the pathology. Thus, the P2X7 receptor in dystrophic muscles is a specific therapeutic target. Accordingly, the P2X7 blockade alleviated dystrophic damage in mouse models of dystrophinopathy and sarcoglycanopathy. Therefore, the existing P2X7 blockers should be considered for the treatment of these highly debilitating diseases. This review aims to present the current understanding of the eATP-P2X7 purinoceptor axis in the pathogenesis and treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
23
|
Sun Z, Wang X, White Z, Dormuth C, Morales F, Bernatchez P. Dyslipidemia in Muscular Dystrophy: A Systematic Review and Meta-Analysis. J Neuromuscul Dis 2023:JND230064. [PMID: 37182897 DOI: 10.3233/jnd-230064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Muscular dystrophies (MDs) are characterized by chronic muscle wasting but also poorly understood metabolic co-morbidities. We have recently shown that Duchenne MD (DMD) patients, dogs and asymptomatic carriers are affected by a new form of dyslipidemia that may exacerbate muscle damage. OBJECTIVE We aimed to perform a systematic review and meta-analysis for evidence that other types of MDs are associated with dyslipidemia compared to healthy controls. METHODS Search was conducted using MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials for reports that compare plasma/serum lipids from MD patients and controls, and meta-analysis of cross-sectional studies quantifying total cholesterol, high-density lipoprotein, low density lipoprotein and triglycerides was performed. RESULTS Out of 749 studies, 17 met our inclusion criteria for meta-analysis. 14 of the 17 studies (82% ) included investigated myotonic dystrophy (DM); other studies were on pseudohypertrophic MD (PMD) or DMD. As a whole, MD individuals had significantly higher levels of circulating total cholesterol (Hedges' g with 95% confidence interval [CI], 0.80 [0.03 - 1.56]; p = 0.04) and triglycerides (Hedges' g with 95% confidence interval [CI], 2.28[0.63 - 3.92]; p = 0.01) compared to controls. Meta-regression analysis showed the percentage of male gender was significantly associated with the difference in total cholesterol (beta = 0.05; 95% CI, - 0.02 to 0.11; p = 0.043) and high-density lipoprotein (beta = - 9.38; 95% CI, - 16.26 to - 2.50; p = 0.028). CONCLUSIONS MD is associated with significantly higher circulating levels of total cholesterol and triglycerides. However, caution on the interpretation of these findings is warranted and future longitudinal research is required to better understand this relationship.
Collapse
Affiliation(s)
- Zeren Sun
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Xindi Wang
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Zoe White
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Colin Dormuth
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
| | - Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, SanJosé, Costa Rica
| | - Pascal Bernatchez
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| |
Collapse
|
24
|
Anthony K, Ala P, Catapano F, Meng J, Domingos J, Perry M, Ricotti V, Maresh K, Phillips LC, Servais L, Seferian AM, De Lucia S, de Groot I, Krom YD, Verschuuren JGM, Niks EH, Straub V, Guglieri M, Voit T, Morgan J, Muntoni F. T Cell Responses to Dystrophin in a Natural History Study of Duchenne Muscular Dystrophy. Hum Gene Ther 2023; 34:439-448. [PMID: 36453228 DOI: 10.1089/hum.2022.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, but many patients have rare revertant fibers that express dystrophin. The skeletal muscle pathology of DMD patients includes immune cell infiltration and inflammatory cascades. There are several strategies to restore dystrophin in skeletal muscles of patients, including exon skipping and gene therapy. There is some evidence that dystrophin restoration leads to a reduction in immune cells, but dystrophin epitopes expressed in revertant fibers or following genome editing, cell therapy, or microdystrophin delivery after adeno-associated viral gene therapy may elicit T cell production in patients. This may affect the efficacy of the therapeutic intervention, and potentially lead to serious adverse events. To confirm and extend previous studies, we performed annual enzyme- linked immunospot interferon-gamma assays on peripheral blood mononuclear cells from 77 pediatric boys with DMD recruited into a natural history study, 69 of whom (89.6%) were treated with corticosteroids. T cell responses to dystrophin were quantified using a total of 368 peptides spanning the entire dystrophin protein, organized into nine peptide pools. Peptide mapping pools were used to further localize the immune response in one positive patient. Six (7.8%) patients had a T cell-mediated immune response to dystrophin at at least one time point. All patients who had a positive result had been treated with corticosteroids, either prednisolone or prednisone. Our results show that ∼8% of DMD individuals in our cohort have a pre-existing T cell-mediated immune response to dystrophin, despite steroid treatment. Although these responses are relatively low level, this information should be considered a useful immunological baseline before undertaking clinical trials and future DMD studies. We further highlight the importance for a robust, reproducible standard operating procedure for collecting, storing, and shipping samples from multiple centers to minimize the number of inconclusive data.
