1
|
Fusco A, Padua L. Learning via imagery - merging techniques to improve the outcomes: a commentary on Frank et al. (2023). PSYCHOLOGICAL RESEARCH 2024; 88:1837-1839. [PMID: 38833020 DOI: 10.1007/s00426-024-01974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
In their article, Frank and colleagues review the effectiveness of motor imagery in learning motor skills, proposing a perceptual-cognitive theory that may facilitate learning. Imagery effectiveness could be enhanced by different techniques, influencing neurophysiological processes. Identifying individuals who could benefit from MI is crucial, and incorporating MI into strong motor representations may lead to better outcomes. Combining MI with other treatments like virtual reality and brain stimulation can further enhance its effectiveness. The purpose of this commentary is to analyze these interventions in light of their potential to influence perceptual-cognitive states in order to strengthen imagery practice and achieve the desired outcomes.
Collapse
Affiliation(s)
- Augusto Fusco
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, 00168, Italy.
| | - Luca Padua
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, 00168, Italy
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| |
Collapse
|
2
|
Performance Index for in Home Assessment of Motion Abilities in Ataxia Telangiectasia: A Pilot Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background. It has been shown in the very recent literature that human walking generates rhythmic motor patterns with hidden time harmonic structures that are represented (at the subject’s comfortable speed) by the occurrence of the golden ratio as the the ratio of the durations of specific walking gait subphases. Such harmonic proportions may be affected—partially or even totally destroyed—by several neurological and/or systemic disorders, thus drastically reducing the smooth, graceful, and melodic flow of movements and altering gait self-similarities. Aim. In this paper we aim at, preliminarily, showing the reliability of a technologically assisted methodology—performed with an easy to use wearable motion capture system—for the evaluation of motion abilities in Ataxia-Telangiectasia (AT), a rare infantile onset neurodegenerative disorder, whose typical neurological manifestations include progressive gait unbalance and the disturbance of motor coordination. Methods. Such an experimental methodology relies, for the first time, on the most recent accurate and objective outcome measures of gait recursivity and harmonicity and symmetry and double support subphase consistency, applied to three AT patients with different ranges of AT severity. Results. The quantification of the level of the distortions of harmonic temporal proportions is shown to include the qualitative evaluations of the three AT patients provided by clinicians. Conclusions. Easy to use wearable motion capture systems might be used to evaluate AT motion abilities through recursivity and harmonicity and symmetry (quantitative) outcome measures.
Collapse
|
3
|
Taniguchi S, Higashi Y, Kataoka H, Nakajima H, Shimokawa T. Functional Connectivity and Networks Underlying Complex Tool-Use Movement in Assembly Workers: An fMRI Study. Front Hum Neurosci 2021; 15:707502. [PMID: 34776900 PMCID: PMC8581229 DOI: 10.3389/fnhum.2021.707502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to identify the functional connectivity and networks utilized during tool-use in real assembly workers. These brain networks have not been elucidated because the use of tools in real-life settings is more complex than that in experimental environments. We evaluated task-related functional magnetic resonance imaging in 13 assembly workers (trained workers, TW) and 27 age-matched volunteers (untrained workers, UTW) during a tool-use pantomiming task, and resting-state functional connectivity was also analyzed. Two-way repeated-measures analysis of covariance was conducted with the group as a between-subject factor (TW > UTW) and condition (task > resting) as a repeated measure, controlling for assembly time and accuracy as covariates. We identified two patterns of functional connectivity in the whole brain within three networks that distinguished TW from UTW. TW had higher connectivity than UTW between the left middle temporal gyrus and right cerebellum Crus II (false discovery rate corrected p-value, p-FDR = 0.002) as well as between the left supplementary motor area and the pars triangularis of the right inferior frontal gyrus (p-FDR = 0.010). These network integrities may allow for TW to perform rapid tool-use. In contrast, UTW showed a stronger integrity compared to TW between the left paracentral lobule and right angular gyrus (p-FDR = 0.004), which may reflect a greater reliance on sensorimotor input to acquire complex tool-use ability than that of TW. Additionally, the fronto-parietal network was identified as a common network between groups. These findings support our hypothesis that assembly workers have stronger connectivity in tool-specific motor regions and the cerebellum, whereas UTW have greater involvement of sensorimotor networks during a tool-use task.
