1
|
Hassan SA, Aziz DM, Abdullah MN, Bhat AR, Dongre RS, Hadda TB, Almalki FA, Kawsar SMA, Rahiman AK, Ahmed S, Abdellattif MH, Berredjem M, Sheikh SA, Jamalis J. In vitro and in vivo evaluation of the antimicrobial, antioxidant, cytotoxic, hemolytic activities and in silico POM/DFT/DNA-binding and pharmacokinetic analyses of new sulfonamide bearing thiazolidin-4-ones. J Biomol Struct Dyn 2024; 42:3747-3763. [PMID: 37402503 DOI: 10.1080/07391102.2023.2226713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/11/2023] [Indexed: 07/06/2023]
Abstract
In this work, Schiff bases and Thiazolidin-4-ones, were synthesized using Sonication and Microwave techniques, respectively. The Schiff base derivatives (3a-b) were synthesized via the reaction of Sulfathiazole (1) with benzaldehyde derivatives (2a-b), followed by the synthesis of 4-thiazoledinone (4a-b) derivatives by cyclizing the synthesized Schiff bases through thioglycholic acid. All the synthesized compounds were characterized by spectroscopic techniques such as FT IR, NMR and HRMS. The synthesized compounds were tested for their in vitro antimicrobial and antioxidant and in vivo cytotoxicity and hemolysis ability. The synthesized compounds displayed better antimicrobial and antioxidant activity and low toxicity in comparison to reference drugs and negative controls, respectively. The hemolysis test revealed the compounds exhibit lower hemolytic effects and hemolytic values are comparatively low and the safety of compounds is in comparison with standard drugs. Theoretical calculations were carried out by using the molecular operating environment (MOE) and Gaussian computing software and observations were in good agreement with the in vitro and in vivo biological activities. Petra/Osiris/Molinspiration (POM) results indicate the presence of three combined antibacterial, antiviral and antitumor pharmacophore sites. The molecular docking revealed the significant binding affinities and non-bonding interactions between the compounds and Erwinia Chrysanthemi (PDB ID: 1SHK). The molecular dynamics simulation under in silico physiological conditions revealed a stable conformation and binding pattern in a stimulating environment. HighlightsNew series of Thaiazolidin-4-one derivatives have been synthesized.Sonication and microwave techniques are used.Antimicrobial, Antioxidant, cytotoxicity, and hemolysis activities were observed for all synthesized compounds.Molecular Docking and DFT/POM analyses have been predicted.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sangar Ali Hassan
- Department of Chemistry, College of Science, University of Raparin, Sulaymaniyah, Iraq
| | - Dara Muhammed Aziz
- Department of Chemistry, College of Science, University of Raparin, Sulaymaniyah, Iraq
| | | | - Ajmal R Bhat
- Department of Chemistry, R.T.M. Nagpur University, Nagpur, India
| | | | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, University of Chittagong, Chittagong, Bangladesh
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, Taif, Saudi Arabia
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - S A Sheikh
- Department of physics, National Institute of Technology, Srinagar, Kashmir, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
2
|
Design, Synthesis, In Silico and POM Studies for the Identification of the Pharmacophore Sites of Benzylidene Derivatives. Molecules 2023; 28:molecules28062613. [PMID: 36985587 PMCID: PMC10053039 DOI: 10.3390/molecules28062613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Due to the uneven distribution of glycosidase enzyme expression across bacteria and fungi, glycoside derivatives of antimicrobial compounds provide prospective and promising antimicrobial materials. Therefore, herein, we report the synthesis and characterization of six novel methyl 4,6-O-benzylidene-α-d-glucopyranoside (MBG) derivatives (2–7). The structures were ascertained using spectroscopic techniques and elemental analyses. Antimicrobial tests (zone of inhibition, MIC and MBC) were carried out to determine their ability to inhibit the growth of different Gram-positive, Gram-negative bacteria and fungi. The highest antibacterial activity was recorded with compounds 4, 5, 6 and 7. The compounds with the most significant antifungal efficacy were 4, 5, 6 and 7. Based on the prediction of activity spectra for substances (PASS), compounds 4 and 7 have promising antimicrobial capacity. Molecular docking studies focused on fungal and bacterial proteins where derivatives 3 and 6 exhibited strong binding affinities. The molecular dynamics study revealed that the complexes formed by these derivatives with the proteins L,D-transpeptidase Ykud and endoglucanase from Aspergillus niger remained stable, both over time and in physiological conditions. Structure–activity relationships, including in vitro and in silico results, revealed that the acyl chains [lauroyl-(CH3(CH2)10CO-), cinnamoyl-(C6H5CH=CHCO-)], in combination with sugar, were found to have the most potential against human and fungal pathogens. Synthetic, antimicrobial and pharmacokinetic studies revealed that MBG derivatives have good potential for antimicrobial activity, developing a therapeutic target for bacteria and fungi. Furthermore, the Petra/Osiris/Molinspiration (POM) study clearly indicated the presence of an important (O1δ−----O2δ−) antifungal pharmacophore site. This site can also be explored as a potential antiviral moiety.