Collapse
Affiliation(s)
- Karen Anthony
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Catapano
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Joana Domingos
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Mark Perry
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Valeria Ricotti
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Kate Maresh
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Lauren C Phillips
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Laurent Servais
- Institut de Myologie, Groupe hospitalier La Pitié Salpétrière, Paris, France
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, United Kingdom
- Division of Paediatrics, Neuromuscular Center, University Hospital and University of Liège, Liège, Belgium
| | | | | | | | - Yvonne D Krom
- Leiden University Medical Centre, Leiden, Netherlands
| | | | - Erik H Niks
- Leiden University Medical Centre, Leiden, Netherlands
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Thomas Voit
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
25
|
Argenziano M, Pota V, Di Paola A, Tortora C, Marrapodi MM, Giliberti G, Roberti D, Pace MC, Rossi F. CB2 Receptor as Emerging Anti-Inflammatory Target in Duchenne Muscular Dystrophy. Int J Mol Sci 2023; 24:3345. [PMID: 36834757 PMCID: PMC9964283 DOI: 10.3390/ijms24043345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a very severe X-linked dystrophinopathy. It is due to a mutation in the DMD gene and causes muscular degeneration in conjunction with several secondary co-morbidities, such cardiomyopathy and respiratory failure. DMD is characterized by a chronic inflammatory state, and corticosteroids represent the main therapy for these patients. To contradict drug-related side effects, there is need for novel and more safe therapeutic strategies. Macrophages are immune cells stringently involved in both physiological and pathological inflammatory processes. They express the CB2 receptor, one of the main elements of the endocannabinoid system, and have been proposed as an anti-inflammatory target in several inflammatory and immune diseases. We observed a lower expression of the CB2 receptor in DMD-associated macrophages, hypothesizing its involvement in the pathogenesis of this pathology. Therefore, we analyzed the effect of JWH-133, a CB2 receptor selective agonist, on DMD-associated primary macrophages. Our study describes the beneficial effect of JWH-133 in counteracting inflammation by inhibiting pro-inflammatory cytokines release and by directing macrophages' phenotype toward the M2 anti-inflammatory one.
Collapse
Affiliation(s)
- Maura Argenziano
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Vincenzo Pota
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
- Centro Clinico NeMO, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Giulia Giliberti
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Maria Caterina Pace
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
- Centro Clinico NeMO, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| |
Collapse
|
26
|
Grounds MD, Lloyd EM. Considering the Promise of Vamorolone for Treating Duchenne Muscular Dystrophy. J Neuromuscul Dis 2023; 10:1013-1030. [PMID: 37927274 PMCID: PMC10657680 DOI: 10.3233/jnd-230161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
This commentary provides an independent consideration of data related to the drug vamorolone (VBP15) as an alternative steroid proposed for treatment of Duchenne muscular dystrophy (DMD). Glucocorticoids such as prednisone and deflazacort have powerful anti-inflammatory benefits and are the standard of care for DMD, but their long-term use can result in severe adverse side effects; thus, vamorolone was designed as a unique dissociative steroidal anti-inflammatory drug, to retain efficacy and minimise these adverse effects. Extensive clinical trials (ongoing) have investigated the use of vamorolone for DMD, with two trials also for limb-girdle muscular dystrophies including dysferlinopathy (current), plus a variety of pre-clinical trials published. Vamorolone looks very promising, with similar efficacy and some reduced adverse effects (e.g., related to height) compared with other glucocorticoids, specifically prednisone/prednisolone, although it has not yet been directly compared with deflazacort. Of particular interest to clarify is the optimal clinical dose and other aspects of vamorolone that are proposed to provide additional benefits for membranes of dystrophic muscle: to stabilise and protect the sarcolemma from damage and enhance repair. The use of vamorolone (and other glucocorticoids) needs to be evaluated in terms of overall long-term efficacy and cost, and also in comparison with many candidate non-steroidal drugs with anti-inflammatory and other benefits for DMD.
