1
|
Dai Y, Ying Y, Zhu G, Xu Y, Ji K. STAT3 drives the expression of HIF1alpha in cancer cells through a novel super-enhancer. Biochem Biophys Res Commun 2024; 735:150483. [PMID: 39098275 DOI: 10.1016/j.bbrc.2024.150483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Aerobic glycolysis is one of the major hallmarks of malignant tumors. This metabolic reprogramming benefits the rapid proliferation of cancer cells, facilitates the formation of tumor microenvironment to support their growth and survival, and impairs the efficacy of various tumor therapies. Therefore, the elucidation of the mechanisms driving aerobic glycolysis in tumors represents a pivotal breakthrough in developing therapeutic strategies for solid tumors. HIF1α serves as a central regulator of aerobic glycolysis with elevated mRNA and protein expression across multiple tumor types. However, the mechanisms contributing to this upregulation remain elusive. This study reports the identification of a novel HIF1α super enhancer (HSE) in multiple cancer cells using bioinformatics analysis, chromosome conformation capture (3C), chromatin immunoprecipitation (ChIP), and CRISPR/Cas9 genome editing techniques. Deletion of HSE in cancer cells significantly reduces the expression of HIF1α, glycolysis, cell proliferation, colony and tumor formation ability, confirming the role of HSE as the enhancer of HIF1α in cancer cells. Particularly, we demonstrated that STAT3 promotes the expression of HIF1α by binding to HSE. The discovery of HSE will help elucidate the pathways driving tumor aerobic glycolysis, offering new therapeutic targets and potentially resolving the bottleneck in solid tumor treatment.
Collapse
Affiliation(s)
- Yonghui Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Ying
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gaoyang Zhu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yang Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0322, USA.
| | - Kaiyuan Ji
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Deforzh E, Kharel P, Zhang Y, Karelin A, El Khayari A, Ivanov P, Krichevsky AM. HOXDeRNA activates a cancerous transcription program and super enhancers via genome-wide binding. Mol Cell 2024; 84:3950-3966.e6. [PMID: 39383879 PMCID: PMC11490371 DOI: 10.1016/j.molcel.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
The role of long non-coding RNAs (lncRNAs) in malignant cell transformation remains elusive. We previously identified an enhancer-associated lncRNA, LINC01116 (named HOXDeRNA), as a transformative factor converting human astrocytes into glioma-like cells. Employing a combination of CRISPR editing, chromatin isolation by RNA purification coupled with sequencing (ChIRP-seq), in situ mapping RNA-genome interactions (iMARGI), chromatin immunoprecipitation sequencing (ChIP-seq), HiC, and RNA/DNA FISH, we found that HOXDeRNA directly binds to CpG islands within the promoters of 35 glioma-specific transcription factors (TFs) distributed throughout the genome, including key stem cell TFs SOX2, OLIG2, POU3F2, and ASCL1, liberating them from PRC2 repression. This process requires a distinct RNA quadruplex structure and other segments of HOXDeRNA, interacting with EZH2 and CpGs, respectively. Subsequent transformation activates multiple oncogenes (e.g., EGFR, miR-21, and WEE1), driven by the SOX2- and OLIG2-dependent glioma-specific super enhancers. These results help reconstruct the sequence of events underlying the process of astrocyte transformation, highlighting HOXDeRNA's central genome-wide activity and suggesting a shared RNA-dependent mechanism in otherwise heterogeneous and multifactorial gliomagenesis.
Collapse
Affiliation(s)
- Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Prakash Kharel
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yanhong Zhang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anton Karelin
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Abdellatif El Khayari
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben-Guerir 43150, Morocco
| | - Pavel Ivanov
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Bellon M, Nicot C. Increased H19/miR-675 Expression in Adult T-Cell Leukemia Is Associated with a Unique Notch Signature Pathway. Int J Mol Sci 2024; 25:5130. [PMID: 38791169 PMCID: PMC11120950 DOI: 10.3390/ijms25105130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The Notch pathway is a key cancer driver and is important in tumor progression. Early research suggested that Notch activity was highly dependent on the expression of the intracellular cleaved domain of Notch-1 (NICD). However, recent insights into Notch signaling reveal the presence of Notch pathway signatures, which may vary depending on different cancer types and tumor microenvironments. Herein, we perform a comprehensive investigation of the Notch signaling pathway in adult T-cell leukemia (ATL) primary patient samples. Using gene arrays, we demonstrate that the Notch pathway is constitutively activated in ATL patient samples. Furthermore, the activation of Notch in ATL cells remains elevated irrespective of the presence of activating mutations in Notch itself or its repressor, FBXW7, and that ATL cells are dependent upon Notch-1 expression for proliferation and survival. We demonstrate that ATL cells exhibit the expression of pivotal Notch-related genes, including notch-1, hes1, c-myc, H19, and hes4, thereby defining a critical Notch signature associated with ATL disease. Finally, we demonstrate that lncRNA H19 is highly expressed in ATL patient samples and ATL cells and contributes to Notch signaling activation. Collectively, our results shed further light on the Notch pathway in ATL leukemia and reveal new therapeutic approaches to inhibit Notch activation in ATL cells.