Collapse
|
3
|
Gayathri P, Ravi S, Karthikeyan S, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Synthesis of ESIPT fluorophores with two intramolecular H-bonding functionalities: Reversible mechanofluorochromism and conformation controlled solid state fluorescence efficiency. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Lokhande KB, Shrivastava A, Singh A. In silico
discovery of potent inhibitors against monkeypox's major structural proteins. J Biomol Struct Dyn 2023; 41:14259-14274. [PMID: 36841550 DOI: 10.1080/07391102.2023.2183342] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Monkeypox virus (MPXV) outbreak in non-endemic countries is a worldwide public health emergency. An enveloped double-stranded DNA virus belongs to the genus Orth poxvirus. A viral zoonotic infection known as monkeypox has been a serious risk to public health, especially in Africa. However, it has recently spread to other continents, so it might soon become a worldwide problem. There is an increased risk of transmission of the virus because there is a lack of effective treatment that cures the disease. To stop the multi-country outbreak from spreading, it is important to discover effective medications urgently. The objective of the current study is to swiftly find new treatments for the monkeypox virus using advanced computational approaches. By investigating five potential MPXV targets (DNA ligase, Palmytilated Extracellular Enveloped Virus (EEV) membrane protein, Scaffold protein D13, Thymidylate Kinase, and Viral core cysteine proteinase), this research was carried out using cutting-edge computational techniques against human monkeypox virus infection. Here we present the accurate 3D structures and their binding cavities of the selected targets with higher confidence using AlphaFold 2 and SiteMap analysis. Molecular docking and MD simulation analysis revealed the top five potential lead compounds with higher binding affinity and stability toward selected targets. Binding free energy calculations and other essential dynamics analysis supports the finding. The selected lead compounds utilizing virtual screening and drug repurposing approach reported in this study are beneficial for medical scientists and experimental biologists in drug development for the treatment of human MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
5
|
Feng H, He Y, Yang W, Wang S, Feng YS. A novel strategy for constructing fluorescent liquid crystals with diphenylacrylonitrile groups derivatives based on Thiazolo[5,4-d]thiazole core. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Harismah K, Shahrtash S, Arabi A, Khadivi R, Mirzaei M, Akhavan-Sigari R. Favipiravir attachment to a conical nanocarbon: DFT assessments of the drug delivery approach. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Sun Y, Zhu J, Chen Y. Metal-Fullerene Assisted Adsorption of Dichlorosilane: DFT Assessments. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Al-Harbi LM, Alsulami QA, Farea O, Rajeh A. Tuning optical, dielectric, and electrical properties of Polyethylene oxide/Carboxymethyl cellulose doped with mixed metal oxide nanoparticles for flexible electronic devices. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
The Drug Delivery of Hydrea Anticancer by a Nanocone-Oxide: Computational Assessments. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
A C19Ti Cage Vehicle for the Drug Delivery of Purinethol Anticancer: Computational Assessments. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Askary AE, Elesawy BH, Awwad NS, Ibrahium HA, Shkir M. Different metal-decorated aluminum phosphide nanotubes as hydrazine sensors for biomedical applications. J Mol Model 2022; 28:112. [PMID: 35378623 DOI: 10.1007/s00894-022-05102-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
B3LYP, B97D, and M06-2X density functionals are utilized for probing the effect of decorating X (X = Co, Ti, Sc, or Ca) metals on the sensing performance of an aluminum phosphide nanotube (AlPNT) in detecting the hydrazine (HZ) gas. We predict that the interaction of pristine AlPNT with HZ is physisorption, and our calculated sensing response (SR) of AlPNT is approximately 2.7. The adsorption energy of HZ changes from - 4.6 to - 21.0, - 21.9, - 22.4, and - 23.8 kcal/mol by decorating the Co, Ti, Sc, and Ca metals into the AlPNT surface, respectively. Also, Co, Ti, Sc, and Ca rise the SR to 22.5, 36.8, 50.4, and 89.0, respectively, indicating that by increasing the atomic radius of metals, the sensitivity is more increased. So, we concluded that Ca much more increases the sensitivity of AlPNT toward HZ. Our calculations demonstrate that the electrostatic interaction has the main contribution in the formation of HZ/X decorated AlPNT (X@AlPNT) complexes. The expected recovery time is 22.0 s for the HZ desorption from the Ca@AlPNT at 298 K. Finally, we found that all of the X@AlPNTs have superior sensing performance toward HZ compared to the X@carbon nanotubes.