Collapse
Affiliation(s)
- Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
27
|
Schreyer L, Reilly J, McConkey H, Kerkhof J, Levy MA, Hu J, Hnaini M, Sadikovic B, Campbell C. The discovery of the DNA methylation episignature for Duchenne muscular dystrophy. Neuromuscul Disord 2023; 33:5-14. [PMID: 36572586 DOI: 10.1016/j.nmd.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive neuromuscular disorder characterized by progressive muscle weakness due to loss of function mutations in the dystrophin gene. Variation in clinical presentation, the rate of disease progression, and treatment responsiveness have been observed amongst DMD patients, suggesting that factors beyond the loss of dystrophin may contribute to DMD pathophysiology. Epigenetic mechanisms are becoming recognized as important factors implicated in the etiology and progression of various diseases. A growing number of genetic syndromes have been associated with unique genomic DNA methylation patterns (called "episignatures") that can be used for diagnostic testing and as disease biomarkers. To further investigate DMD pathophysiology, we assessed the genome-wide DNA methylation profiles of peripheral blood from 36 patients with DMD using the combination of Illumina Infinium Methylation EPIC bead chip array and EpiSign technology. We identified a unique episignature for DMD that whose specificity was confirmed in relation other neurodevelopmental disorders with known episignatures. By modeling the DMD episignature, we developed a new DMD episignature biomarker and provided novel insights into the molecular pathogenesis of this disorder, which have the potential to advance more effective, personalized approaches to DMD care.
Collapse
Affiliation(s)
- Leighton Schreyer
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jonathan Hu
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mona Hnaini
- Department of Pediatrics, Clinical Neurological Sciences, Western University, London, ON N6A 3K7, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - Craig Campbell
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|
28
|
Hua J, Huang J, Li G, Lin S, Cui L. Glucocorticoid induced bone disorders in children: Research progress in treatment mechanisms. Front Endocrinol (Lausanne) 2023; 14:1119427. [PMID: 37082116 PMCID: PMC10111257 DOI: 10.3389/fendo.2023.1119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
Long-term or supra-physiological dose of glucocorticoid (GC) application in clinic can lead to impaired bone growth and osteoporosis. The side effects of GC on the skeletal system are particularly serious in growing children, potentially causing growth retardation or even osteoporotic fractures. Children's bone growth is dependent on endochondral ossification of growth plate chondrocytes, and excessive GC can hinder the development of growth plate and longitudinal bone growth. Despite the availability of drugs for treating osteoporosis, they have failed to effectively prevent or treat longitudinal bone growth and development disorders caused by GCs. As of now, there is no specific drug to mitigate these severe side effects. Traditional Chinese Medicine shows potential as an alternative to the current treatments by eliminating the side effects of GC. In summary, this article comprehensively reviews the research frontiers concerning growth and development disorders resulting from supra-physiological levels of GC and discusses the future research and treatment directions for optimizing steroid therapy. This article may also provide theoretical and experimental insight into the research and development of novel drugs to prevent GC-related side effects.
Collapse
Affiliation(s)
- Junying Hua
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Liao Cui, ; Sien Lin,
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Liao Cui, ; Sien Lin,
| |
Collapse
|
29
|
Wintzinger M, Miz K, York A, Demonbreun AR, Molkentin JD, McNally EM, Quattrocelli M. Effects of Glucocorticoids in Murine Models of Duchenne and Limb-Girdle Muscular Dystrophy. Methods Mol Biol 2023; 2587:467-478. [PMID: 36401044 PMCID: PMC9816991 DOI: 10.1007/978-1-0716-2772-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vivo testing of glucocorticoid steroids in dystrophic mice offers important insights in benefits and risks of those drugs in the pathological context of muscular dystrophy. Frequency of dosing changes the spectrum of glucocorticoid effects on muscle and metabolic homeostasis. Here, we describe a combination of non-invasive and invasive methods to quantitatively discriminate the specific effects of intermittent (once-weekly) versus mainstay (once-daily) regimens on muscle fibrosis, muscle function, and metabolic homeostasis in murine models of Duchenne and limb-girdle muscular dystrophies.