Collapse
Affiliation(s)
- Seira Taniguchi
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| | | | | | | | - Tetsuya Shimokawa
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| |
Collapse
|
4
|
Picerno P, Iosa M, D'Souza C, Benedetti MG, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis: a five-year update. Expert Rev Med Devices 2021; 18:79-94. [PMID: 34601995 DOI: 10.1080/17434440.2021.1988849] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The aim of the present review is to track the evolution of wearable IMUs from their use in supervised laboratory- and ambulatory-based settings to their application for long-term monitoring of human movement in unsupervised naturalistic settings. AREAS COVERED Four main emerging areas of application were identified and synthesized, namely, mobile health solutions (specifically, for the assessment of frailty, risk of falls, chronic neurological diseases, and for the monitoring and promotion of active living), occupational ergonomics, rehabilitation and telerehabilitation, and cognitive assessment. Findings from recent scientific literature in each of these areas was synthesized from an applied and/or clinical perspective with the purpose of providing clinical researchers and practitioners with practical guidance on contemporary uses of inertial sensors in applied clinical settings. EXPERT OPINION IMU-based wearable devices have undergone a rapid transition from use in laboratory-based clinical practice to unsupervised, applied settings. Successful use of wearable inertial sensing for assessing mobility, motor performance and movement disorders in applied settings will rely also on machine learning algorithms for managing the vast amounts of data generated by these sensors for extracting information that is both clinically relevant and interpretable by practitioners.
Collapse
Affiliation(s)
- Pietro Picerno
- SMART Engineering Solutions & Technologies (SMARTEST) Research Center, Università Telematica "Ecampus", Novedrate, Comune, Italy
| | - Marco Iosa
- Department of Psychology, Sapienza University, Rome, Italy.,Irrcs Santa Lucia Foundation, Rome, Italy
| | - Clive D'Souza
- Center for Ergonomics, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria Grazia Benedetti
- Physical Medicine and Rehabilitation Unit, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | |
Collapse
|
5
|
A F, M I, L T, G M, D C, L P, Mc G, L G, C B. Dynamic locomotor imagery in athletes with severe visual impairments. NEW IDEAS IN PSYCHOLOGY 2021; 62:100855. [DOI: 10.1016/j.newideapsych.2021.100855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Zapparoli L, Seghezzi S, Sacheli LM, Verga C, Banfi G, Paulesu E. Eyes wide shut: How visual cues affect brain patterns of simulated gait. Hum Brain Mapp 2020; 41:4248-4263. [PMID: 32639101 PMCID: PMC7502842 DOI: 10.1002/hbm.25123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
In the last 20 years, motor imagery (MI) has been extensively used to train motor abilities in sport and in rehabilitation. However, MI procedures are not all alike as much as their potential beneficiaries. Here we assessed whether the addition of visual cues could make MI performance more comparable with explicit motor performance in gait tasks. With fMRI we also explored the neural correlates of these experimental manipulations. We did this in elderly subjects who are known to rely less on kinesthetic information while favoring visual strategies during motor performance. Contrary to expectations, we found that the temporal coupling between execution and imagery times, an index of the quality of MI, was less precise when participants were allowed to visually explore the environment. While the brain activation patterns of the gait motor circuits were very similar in both an open‐eyed and eye‐shut virtual walking MI task, these differed for a vast temporo‐occipito‐parietal additional activation for open‐eyed MI. Crucially, the higher was the activity in this posterior network, the less accurate was the MI performance with eyes open at a clinical test of gait. We conclude that both visually‐cued and internally‐cued MI are associated with the neurofunctional activation of a gait specific motor system. The less precise behavioral coupling between imagined and executed gait while keeping eyes open may be attributed to the processing load implied in visual monitoring and scanning of the environment. The implications of these observations for rehabilitation of gait with MI are discussed.
