1
|
Caldeira IDS, Giovanini G, Adorno LF, Fernandes D, Ramos CR, Cruz-Visalaya SR, Pacheco-Otalora LF, Siqueira FRD, Nunes VA, Belizário JE, Garay-Malpartida HM. Antiapoptotic and Prometastatic Roles of Cytokine FAM3B in Triple-Negative Breast Cancer. Clin Breast Cancer 2024; 24:e633-e644.e2. [PMID: 38997857 DOI: 10.1016/j.clbc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood. METHODS We analyzed FAM3B expression data from breast cancer patients available at TCGA database and overall survival was analyzed by using the Kaplan-Meier plotter. MDA-MB-231 TNBC tumor cell line and hormone-responsive MCF-7 cell lines were transfected to overexpress FAM3B. We assessed cell death, tumorigenicity, and invasiveness in vitro through MTT analysis, flow cytometry assays, anchorage-independent tumor growth, and wound healing assays, respectively. We performed in vivo evaluation by tumor xenograft in nude mice. RESULTS In silico analysis revealed that FAM3B expression was lower in all breast tumors. However, TNBC patients with high FAM3B expression had a poor prognosis. FAM3B overexpression protected MDA-MB-231 cells from cell death, with increased expression of Bcl-2 and Bcl-xL, and reduced caspase-3 activity. MDA-MB-231 cells overexpressing FAM3B also exhibited increased tumorigenicity and migration rates in vitro, displaying increased tumor growth and reduced survival rates in xenotransplanted nude mice. This phenotype is accompanied by the upregulation of EMT-related genes Slug, Snail, TGFBR2, vimentin, N-cadherin, MMP-2, MMP-9, and MMP-14. However, these effects were not observed in the MCF-7 cells overexpressing FAM3B. CONCLUSION FAM3B overexpression contributes to tumor growth, promotion of metastasis, and, consequently, leads to a poor prognosis in the most aggressive forms of breast cancer. Future clinical research is necessary to validate FAM3B as both a diagnostic and a therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Izabela Daniel Sardinha Caldeira
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Guilherme Giovanini
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, CEP 01246-000, Sao Paulo, Brazil
| | - Lissandra Ferreira Adorno
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Debora Fernandes
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Celso Romero Ramos
- Laboratório de Esquistossomose Experimental. Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, CEP 21040-360, Rio de Janerio, Brasil
| | | | | | - Flavia Ramos de Siqueira
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Viviane Abreu Nunes
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - José Ernesto Belizário
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Humberto Miguel Garay-Malpartida
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Hutasoit GA, Miskad UA, Akil F, Cangara MH, Dahlan H, Yamin A, Mardiati M. Snail Expression as a Prognostic Factor in Colorectal Adenocarcinoma. Asian Pac J Cancer Prev 2024; 25:3143-3149. [PMID: 39342593 DOI: 10.31557/apjcp.2024.25.9.3143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE The aim of this study was to analyze the expression of Snail in the colorectal adenocarcinoma. METHODS This study used a cross-sectional design. Seventy four paraffin embedded block of Colorectal Adenocarcinoma were assessed using Snail rabbit polyclonal antibody and their expression were performed using Olympus CX-43 light microscope. The relationship between Snail expression with histopathological grading, tumor budding grading, lymphovascular invasion and metastases of colorectal adenocarcinoma ability were statistically analyzed by Mann Whitney tests and presented in tables using SPSS 27. RESULT From 74 samples examined, in samples with low grade tumor budding (n=11), there were 9 samples (81.8%) with weak expression, while those with strong expression were 2 samples (18.2%). In samples with intermediate grade tumor budding (n=28), there were 17 samples (60.7%) with weak expression, while those with strong expression were 11 samples (39.3%). In samples with high grade tumor budding (n=35), there were 13 samples (37.1%) with weak expression, while those with strong expression were 22 samples (62.9%). In samples with lymphovascular invasion (n=14), there were 10 samples (71.4%) with strong expression, while those with weak expression were 4 samples (28.6%). In samples with metastases (n=23), there were 16 samples (69.6%) with strong expression, while those with weak expression were 7 samples (30.4%). There was a significant relationship between the expression of Snail with tumor budding grade (p=0.003), lymphovascular invasion and metastases (p=<0.001), but there was no significant relationship with histopathological grade (p=0.942). CONCLUSION The Snail expression can be used as a prognostic factor in colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Gina Andyka Hutasoit