Collapse
Affiliation(s)
- Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Karen Miz
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Allen York
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffery D. Molkentin
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Strokotova AV, Grigorieva EV. Glucocorticoid Effects on Proteoglycans and Glycosaminoglycans. Int J Mol Sci 2022; 23:ijms232415678. [PMID: 36555315 PMCID: PMC9778983 DOI: 10.3390/ijms232415678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids are steroid hormones that play diverse roles in numerous normal and pathological processes. They are actively used to treat a wide variety of diseases, including neurodegenerative and inflammatory diseases, cancers, and COVID-19, among others. However, the long-term use of glucocorticoids is associated with numerous side effects. Molecular mechanisms of these negative side effects are not completely understood. Recently, arguments have been made that one such mechanisms may be related to the influence of glucocorticoids on O-glycosylated components of the cell surface and extracellular matrix, in particular on proteoglycans and glycosaminoglycans. The potential toxic effects of glucocorticoids on these glycosylated macromolecules are particularly meaningful for brain physiology because proteoglycans/glycosaminoglycans are the main extracellular components of brain tissue. Here, we aim to review the known effects of glucocorticoids on proteoglycan expression and glycosaminoglycan content in different tissues, with a specific focus on the brain.
Collapse
|
31
|
Aiello GM, Cartwright MS. Eteplirsen Use in a Boy with Duchenne Muscular Dystrophy and Sickle Cell Anemia. Case Rep Neurol 2022; 14:404-407. [PMID: 36644004 PMCID: PMC9834637 DOI: 10.1159/000527358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023] Open
Abstract
Eteplirsen is an antisense oligonucleotide used in the treatment of Duchenne muscular dystrophy (DMD). The safety of eteplirsen use in individuals with rare comorbid conditions is not known. We present the case of a 4-year-old boy with a DMD exon deletion amenable to treatment with eteplirsen and comorbid sickle cell anemia. He has received eteplirsen treatment for 3 years with no clear adverse effects, including no increase in sickle cell crises.
Collapse
Affiliation(s)
| | - Michael Stephen Cartwright
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,*Michael Stephen Cartwright,
| |
Collapse
|
32
|
Kracht KD, Eichorn NL, Berlau DJ. Perspectives on the advances in the pharmacotherapeutic management of Duchenne muscular dystrophy. Expert Opin Pharmacother 2022; 23:1701-1710. [PMID: 36168943 DOI: 10.1080/14656566.2022.2130246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Duchenne muscular dystrophy (DMD) is a progressive genetic disease characterized by muscular weakness with a global prevalence of 7.1 cases per 100,000 males. DMD is caused by mutations of the dystrophin gene on the X chromosome which is responsible for dystrophin protein production. Dystrophin is a cytoskeletal protein that contributes to structural support in muscle cells. DMD mutations result in dystrophin protein deficiency which leads to muscle damage and the associated clinical presentation. AREAS COVERED : Corticosteroids such as prednisone and deflazacort are routinely given to patients to treat inflammation, but their use is limited by the occurrence of side effects and a lack of standardized prescribing. Exon-skipping medications are emerging as treatment options for a small portion of DMD patients even though efficacy is uncertain. Many new therapeutics are under development that target inflammation, fibrosis, and dystrophin replacement. EXPERT OPINION : Because of side effects associated with corticosteroid use, there is need for better alternatives to the standard of care. Excessive cost is a barrier to patients receiving medications that have yet to have established efficacy. Additional therapies have the potential to help patients with DMD, although most are several years away from approval for patient use.
Collapse
|
33
|
Consalvi S, Tucciarone L, Macrì E, De Bardi M, Picozza M, Salvatori I, Renzini A, Valente S, Mai A, Moresi V, Puri PL. Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibro-adipogenic progenitors. EMBO Rep 2022; 23:e54721. [PMID: 35383427 PMCID: PMC9171680 DOI: 10.15252/embr.202254721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological treatment of Duchenne muscular dystrophy (DMD) with histone deacetylase inhibitors (HDACi) is currently being tested in clinical trials; however, pre-clinical studies indicated that the beneficial effects of HDACi are restricted to early stages of disease. We show that FAPs from late-stage mdx mice exhibit aberrant HDAC activity and genome-wide alterations of histone acetylation that are not fully reversed by HDACi. In particular, combinatorial H3K27 and/or H3K9/14 hypo-acetylation at promoters of genes required for cell cycle activation and progression, as well as glycolysis, are associated with their downregulation in late-stage mdx FAPs. These alterations could not be reversed by HDACi, due to a general resistance to HDACi-induced H3K9/14 hyperacetylation. Conversely, H3K9/14 hyper-acetylation at promoters of Senescence Associated Secretory Phenotype (SASP) genes is associated with their upregulation in late-stage mdx FAPs; however, HDACi could reduce promoter acetylation and blunt SASP gene activation. These data reveal that during DMD progression FAPs develop disease-associated features reminiscent of cellular senescence, through epigenetically distinct and pharmacologically dissociable events. They also indicate that HDACi might retain anti-fibrotic effects at late stages of DMD.