Collapse
Affiliation(s)
- Laura Zapparoli
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,fMRI Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Silvia Seghezzi
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,PhD Program in Neuroscience of School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lucia Maria Sacheli
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,fMRI Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Chiara Verga
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Banfi
- fMRI Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,School of Medicine, San Raffaele Vita e Salute University, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,fMRI Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
7
|
Sensorized Assessment of Dynamic Locomotor Imagery in People with Stroke and Healthy Subjects. SENSORS 2020; 20:s20164545. [PMID: 32823786 PMCID: PMC7472606 DOI: 10.3390/s20164545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
Dynamic motor imagery (dMI) is a motor imagery task associated with movements partially mimicking those mentally represented. As well as conventional motor imagery, dMI has been typically assessed by mental chronometry tasks. In this paper, an instrumented approach was proposed for quantifying the correspondence between upper and lower limb oscillatory movements performed on the spot during the dMI of walking vs. during actual walking. Magneto-inertial measurement units were used to measure limb swinging in three different groups: young adults, older adults and stroke patients. Participants were tested in four experimental conditions: (i) simple limb swinging; (ii) limb swinging while imagining to walk (dMI-task); (iii) mental chronometry task, without any movement (pure MI); (iv) actual level walking at comfortable speed. Limb swinging was characterized in terms of the angular velocity, frequency of oscillations and sinusoidal waveform. The dMI was effective at reproducing upper limb oscillations more similar to those occurring during walking for all the three groups, but some exceptions occurred for lower limbs. This finding could be related to the sensory feedback, stretch reflexes and ground reaction forces occurring for lower limbs and not for upper limbs during walking. In conclusion, the instrumented approach through wearable motion devices adds significant information to the current dMI approach, further supporting their applications in neurorehabilitation for monitoring imagery training protocols in patients with stroke.
Collapse
|
8
|
Ito T, Tsubahara A, Shiraga Y, Yoshimura Y, Kimura D, Suzuki K, Hanayama K. Motor activation is modulated by visual experience during cyclic gait observation: A transcranial magnetic stimulation study. PLoS One 2020; 15:e0228389. [PMID: 31990939 PMCID: PMC6986743 DOI: 10.1371/journal.pone.0228389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has been widely utilized to noninvasively explore the motor system during the observation of human movement. However, few studies have characterized motor cortex activity during periodic gait observation. Thus, this study examined the effects of an observer's visual experience and/or intention to imitate on corticospinal excitability during the observation of another's gait. Twenty-six healthy volunteers were included in this study and allocated to two different groups. Participants in the visual experience group had formal experience with gait observation (physical therapist training), while those in the control group did not. Motor-evoked potentials induced by TMS in the tibialis anterior and soleus muscles were measured as surrogates of corticospinal excitability. Participants were seated and, while resting, they observed a demonstrator's gait or observed it with the intention to subsequently reproduce it. Compared with the resting state, cyclic gait observation led to significant corticospinal facilitation in the tibialis anterior and soleus muscles. However, this pattern of corticospinal facilitation in the measured muscles was not coupled to the pattern of crural muscle activity during actual gait and was independent of the step cycle. This motor cortex facilitation effect during gait observation was enhanced by the observer's visual experience in a manner that was not step cycle-dependent, while the observer's intent to imitate did not affect corticospinal excitatory input to either muscle. In addition, visual experience did not modulate corticospinal excitability in gait-related crural muscles. Our findings indicate that motor cortex activity during gait observation is not in line with the timing of muscle activity during gait execution and is modulated by an individual's gait observation experience. These results suggest that visual experience acquired from repetitive gait observation may facilitate the motor system's control on bipedal walking, but may not promote the learning of muscle activity patterns.
Collapse
Affiliation(s)
- Tomotaka Ito
- Department of Rehabilitation, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
- * E-mail:
| | - Akio Tsubahara
- Department of Rehabilitation, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Yoshiki Shiraga
- Rehabilitation Center, Kawasaki Medical School Hospital, Kurashiki, Okayama, Japan
| | - Yosuke Yoshimura
- Department of Rehabilitation, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Daisuke Kimura
- Department of Rehabilitation, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Keita Suzuki
- Department of Environmental and Preventive Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kozo Hanayama
- Department of Rehabilitation Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
9
|
Sacheli LM, Zapparoli L, Bonandrini R, Preti M, Pelosi C, Sconfienza LM, Banfi G, Paulesu E. How aging affects the premotor control of lower limb movements in simulated gait. Hum Brain Mapp 2020; 41:1889-1903. [PMID: 31922648 PMCID: PMC7267909 DOI: 10.1002/hbm.24919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/19/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Gait control becomes more demanding in healthy older adults, yet what cognitive or motor process leads to this age-related change is unknown. The present study aimed to investigate whether it might depend on specific decay in the quality of gait motor representation and/or a more general reduction in the efficiency of lower limb motor control. Younger and older healthy participants performed in fMRI a virtual walking paradigm that combines motor imagery (MI) of walking and standing on the spot with the presence (Dynamic Motor Imagery condition, DMI) or absence (pure MI condition) of overtly executed ankle dorsiflexion. Gait imagery was aided by the concomitant observation of moving videos simulating a stroll in the park from a first-person perspective. Behaviorally, older participants showed no sign of evident depletion in the quality of gait motor representations, and absence of between-group differences in the neural correlates of MI. However, while younger participants showed increased frontoparietal activity during DMI, older participants displayed stronger activation of premotor areas when controlling the pure execution of ankle dorsiflexion, regardless of the imagery task. These data suggest that reduced automaticity of lower limb motor control in healthy older subjects leads to the recruitment of additional premotor resources even in the absence of basic gait functional disabilities.