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Tadulako University, Indonesia
| | - Upik Anderiani Miskad
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Indonesia
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Indonesia
| | - Fardah Akil
- Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Indonesia
| | - Muhammad Husni Cangara
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Indonesia
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Indonesia
| | - Haslindah Dahlan
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Indonesia
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Indonesia
| | - Amalia Yamin
- Department of Anatomical Pathology, Faculty of Medicine, Hasanuddin University, Indonesia
- Anatomical Pathology Laboratory, dr. Wahidin Sudirohusodo Hospital, Indonesia
| | - Mardiati Mardiati
- Anatomical Pathology Laboratory, Hasanuddin University Hospital, Indonesia
| |
Collapse
|
3
|
Wang X, Xue X, Pang M, Yu L, Qian J, Li X, Tian M, Lyu A, Lu C, Liu Y. Epithelial-mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e659. [PMID: 39092293 PMCID: PMC11292400 DOI: 10.1002/mco2.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoxia Xue
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mingshi Pang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Liuchunyang Yu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jinxiu Qian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoyu Li
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Meng Tian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Aiping Lyu
- School of Chinese MedicineHong Kong Baptist UniversityKowloonHong KongChina
| | - Cheng Lu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanyan Liu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
4
|
Shadi Vaziri S, Tajbakhsh E, Khamesipour F, Momtaz H, Mazaheri Z. Impact of Helicobacter Pylori-Derived Outer Membrane Vesicles on Inflammation, Immune Responses, and Tumor Cell Migration in Breast Cancer Through the Snail/Β-Catenin Pathway. Rep Biochem Mol Biol 2024; 13:263-272. [PMID: 39995644 PMCID: PMC11847590 DOI: 10.61186/rbmb.13.2.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/14/2024] [Indexed: 02/26/2025]
Abstract
Background Breast cancer remains a significant global health concern, with challenges in treating advanced stages necessitating the exploration of novel therapeutic approaches. Bacterial outer membrane vesicles (OMVs) have shown promise in cancer immunotherapy by targeting cancer cells and modulating immune responses. This study investigated the effects of Helicobacter pylori-derived OMVs on the activation of the Snail/β-Catenin gene cascade in regulating inflammation and cell migration in a mouse model of breast cancer. Methods The OMVs were extracted from the culture of H. pylori strain 26695 (ATCC 700392) using ultracentrifugation. In the mouse model, the vesicles were injected intraperitoneally into Balb/c mice with breast tumors. Tumor growth was assessed through histological examination of tumor samples. IgA and IgG antibodies were measured using ELISA. The expression of E-cadherin and vimentin proteins was evaluated by immunohistochemistry, and real-time PCR was used for vimentin, Snail, α-SMA, and β-catenin in serum samples from the different groups. Results The OMV treatment led to a significant increase in the expression of α-SMA, β-catenin, Snail, and vimentin genes, indicating a potential induction of epithelial-mesenchymal transition and enhanced cancer cell growth. Additionally, a decrease in vimentin expression and an increase in E-cadherin expression were observed, suggesting inhibition of cell migration. The study also revealed alterations in systemic IgA and IgG antibody levels, indicating potential immunomodulatory effects of OMVs. Conclusions These findings highlight the therapeutic potential of OMVs derived from H. pylori in breast cancer treatment by targeting gene cascades involved in cancer progression and modulating immune responses.
