1
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Silina EV. Potential Applications of Rare Earth Metal Nanoparticles in Biomedicine. Pharmaceuticals (Basel) 2025; 18:154. [PMID: 40005968 PMCID: PMC11858778 DOI: 10.3390/ph18020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, the world scientific community has shown increasing interest in rare earth metals in general and their nanoparticles in particular. Medicine and pharmaceuticals are no exception in this matter. In this review, we have considered the main opportunities and potential applications of rare earth metal (gadolinium, europium, ytterbium, holmium, lutetium, dysprosium, erbium, terbium, thulium, scandium, yttrium, lanthanum, europium, neodymium, promethium, samarium, praseodymium, cerium) nanoparticles in biomedicine, with data ranging from single reports of effects found in vitro to numerous independent in vivo studies, as well as a number of challenges to their potential for wider application. The main areas of application of rare earth metals, including in the future, are diagnosis and treatment of malignant neoplasms, therapy of infections, as well as the use of antioxidant and regenerative properties of a number of nanoparticles. These applications are determined both by the properties of rare earth metal nanoparticles themselves and the need to search for new approaches to solve a number of urgent biomedical and public health problems. Oxide forms of lanthanides are most often used in biomedicine due to their greatest biocompatibility and nanoscale size, providing penetration through biological membranes. However, the existing contradictory or insufficient data on acute and chronic toxicity of lanthanides still make their widespread use difficult. There are various modification methods (addition of excipients, creation of nanocomposites, and changing the morphology of particles) that can reduce these effects. At the same time, despite the use of some representatives of lanthanides in clinical practice, further studies to establish the full range of pharmacological and toxic effects, as well as the search for approaches to modify nanoparticles remain relevant.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| |
Collapse
|
2
|
Mishchenko TA, Klimenko MO, Guryev EL, Savelyev AG, Krysko DV, Gudkov SV, Khaydukov EV, Zvyagin AV, Vedunova MV. Enhancing glioma treatment with 3D scaffolds laden with upconversion nanoparticles and temozolomide in orthotopic mouse model. Front Chem 2024; 12:1445664. [PMID: 39498377 PMCID: PMC11532134 DOI: 10.3389/fchem.2024.1445664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Targeted drug delivery for primary brain tumors, particularly gliomas, is currently a promising approach to reduce patient relapse rates. The use of substitutable scaffolds, which enable the sustained release of clinically relevant doses of anticancer medications, offers the potential to decrease the toxic burden on the patient's organism while also enhancing their quality of life and overall survival. Upconversion nanoparticles (UCNPs) are being actively explored as promising agents for detection and monitoring of tumor growth, and as therapeutic agents that can provide isolated therapeutic effects and enhance standard chemotherapy. Our study is focused on the feasibility of constructing scaffolds using methacrylated hyaluronic acid with additional impregnation of UCNPs and the chemotherapeutic drug temozolomide (TMZ) for glioma treatment. The designed scaffolds have been demonstrated their efficacy as a drug and UCNPs delivery system for gliomas. Using the aggressive orthotopic glioma model in vivo, it was found that the scaffolds possess the capacity to ameliorate neurological disorders in mice. Moreover, upon intracranial co-implantation of the scaffolds and glioma cells, the constructs disintegrate into distinct segments, augmenting the release of UCNPs into the surrounding tissue and concurrently reducing postoperative damage to brain tissue. The use of TMZ in the scaffold composition contributed to restraining glioma development and the reduction of tumor invasiveness. Our findings unveil promising prospects for the application of photopolymerizable biocompatible scaffolds in the realm of neuro-oncology.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Klimenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Evgenii L. Guryev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander G. Savelyev
- Laboratory of Laser Biomedicine, NRC “Kurchatov Institute”, Moscow, Russia