Collapse
Affiliation(s)
- Lucia Maria Sacheli
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Laura Zapparoli
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Rolando Bonandrini
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Matteo Preti
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Catia Pelosi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,University Vita e Salute San Raffaele, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department & Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
10
|
Fusco A, Iasevoli L, Iosa M, Gallotta MC, Padua L, Tucci L, Antonucci G, Baldari C, Guidetti L. Dynamic motor imagery mentally simulates uncommon real locomotion better than static motor imagery both in young adults and elderly. PLoS One 2019; 14:e0218378. [PMID: 31242209 PMCID: PMC6594612 DOI: 10.1371/journal.pone.0218378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/31/2019] [Indexed: 12/02/2022] Open
Abstract
A new form of Motor Imagery (MI), called dynamic Motor Imagery (dMI) has recently been proposed. The dMI adds to conventional static Motor Imagery (sMI) the presence of simultaneous actual movements partially replicating those mentally represented. In a previous research conducted on young participants, dMI showed to be temporally closer than sMI in replicating the real performance for some specific locomotor conditions. In this study, we evaluated if there is any influence of the ageing on dMI. Thirty healthy participants were enrolled: 15 young adults (27.1±3.8 y.o.) and 15 older adults (65.9±9.6y.o.). The performance time and the number of steps needed to either walk to a target (placed at 10m from participants) or to imagine walking to it, were assessed. Parameters were measured for sMI, dMI and real locomotion (RL) in three different locomotor conditions: forward walking (FW), backward walking (BW), and lateral walking (LW). Temporal performances of sMI and dMI did not differ between RL in the FW, even if significantly different to each other (p = 0.0002). No significant differences were found for dMI with respect to RL for LW (p = 0.140) and BW (p = 0.438), while sMI was significantly lower than RL in LW (p<0.001). The p-value of main effect of age on participants' temporal performances was p = 0.055. The interaction between age and other factors such as the type of locomotion (p = 0.358) or the motor condition (p = 0.614) or third level interaction (p = 0.349) were not statistically significant. Despite a slight slowdown in the performance of elderly compared to young participants, the temporal and spatial accuracy was better in dMI than sMI in both groups. Motor imagery processes may be strengthened by the feedback generated through dMI, and this effect appears to be unaffected by age.
Collapse
Affiliation(s)
| | - Luigi Iasevoli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Iosa
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Chiara Gallotta
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luca Padua
- Department of Geriatrics, Neurosciences and Orthopaedics, Sacred Heart Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Livia Tucci
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Gabriella Antonucci
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Laura Guidetti
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
11
|
Grüneberg P, Kadone H, Kuramoto N, Ueno T, Hada Y, Yamazaki M, Sankai Y, Suzuki K. Robot-assisted voluntary initiation reduces control-related difficulties of initiating joint movement: A phenomenal questionnaire study on shaping and compensation of forward gait. PLoS One 2018; 13:e0194214. [PMID: 29529071 PMCID: PMC5847230 DOI: 10.1371/journal.pone.0194214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
Humans employ various control strategies to initiate and maintain bodily movement. In case that the normal gait function is impaired, exoskeleton robots provide motor assistance during therapy. While the robotic control system builds on kinematic gait functions, the patient's voluntary efforts to initiate motion also contribute to the effectiveness of the therapy process. However, it is currently not well understood how voluntary initiation as a subjective capacity affects the physiological level of motor control. In order to understand the functional nexus between voluntary initiation and motor control, we interviewed patients undergoing robotic gait rehabilitation with the HAL exoskeleton robot about their experience and command of voluntarily initiating forward gait while using the HAL system. Their reports provide phenomenal evidence for voluntary initiation as a distinct cognitive act that comes as phenomenal performance. Furthermore, phenomenal evidence about the functional relation of intention and initiation correlates with FIM-M gait scores. Based on the assumption that HAL reduces control-related difficulties of voluntarily initiating joint movement, we identified two cognitive control strategies, shaping and compensation of gait, that imply a heterarchic organization of the human system of action control.