Collapse
Affiliation(s)
- Seyedeh Shadi Vaziri
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Elahe Tajbakhsh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Faham Khamesipour
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hassan Momtaz
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Zohre Mazaheri
- Assistant professor of anatomical sciences, Basic medical science research center, Histogenotechcompany, Tehran, Iran.
| |
Collapse
|
5
|
Kielbik M, Szulc-Kielbik I, Klink M. Snail transcription factors - Characteristics, regulation and molecular targets relevant in vital cellular activities of ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119705. [PMID: 38513918 DOI: 10.1016/j.bbamcr.2024.119705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Snail transcription factors play essential roles in embryonic development and participate in many physiological processes. However, these genes have been implicated in the development and progression of various types of cancer. In epithelial ovarian cancer, high expression of these transcription factors is usually associated with the acquisition of a more aggressive phenotype and thus, considered to be a poor prognostic factor. Numerous molecular signals create a complex network of signaling pathways regulating the expression and stability of Snails, which in turn control genes involved in vital cellular functions of ovarian cancer cells, such as invasion, survival, proliferation and chemoresistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology Polish Academy of Sciences, Lodz, Poland.
| | | | - Magdalena Klink
- Institute of Medical Biology Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
6
|
Kielbik M, Przygodzka P, Szulc-Kielbik I, Klink M. Snail transcription factors as key regulators of chemoresistance, stemness and metastasis of ovarian cancer cells. Biochim Biophys Acta Rev Cancer 2023; 1878:189003. [PMID: 37863122 DOI: 10.1016/j.bbcan.2023.189003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Ovarian cancer is one of the deadliest gynecological malignancies among women. The reason for this outcome is the frequent acquisition of cancer cell resistance to platinum-based drugs and unresponsiveness to standard therapy. It has been increasingly recognized that the ability of ovarian cancer cells to adopt more aggressive behavior (mainly through the epithelial-to-mesenchymal transition, EMT), as well as dedifferentiation into cancer stem cells, significantly affects drug resistance acquisition. Transcription factors in the Snail family have been implicated in ovarian cancer chemoresistance and metastasis. In this article, we summarize published data that reveal Snail proteins not only as key inducers of the EMT in ovarian cancer but also as crucial links between the acquisition of ovarian cancer stem properties and spheroid formation. These Snail-related characteristics significantly affect the ovarian cancer cell response to treatment and are related to the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| |
Collapse
|
7
|
Qiao X, Lin J, Shen J, Chen Y, Zheng L, Ren H, Zhao X, Yang H, Li P, Wang Z. FBXO28 suppresses liver cancer invasion and metastasis by promoting PKA-dependent SNAI2 degradation. Oncogene 2023; 42:2878-2891. [PMID: 37596321 PMCID: PMC10516749 DOI: 10.1038/s41388-023-02809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
FBXO28 is a member of F-box proteins that are the substrate receptors of SCF (SKP1, CULLIN1, F-box protein) ubiquitin ligase complexes. Despite the implications of its role in cancer, the function of FBXO28 in epithelial-mesenchymal transition (EMT) process and metastasis for cancer remains largely unknown. Here, we report that FBXO28 is a critical negative regulator of migration, invasion and metastasis in human hepatocellular carcinoma (HCC) in vitro and in vivo. FBXO28 expression is upregulated in human epithelial cancer cell lines relative to mesenchymal counterparts. Mechanistically, by directly binding to SNAI2, FBXO28 functions as an E3 ubiquitin ligase that targets the substrate for degradation via ubiquitin proteasome system. Importantly, we establish a cooperative function for PKA in FBXO28-mediated SNAI2 degradation. In clinical HCC specimens, FBXO28 protein levels positively whereas negatively correlate with PKAα and SNAI2 levels, respectively. Low FBXO28 or PRKACA expression is associated with poor prognosis of HCC patients. Together, these findings elucidate the novel function of FBXO28 as a critical inhibitor of EMT and metastasis in cancer and provide a mechanistic rationale for its candidacy as a new prognostic marker and/or therapeutic target in human aggressive HCC.