- D. I. Mendeleev Russian University of Chemical Technology, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sergey V. Gudkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V. Khaydukov
- D. I. Mendeleev Russian University of Chemical Technology, Moscow, Russia
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Department of Biomaterials and Bionanotechnology, Laboratory "Polymers for biology", Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Andrei V. Zvyagin
- Molecular Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow, Russia
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Melnikova N, Sheferov I, Panteleev D, Emasheva A, Druzhkova I, Ignatova N, Mishchenko T, Vedunova M. Design and Study of Nanoceria Modified by 5-Fluorouracil for Gel and Polymer Dermal Film Preparation. Pharmaceuticals (Basel) 2023; 16:1082. [PMID: 37630997 PMCID: PMC10458209 DOI: 10.3390/ph16081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In this work we studied nanoceria (CeO2NPs) and nanoceria modified by 5-fluorouracil (5FU) as potential APIs. Nanoceria were synthesized by precipitation in a matrix of hydroxyethyl cellulose or hydroxypropylmethyl cellulose, using cerium (III) nitrate and meglumine. Nanoceria properties were estimated by UV, FTIR and X-ray photoelectron spectra; scanning electron and atomic force microscopy; powder X-ray diffraction patterns and energy dispersive X-ray microanalysis. The cytotoxicity of nanoceria and polymer-protected nanoparticles was evaluated using the established cell line NCTC clone 929 (C3H/An mouse, subcutaneous connective tissue, clone of L. line). The morphology and metabolic activity of nanoparticles at 10 μg∙mL-1 of cells was not significant. In addition, the cytotoxic effects of nanoceria were assessed on two human colorectal cancer cell lines (HT29 and HCT116), murine melanoma B16 cells and normal human skin fibroblasts. An inhibitory effect was shown for HCT116 human colorectal cancer cells. The IC50 values for pure CeO2NPs and CeO2NPs-5FU were 219.0 ± 45.6 μg∙mL-1 and 89.2 ± 14.0 μg∙mL-1, respectively. On the other hand, the IC50 of 5FU in the combination of CeO2NPs-5FU was 2-fold higher than that of pure 5FU, amounting to 5.0 nmol∙mL-1. New compositions of nanoceria modified by 5-fluorouracil in a polymer matrix were designed as a dermal polymer film and gel. The permeability of the components was studied using a Franz cell.
Collapse
Affiliation(s)
- Nina Melnikova
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Ilya Sheferov
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Dmitry Panteleev
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia;
| | - Anastasia Emasheva
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Tatiana Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Melnikova N, Sheferov I, Panteleev D, Emasheva A, Druzhkova I, Ignatova N, Mishchenko T, Vedunova M. Design and Study of Nanoceria Modified by 5-Fluorouracil for Gel and Polymer Dermal Film Preparation. Pharmaceuticals (Basel) 2023; 16:1082. [DOI: https:/doi.org/10.3390/ph16081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Abstract
In this work we studied nanoceria (CeO2NPs) and nanoceria modified by 5-fluorouracil (5FU) as potential APIs. Nanoceria were synthesized by precipitation in a matrix of hydroxyethyl cellulose or hydroxypropylmethyl cellulose, using cerium (III) nitrate and meglumine. Nanoceria properties were estimated by UV, FTIR and X-ray photoelectron spectra; scanning electron and atomic force microscopy; powder X-ray diffraction patterns and energy dispersive X-ray microanalysis. The cytotoxicity of nanoceria and polymer-protected nanoparticles was evaluated using the established cell line NCTC clone 929 (C3H/An mouse, subcutaneous connective tissue, clone of L. line). The morphology and metabolic activity of nanoparticles at 10 μg∙mL−1 of cells was not significant. In addition, the cytotoxic effects of nanoceria were assessed on two human colorectal cancer cell lines (HT29 and HCT116), murine melanoma B16 cells and normal human skin fibroblasts. An inhibitory effect was shown for HCT116 human colorectal cancer cells. The IC50 values for pure CeO2NPs and CeO2NPs-5FU were 219.0 ± 45.6 μg∙mL−1 and 89.2 ± 14.0 μg∙mL−1, respectively. On the other hand, the IC50 of 5FU in the combination of CeO2NPs-5FU was 2-fold higher than that of pure 5FU, amounting to 5.0 nmol∙mL−1. New compositions of nanoceria modified by 5-fluorouracil in a polymer matrix were designed as a dermal polymer film and gel. The permeability of the components was studied using a Franz cell.