Collapse
Affiliation(s)
- Patrick Grüneberg
- Institute of Liberal Arts and Sciences, Faculty of Global Standard Education, Kanazawa University, Kanazawa, Japan
| | - Hideki Kadone
- Center for Innovative Medicine and Engineering, University of Tsukuba, Tsukuba, Japan
| | - Naomi Kuramoto
- Graduate School of Empowerment Informatics, University of Tsukuba, Tsukuba, Japan
| | - Tomoyuki Ueno
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yasushi Hada
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Geiger M, Bonnyaud C, Fery YA, Bussel B, Roche N. Evaluating the Effect of Cognitive Dysfunction on Mental Imagery in Patients with Stroke Using Temporal Congruence and the Imagined 'Timed Up and Go' Test (iTUG). PLoS One 2017; 12:e0170400. [PMID: 28125616 PMCID: PMC5268444 DOI: 10.1371/journal.pone.0170400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Motor imagery (MI) capacity may be altered following stroke. MI is evaluated by measuring temporal congruence between the timed performance of an imagined and an executed task. Temporal congruence between imagined and physical gait-related activities has not been evaluated following stroke. Moreover, the effect of cognitive dysfunction on temporal congruence is not known. OBJECTIVE To assess temporal congruence between the Timed Up and Go test (TUG) and the imagined TUG (iTUG) tests in patients with stroke and to investigate the role played by cognitive dysfunctions in changes in temporal congruence. METHODS TUG and iTUG performance were recorded and compared in twenty patients with chronic stroke and 20 controls. Cognitive function was measured using the Montreal Cognitive Assessment (MOCA), the Frontal Assessment Battery at Bedside (FAB) and the Bells Test. RESULTS The temporal congruence of the patients with stroke was significantly altered compared to the controls, indicating a loss of MI capacity (respectively 45.11 ±35.11 vs 24.36 ±17.91, p = 0.02). Furthermore, iTUG test results were positively correlated with pathological scores on the Bells Test (r = 0.085, p = 0.013), likely suggesting that impairment of attention was a contributing factor. CONCLUSION These results highlight the importance of evaluating potential attention disorder in patients with stroke to optimise the use of MI for rehabilitation and recovery. However further study is needed to determine how MI should be used in the case of cognitive dysfunction.
Collapse
Affiliation(s)
- Maxime Geiger
- Inserm Unit 1179, Team 3: Technologies and Innovative Therapies Applied to Neuromuscular diseases, UVSQ, CIC 805, Physiology–Functional Testing Ward, AP-HP, Raymond Poincaré Teaching Hospital, Garches, France
| | - Céline Bonnyaud
- Inserm Unit 1179, Team 3: Technologies and Innovative Therapies Applied to Neuromuscular diseases, UVSQ, CIC 805, Physiology–Functional Testing Ward, AP-HP, Raymond Poincaré Teaching Hospital, Garches, France
| | - Yves-André Fery
- STAPS Department of Versailles, Versailles University of Saint-Quentin- en-Yvelines, Saint-Quentin- en-Yvelines, France
| | - Bernard Bussel
- Inserm Unit 1179, Team 3: Technologies and Innovative Therapies Applied to Neuromuscular diseases, UVSQ, CIC 805, Physiology–Functional Testing Ward, AP-HP, Raymond Poincaré Teaching Hospital, Garches, France
| | - Nicolas Roche
- Inserm Unit 1179, Team 3: Technologies and Innovative Therapies Applied to Neuromuscular diseases, UVSQ, CIC 805, Physiology–Functional Testing Ward, AP-HP, Raymond Poincaré Teaching Hospital, Garches, France
| |
Collapse
|