Collapse
Affiliation(s)
- Silvia Consalvi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Luca Tucciarone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Elisa Macrì
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Marco De Bardi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Mario Picozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Illari Salvatori
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), Rome Unit, Rome, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
34
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
The Role of Taurine in Skeletal Muscle Functioning and Its Potential as a Supportive Treatment for Duchenne Muscular Dystrophy. Metabolites 2022; 12:metabo12020193. [PMID: 35208266 PMCID: PMC8879184 DOI: 10.3390/metabo12020193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is required for ensuring proper muscle functioning. Knockout of the taurine transporter in mice results in low taurine concentrations in the muscle and associates with myofiber necrosis and diminished exercise capacity. Interestingly, regulation of taurine and its transporter is altered in the mdx mouse, a model for Duchenne Muscular Dystrophy (DMD). DMD is a genetic disorder characterized by progressive muscle degeneration and weakness due to the absence of dystrophin from the muscle membrane, causing destabilization and contraction-induced muscle cell damage. This review explores the physiological role of taurine in skeletal muscle and the consequences of a disturbed balance in DMD. Its potential as a supportive treatment for DMD is also discussed. In addition to genetic correction, that is currently under development as a curative treatment, taurine supplementation has the potential to reduce muscle inflammation and improve muscle strength in patients.
Collapse
|
36
|
Zelikovich AS, Joslin BC, Casey P, McNally EM, Ajroud-Driss S. An Open Label Exploratory Clinical Trial Evaluating Safety and Tolerability of Once-Weekly Prednisone in Becker and Limb-Girdle Muscular Dystrophy. J Neuromuscul Dis 2022; 9:275-287. [PMID: 35124660 PMCID: PMC9028668 DOI: 10.3233/jnd-210741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Glucocorticoid steroids are standard of care in Duchenne Muscular Dystrophy (DMD) to slow disease course. Use of glucocorticoids in other muscular dystrophies, including Becker (BMD) and Limb Girdle (LGMD), has been less explored. Recently, preclinical studies conducted in DMD and LGMD mouse models showed once-weekly prednisone was associated with improved muscle performance without activation of muscle atrophy genes. Objective: To determine safety and tolerability of once-weekly prednisone in patients with LGMD and BMD. Methods: We conducted an open label, exploratory single center study of of once-weekly prednisone at 0.75–1 mg/Kg in LGMD (n = 19) and BMD (n = 1) (mean age 35, range 18–60). The LGMD participants represented multiple different LGMD subtypes, and the study included ambulatory and non-ambulatory participants. Participants were assessed at baseline and 24 weeks for vital signs, blood biomarkers, and for patient-reported side effects. As secondary endpoints, functional muscle testing and body composition were measured. Results: Over the 24-week study, there were no significant changes in blood pressure, HgbA1C, or lipid profiles. We observed a reduction in serum creatine kinase over the study interval. Whole body DEXA scanning suggested a possible increase in lean mass and a reduction in adiposity. Functional measures suggested trends in improved muscle performance. Conclusions: In this single center, open label pilot study, once-weekly prednisone was safe and well tolerated. Additional investigation of once-weekly prednisone in a larger cohort and for a longer period of time is warranted.
Collapse
Affiliation(s)
- Aaron S. Zelikovich
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Benjamin C. Joslin
- Department of Neurology, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Patricia Casey
- Department of Neurology, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Senda Ajroud-Driss
- Department of Neurology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
37
|
Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Exp Cell Res 2022; 410:112968. [PMID: 34883113 DOI: 10.1016/j.yexcr.2021.112968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.