Collapse
Affiliation(s)
- Nina Melnikova
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Ilya Sheferov
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Dmitry Panteleev
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Anastasia Emasheva
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Tatiana Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Li J, Ling J, Yao C. Recent advances in NIR-II fluorescence based theranostic approaches for glioma. Front Chem 2022; 10:1054913. [PMID: 36438867 PMCID: PMC9682463 DOI: 10.3389/fchem.2022.1054913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 09/19/2023] Open
Abstract
Gliomas are among the most common malignant tumors in the central nervous system and lead to poor life expectancy. However, the effective treatment of gliomas remains a considerable challenge. The recent development of near infrared (NIR) II (1000-1700 nm) theranostic agents has led to powerful strategies in diagnosis, targeted delivery of drugs, and accurate therapy. Because of the high capacity of NIR-II light in deep tissue penetration, improved spatiotemporal resolution can be achieved to facilitate the in vivo detection of gliomas via fluorescence imaging, and high contrast fluorescence imaging guided surgery can be realized. In addition to the precise imaging of tumors, drug delivery nano-platforms with NIR-II agents also allow the delivery process to be monitored in real-time. In addition, the combination of targeted drug delivery, photodynamic therapy, and photothermal therapy in the NIR region significantly improves the therapeutic effect against gliomas. Thus, this mini-review summarizes the recent developments in NIR-II fluorescence-based theranostic agents for glioma treatment.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Nosocomial Infection Management, Nantong Third People’s Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chaoyi Yao
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
6
|
Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 2021; 338:224-243. [PMID: 34418523 DOI: 10.1016/j.jconrel.2021.08.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
There are numerous investigated factors that limit brain cancer treatment efficacy such as ability of prescribed therapy to cross the blood-brain barrier (BBB), tumor specific delivery of a therapeutics, transport within brain interstitium, and resistance of tumor cells against therapies. Recent breakthroughs in the field of nano-biotechnology associated with developing multifunctional nano-theranostic emerged as an effective way to manage brain cancer in terms of higher efficacy and least possible adverse effects. Keeping challenges and state-of-art accomplishments into consideration, this review proposes a comprehensive, careful, and critical discussion focused on efficient nano-enabled platforms including nanocarriers for drug delivery across the BBB and nano-assisted therapies (e.g., nano-immunotherapy, nano-stem cell therapy, and nano-gene therapy) investigated for brain cancer treatment. Besides therapeutic efficacy point-of-view, efforts are being made to explore ways projected to tune such developed nano-therapeutic for treating patients in personalized manner via controlling size, drug loading, delivery, and retention. Personalized brain tumor management based on advanced nano-therapies can potentially lead to excellent therapeutic benefits based on unique genetic signatures in patients and their individual disease profile. Moreover, applicability of nano-systems as stimulants to manage the brain cancer growth factors has also been discussed in photodynamic therapy and radiotherapy. Overall, this review offers a comprehensive information on emerging opportunities in nanotechnology for advancing the brain cancer treatment.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - U T Uthappa
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Virendra Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Chandra Dixit
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, United States.
| |
Collapse
|
7
|
Lin C, Liu G, Huang Y, Liu S, Tang B. Rare-earth nanoparticles induce depression, anxiety-like behavior, and memory impairment in mice. Food Chem Toxicol 2021; 156:112442. [PMID: 34332012 DOI: 10.1016/j.fct.2021.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Rare-earth nanoparticles have been widely studied for disease diagnosis, in vivo optical imaging, biosensing, and drug delivery. However, the effects of rare-earth nanoparticles on a central nervous system remain unclear. Here, we report that the continuous exposure to rare-earth nanoparticles in mice can cause behavioral alterations including cognitive deficits, anxiety, and depression-like behavior. Using an open-field test and a morris water maze, we showed that long-term exposure to rare-earth nanoparticles may lead to significant depression, anxiety-like behavior, and memory impairment. The histopathological investigation on the neurotoxicological effects of nanoparticles indicated a significant decrease in cell viability after seven days' nanoparticle exposure. Western blotting analysis suggested that the changes of ATP-citrate lyase (ACLY) and O-linked N-acetylglucosamine transferase (OGT, a unique glycosyltransferase enzyme) played important roles in neurobehavioral disorders in mice. These findings provide a pathway to understand the cytotoxicity of rare-earth nanoparticles for medial applications and offer insights into the risk of these nanoparticles in biological systems.
Collapse
Affiliation(s)
- Caihou Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| | - Guifen Liu
- Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yulong Huang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350100, China
| | - Shunyi Liu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350100, China
| | - Binghua Tang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350100, China
| |
Collapse
|