Collapse
Affiliation(s)
- Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Basem H Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| | - Mohd Shkir
- Advanced Functional Materials & Optoelectronics Laboratory, Department of Physics, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
12
|
Mohammed N, Shakkor SJ, Abdalhadi SM, Al-Bayati YK. Two multifunctional benzoquinone derivatives as small molecule organic semiconductors for bulk heterojunction and perovskite solar cells. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two novel quinone derivatives (NN3 and NN4) were synthesized in this work and they were characterized to be used as small organic semiconductor molecules in different types of photovoltaic applications. To make accessible compounds, three simple steps were followed to prepare NN3 and NN4 compounds. Furthermore, energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were determined for the computationally optimized models of the investigated compounds. The obtained optical and electrochemical results of this work indicated that NN3 and NN4 compounds were good candidates for application in the fields of bulk heterojunction (BHJ) and perovskite solar cells. Indeed, investigating new energy resources has been seen an important topic of research for producing clean energies and portable storage systems.
Collapse
Affiliation(s)
- Nabeel Mohammed
- College of Education Al-Hawija, University of Kirkuk, Kirkuk, Iraq
| | | | - Saifaldeen M. Abdalhadi
- Department of Chemistry, Faculty of Remote Sensing and Geophysics, Al-Karkh, University of Science, Baghdad, Iraq
| | - Yehya K. Al-Bayati
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
13
|
Saedi A, Mashinchian Moradi A, Kimiagar S, Ahmad Panahi H. Photosensitization of fucoxanthin-graphene complexes: A computational approach. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photosensitization of fucoxanthin-graphene (FX-GR) complexes were investigated in this work for detecting their roles of irradiating energy absorptions. To this aim, density functional theory (DFT computational approach as employed to obtain the optimized structures and their corresponding molecular orbital features. Both of original linear models of FX and its broken models, LFX and RFX, were investigated for attaching to a brigading GR molecular model. In this regard, the models were optimized to obtain the minimized energy configurations, in which for double-attachment of FG to the GR coroner atoms, Cis and Trans configurations were obtained for the FX-GR complex models. Based on the obtained achievements of molecular orbitals photosensitization features, the models were varied by the absorbed wavelengths making them suitable for various applications. In this regard, both of shorter and longer irradiated wavelengths were applicable for the purpose.
Collapse
Affiliation(s)
- Afsoon Saedi
- Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mashinchian Moradi
- Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Salimeh Kimiagar
- Physics Department, Nano Research Lab (NRL), Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Homayon Ahmad Panahi
- Chemistry Department, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Al-Haideri LMH, Cakmak N. Electronic and structural features of uranium-doped graphene: DFT study. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electronic and structural features of uranium-doped models of graphene (UG) were investigated in this work by employing the density functional theory (DFT) approach. Three sizes of models were investigated based on the numbers of surrounding layers around the central U-doped region including UG1, UG2, and UG3. In this regard, stabilized structures were obtained and their electronic molecular orbital features were evaluated, accordingly. The results indicated that the stabilized structures could be obtained, in which their electronic features are indeed size-dependent. The conductivity feature was expected at a higher level for the UG3 model whereas that of the UG1 model was at a lower level. Energy levels of the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) were indeed the evidence of such achievement for electronic conductivity features. As a consequence, the model size of UG could determine its electronic feature providing it for specified applications.
Collapse
Affiliation(s)
- Lina Majeed Haider Al-Haideri
- College of Education for Sciences Ibn-Al Haithem, University of Baghdad, Baghdad, Iraq
- Physics Department, Science Faculty, University of Karabuk, Karabuk, Turkey
| | - Necla Cakmak
- Physics Department, Science Faculty, University of Karabuk, Karabuk, Turkey
| |
Collapse
|