Collapse
Affiliation(s)
- Giuseppe Angelini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
38
|
P2X7 Receptor Antagonist Reduces Fibrosis and Inflammation in a Mouse Model of Alpha-Sarcoglycan Muscular Dystrophy. Pharmaceuticals (Basel) 2022; 15:ph15010089. [PMID: 35056146 PMCID: PMC8777980 DOI: 10.3390/ph15010089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
Limb-girdle muscular dystrophy R3, a rare genetic disorder affecting the limb proximal muscles, is caused by mutations in the α-sarcoglycan gene (Sgca) and aggravated by an immune-mediated damage, finely modulated by the extracellular (e)ATP/purinoceptors axis. Currently, no specific drugs are available. The aim of this study was to evaluate the therapeutic effectiveness of a selective P2X7 purinoreceptor antagonist, A438079. Sgca knockout mice were treated with A438079 every two days at 3 mg/Kg for 24 weeks. The P2X7 antagonist improved clinical parameters by ameliorating mice motor function and decreasing serum creatine kinase levels. Histological analysis of muscle morphology indicated a significant reduction of the percentage of central nuclei, of fiber size variability and of the extent of local fibrosis and inflammation. A cytometric characterization of the muscle inflammatory infiltrates showed that A438079 significantly decreased innate immune cells and upregulated the immunosuppressive regulatory T cell subpopulation. In α-sarcoglycan null mice, the selective P2X7 antagonist A438079 has been shown to be effective to counteract the progression of the dystrophic phenotype and to reduce the inflammatory response. P2X7 antagonism via selective inhibitors could be included in the immunosuppressant strategies aimed to dampen the basal immune-mediated damage and to favor a better engraftment of gene-cell therapies.
Collapse
|
39
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
40
|
Hematopoietic Prostaglandin D Synthase Inhibitor PK007 Decreases Muscle Necrosis in DMD mdx Model Mice. Life (Basel) 2021; 11:life11090994. [PMID: 34575143 PMCID: PMC8469723 DOI: 10.3390/life11090994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle weakness and wasting due to the lack of dystrophin protein. The acute phase of DMD is characterized by muscle necrosis and increased levels of the pro-inflammatory mediator, prostaglandin D2 (PGD2). Inhibiting the production of PGD2 by inhibiting hematopoietic prostaglandin D synthase (HPGDS) may alleviate inflammation and decrease muscle necrosis. We tested our novel HPGDS inhibitor, PK007, in the mdx mouse model of DMD. Our results show that hindlimb grip strength was two-fold greater in the PK007-treated mdx group, compared to untreated mdx mice, and displayed similar muscle strength to strain control mice (C57BL/10ScSn). Histological analyses showed a decreased percentage of regenerating muscle fibers (~20% less) in tibialis anterior (TA) and gastrocnemius muscles and reduced fibrosis in the TA muscle in PK007-treated mice. Lastly, we confirmed that the DMD blood biomarker, muscle creatine kinase activity, was also reduced by ~50% in PK007-treated mdx mice. We conclude that our HPGDS inhibitor, PK007, has effectively reduced muscle inflammation and fibrosis in a DMD mdx mouse model.
Collapse
|
41
|
Vainzof M, Souza LS, Gurgel-Giannetti J, Zatz M. Sarcoglycanopathies: an update. Neuromuscul Disord 2021; 31:1021-1027. [PMID: 34404573 DOI: 10.1016/j.nmd.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Sarcoglycanopathies are the most severe forms of autosomal recessive limb-girdle muscular dystrophies (LGMDs), constituting about 10-25% of LGMDs. The clinical phenotype is variable, but onset is usually in the first decade of life. Patients present muscle hypertrophy, elevated CK, variable muscle weaknesses, and progressive loss of ambulation. Four subtypes are known: LGMDR3, LGMDR4, LGMDR5 and LGMDR6, caused, respectively, by mutations in the SGCA, SGCB,SGCG and SGCD genes. Their four coded proteins, α-SG, ß-SG, λ-SG and δ-SG are part of the dystrophin-glycoprotein complex (DGC) present in muscle sarcolemma, which acts as a linker between the cytoskeleton of the muscle fiber and the extracellular matrix, providing mechanical support to the sarcolemma during myofiber contraction. Many different mutations have already been identified in all the sarcoglycan genes, with a predominance of some mutations in different populations. The diagnosis is currently based on the molecular screening for these mutations. Therapeutic approaches include the strategy of gene replacement mediated by a vector derived from adeno-associated virus (AAV). Pre-clinical studies have shown detectable levels of SG proteins in the muscle, and some improvement in the phenotype, in animal models. Therapeutic trials in humans are ongoing.