Collapse
Affiliation(s)
- Xinran Qiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Lin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajia Shen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyun Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hangjiang Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Pengyu Li
- Qilu Hospital of Shan Dong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Pucci M, Moschetti M, Urzì O, Loria M, Conigliaro A, Di Bella MA, Crescitelli R, Olofsson Bagge R, Gallo A, Santos MF, Puglisi C, Forte S, Lorico A, Alessandro R, Fontana S. Colorectal cancer-derived small extracellular vesicles induce TGFβ1-mediated epithelial to mesenchymal transition of hepatocytes. Cancer Cell Int 2023; 23:77. [PMID: 37072829 PMCID: PMC10114452 DOI: 10.1186/s12935-023-02916-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Metastatic disease is the major cause of cancer-related deaths. Increasing evidence shows that primary tumor cells can promote metastasis by preparing the local microenvironment of distant organs, inducing the formation of the so-called "pre-metastatic niche". In recent years, several studies have highlighted that among the tumor-derived molecular components active in pre-metastatic niche formation, small extracellular vesicles (sEVs) play a crucial role. Regarding liver metastasis, the ability of tumor-derived sEVs to affect the activities of non-parenchymal cells such as Kupffer cells and hepatic stellate cells is well described, while the effects on hepatocytes, the most conspicuous and functionally relevant hepatic cellular component, remain unknown. METHODS sEVs isolated from SW480 and SW620 CRC cells and from clinical samples of CRC patients and healthy subjects were used to treat human healthy hepatocytes (THLE-2 cells). RT-qPCR, Western blot and confocal microscopy were applied to investigate the effects of this treatment. RESULTS Our study shows for the first time that TGFβ1-carrying CRC_sEVs impair the morphological and functional properties of healthy human hepatocytes by triggering their TGFβ1/SMAD-dependent EMT. These abilities of CRC_sEVs were further confirmed by evaluating the effects elicited on hepatocytes by sEVs isolated from plasma and biopsies from CRC patients. CONCLUSIONS Since it is known that EMT of hepatocytes leads to the formation of a fibrotic environment, a well-known driver of metastasis, these results suggest that CRC_sEV-educated hepatocytes could have an active and until now neglected role during liver metastasis formation.
Collapse
Affiliation(s)
- Marzia Pucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Ornella Urzì
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marco Loria
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT, Palermo, Italy
| | - Mark F Santos
- Touro University College of Medicine, Henderson, NV, USA
| | | | | | - Aurelio Lorico
- Touro University College of Medicine, Henderson, NV, USA
- IOM Ricerca, Viagrande, Catania, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| |
Collapse
|
9
|
Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys. Int J Mol Sci 2022; 23:ijms23147501. [PMID: 35886848 PMCID: PMC9322852 DOI: 10.3390/ijms23147501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
During human kidney development, cells of the proximal nephron gradually differentiate into podocytes and parietal epithelial cells (PECs). Podocytes are terminally differentiated cells that play a key role in both normal and pathological kidney function. Therefore, the potential of podocytes to regenerate or be replaced by other cell populations (PECs) is of great interest for the possible treatment of kidney diseases. In the present study, we analyzed the proliferation and differentiation capabilities of podocytes and PECs, changes in the expression pattern of nestin, and several early proteins including WNT4, Notch2, and Snail, as well as Ki-67, in tissues of developing, postnatal, and pathologically changed human kidneys by using immunohistochemistry and electron microscopy. Developing PECs showed a higher proliferation rate than podocytes, whereas nestin expression characterized only podocytes and pathologically changed kidneys. In the developing kidneys, WNT4 and Notch2 expression increased moderately in podocytes and strongly in PECs, whereas Snail increased only in PECs in the later fetal period. During human kidney development, WNT4, Notch2, and Snail are involved in early nephrogenesis control. In kidneys affected by congenital nephrotic syndrome of the Finnish type (CNF) and focal segmental glomerulosclerosis (FSGS), WNT4 decreased in both cell populations, whereas Notch2 decreased in FSGS. In contrast, Snail increased both in CNF and FSGS, whereas Notch2 increased only in CNF. Electron microscopy revealed cytoplasmic processes spanning the urinary space between the podocytes and PECs in developing and healthy postnatal kidneys, whereas the CNF and FSGS kidneys were characterized by numerous cellular bridges containing cells with strong expression of nestin and all analyzed proteins. Our results indicate that the mechanisms of gene control in nephrogenesis are reactivated under pathological conditions. These mechanisms could have a role in restoring glomerular integrity by potentially inducing the regeneration of podocytes from PECs.