Collapse
Affiliation(s)
- Mariz Vainzof
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
| | - Lucas S Souza
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Juliana Gurgel-Giannetti
- Department of Pediatrics, Service of Neuropediatrics from Federal, University of Minas Gerais, Belo Horizonte, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Farini A, Villa C, Tripodi L, Legato M, Torrente Y. Role of Immunoglobulins in Muscular Dystrophies and Inflammatory Myopathies. Front Immunol 2021; 12:666879. [PMID: 34335568 PMCID: PMC8316973 DOI: 10.3389/fimmu.2021.666879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Muscular dystrophies and inflammatory myopathies are heterogeneous muscular disorders characterized by progressive muscle weakness and mass loss. Despite the high variability of etiology, inflammation and involvement of both innate and adaptive immune response are shared features. The best understood immune mechanisms involved in these pathologies include complement cascade activation, auto-antibodies directed against muscular proteins or de-novo expressed antigens in myofibers, MHC-I overexpression in myofibers, and lymphocytes-mediated cytotoxicity. Intravenous immunoglobulins (IVIGs) administration could represent a suitable immunomodulator with this respect. Here we focus on mechanisms of action of immunoglobulins in muscular dystrophies and inflammatory myopathies highlighting results of IVIGs from pre-clinical and case reports evidences.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Dino Ferrari Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Dino Ferrari Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
43
|
Lopez C, Taivassalo T, Berru MG, Saavedra A, Rasmussen HC, Batra A, Arora H, Roetzheim AM, Walter GA, Vandenborne K, Forbes SC. Postcontractile blood oxygenation level-dependent (BOLD) response in Duchenne muscular dystrophy. J Appl Physiol (1985) 2021; 131:83-94. [PMID: 34013753 PMCID: PMC8325615 DOI: 10.1152/japplphysiol.00634.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by a progressive replacement of muscle by fat and fibrous tissue, muscle weakness, and loss of functional abilities. Impaired vasodilatory and blood flow responses to muscle activation have also been observed in DMD and associated with mislocalization of neuronal nitric oxide synthase mu (nNOSμ) from the sarcolemma. The objective of this study was to determine whether the postcontractile blood oxygen level-dependent (BOLD) MRI response is impaired in DMD and correlated with established markers of disease severity in DMD, including MRI muscle fat fraction (FF) and clinical functional measures. Young boys with DMD (n = 16, 5-14 yr) and unaffected controls (n = 16, 5-14 yr) were evaluated using postcontractile BOLD, FF, and functional assessments. The BOLD response was measured following five brief (2 s) maximal voluntary dorsiflexion contractions, each separated by 1 min of rest. FFs from the anterior compartment lower leg muscles were quantified via chemical shift-encoded imaging. Functional abilities were assessed using the 10 m walk/run and the 6-min walk distance (6MWD). The peak BOLD responses in the tibialis anterior and extensor digitorum longus were reduced (P < 0.001) in DMD compared with controls. Furthermore, the anterior compartment peak BOLD response correlated with function (6MWD ρ = 0.87, P < 0.0001; 10 m walk/run time ρ = -0.78, P < 0.001) and FF (ρ = -0.52, P = 0.05). The reduced postcontractile BOLD response in DMD may reflect impaired microvascular function. The relationship observed between the postcontractile peak BOLD response and functional measures and FF suggests that the BOLD response is altered with disease severity in DMD.NEW & NOTEWORTHY This study examined the postcontractile blood oxygen level-dependent (BOLD) response in boys with Duchenne muscular dystrophy (DMD) and unaffected controls, and correlated this measure to markers of disease severity. Our findings indicate that the postcontractile BOLD response is impaired in DMD after brief muscle contractions, is correlated to disease severity, and may be valuable to implement in future studies to evaluate treatments targeting microvascular function in DMD.
Collapse
Affiliation(s)
- Christopher Lopez
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Maria G Berru
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Andres Saavedra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Hannah C Rasmussen
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Harneet Arora
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Alex M Roetzheim
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|