Collapse
|
10
|
Imodoye SO, Adedokun KA, Muhammed AO, Bello IO, Muhibi MA, Oduola T, Oyenike MA. Understanding the Complex Milieu of Epithelial-Mesenchymal Transition in Cancer Metastasis: New Insight Into the Roles of Transcription Factors. Front Oncol 2021; 11:762817. [PMID: 34868979 PMCID: PMC8636732 DOI: 10.3389/fonc.2021.762817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological program during which polarised, immobile epithelial cells lose connection with their neighbours and are converted to migratory mesenchymal phenotype. Mechanistically, EMT occurs via a series of genetic and cellular events leading to the repression of epithelial-associated markers and upregulation of mesenchymal-associated markers. EMT is very crucial for many biological processes such as embryogenesis and ontogenesis during human development, and again it plays a significant role in wound healing during a programmed replacement of the damaged tissues. However, this process is often hijacked in pathological conditions such as tumour metastasis, which constitutes the most significant drawback in the fight against cancer, accounting for about 90% of cancer-associated mortality globally. Worse still, metastatic tumours are not only challenging to treat with the available conventional radiotherapy and surgical interventions but also resistant to several cytotoxic agents during treatment, owing to their anatomically diffuse localisation in the body system. As the quest to find an effective method of addressing metastasis in cancer intervention heightens, understanding the molecular interplay involving the signalling pathways, downstream effectors, and their interactions with the EMT would be an important requisite while the challenges of metastasis continue to punctuate. Unfortunately, the molecular underpinnings that govern this process remain to be completely illuminated. However, it is becoming increasingly clear that EMT, which initiates every episode of metastasis, significantly requires some master regulators called EMT transcription factors (EMT-TFs). Thus, this review critically examines the roles of TFs as drivers of molecular rewiring that lead to tumour initiation, progression, EMT, metastasis, and colonisation. In addition, it discusses the interaction of various signalling molecules and effector proteins with these factors. It also provides insight into promising therapeutic targets that may inhibit the metastatic process to overcome the limitation of "undruggable" cancer targets in therapeutic design and upturn the current spate of drug resistance. More so, it extends the discussion from the basic understanding of the EMT binary switch model, and ultimately unveiling the E/M cellular plasticity along a phenotypic spectrum via multiple trans-differentiations. It wraps up on how this knowledge update shapes the diagnostic and clinical approaches that may demand a potential shift in investigative paradigm using novel technologies such as single-cell analyses to improve overall patient survival.
Collapse
Affiliation(s)
- Sikiru O. Imodoye
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Kamoru A. Adedokun
- Department of Oral Pathology, Dental University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abdurrasheed Ola Muhammed
- Department of Histopathology, School of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim O. Bello
- Department of Biological Sciences, Southern Illinois University, Edwardsville, IL, United States
| | - Musa A. Muhibi
- Department of Medical Laboratory Science, Faculty of Applied Sciences, Edo State University, Uzairue, Nigeria
| | - Taofeeq Oduola
- Department of Chemical Pathology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Musiliu A. Oyenike
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| |
Collapse
|