Collapse
MESH Headings
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Cell Line, Tumor
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Gene Expression Regulation, Leukemic
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Cell Proliferation/genetics
- F-Box-WD Repeat-Containing Protein 7/metabolism
- F-Box-WD Repeat-Containing Protein 7/genetics
- Gene Expression Regulation, Neoplastic
- Adult
Collapse
Affiliation(s)
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
4
|
Deforzh E, Kharel P, Karelin A, Ivanov P, Krichevsky AM. HOXDeRNA activates a cancerous transcription program and super-enhancers genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547275. [PMID: 37425921 PMCID: PMC10327164 DOI: 10.1101/2023.06.30.547275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background The origin and genesis of highly malignant and heterogenous glioblastoma brain tumors remain unknown. We previously identified an enhancer-associated long non-coding RNA, LINC01116 (named HOXDeRNA here), that is absent in the normal brain but is commonly expressed in malignant glioma. HOXDeRNA has a unique capacity to transform human astrocytes into glioma-like cells. This work aimed to investigate molecular events underlying the genome-wide function of this lncRNA in glial cell fate and transformation. Results Using a combination of RNA-Seq, ChIRP-Seq, and ChIP-Seq, we now demonstrate that HOXDeRNA binds in trans to the promoters of genes encoding 44 glioma-specific transcription factors distributed throughout the genome and derepresses them by removing the Polycomb repressive complex 2 (PRC2). Among the activated transcription factors are the core neurodevelopmental regulators SOX2, OLIG2, POU3F2, and SALL2. This process requires an RNA quadruplex structure of HOXDeRNA that interacts with EZH2. Moreover, HOXDeRNA-induced astrocyte transformation is accompanied by the activation of multiple oncogenes such as EGFR, PDGFR, BRAF, and miR-21, and glioma-specific super-enhancers enriched for binding sites of glioma master transcription factors SOX2 and OLIG2. Conclusions Our results demonstrate that HOXDeRNA overrides PRC2 repression of glioma core regulatory circuitry with RNA quadruplex structure. These findings help reconstruct the sequence of events underlying the process of astrocyte transformation and suggest a driving role for HOXDeRNA and a unifying RNA-dependent mechanism of gliomagenesis.
Collapse
Affiliation(s)
- Evgeny Deforzh
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Prakash Kharel
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anton Karelin
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Ivanov
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
6
|
Stavskaya NI, Ilchuk LA, Okulova Y, Kubekina MV, Varlamova EA, Silaeva YY, Bruter AV. Transgenic mice for study of the CDK8/19 cyclin-dependent kinase kinase-independent mechanisms of action. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The CDK8 cyclin-dependent transcription-associated kinase and its less studied paralog, CDK19, regulate the expression of the dependant genes via several mechanisms. CDK8/19 can directly phosphorylate some transcription factors (ICN, STAT1), but at the same time these kinases being a component of the mediator complex regulate transcrition via interaction with chromatin in the promoter and enhancer regions of appropriate genes. Recently the papers have appeared showing that CDK8/19 has kinase-independent mechanisms of action through comparison of the effects of the kinase activity genetic inactivation and chemical inhibition. The study was aimed to generate transgenic mice capable of the induced and tissue-specific expression of the kinase-negative (showing no phosphorylation activity) form of CDK8, CDK8 (D173A), which could be later used to study the CDK8 kinase-independent mechanisms of action in vivo. We obtained four F0 transgenic animals by microinjection of linear DNA into the pronucleus, two of these animals became the ancestors of two distinct lines. The copy number of the integrated construct was measured for all F0 and the lines generated. This model may be used to study the kinase-independent properties of the CDK8/19 proteins.
Collapse
Affiliation(s)
- NI Stavskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - LA Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - YuD Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - MV Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - EA Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - YY Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - AV Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Panahi-Moghadam S, Hassani S, Farivar S, Vakhshiteh F. Emerging Role of Enhancer RNAs as Potential Diagnostic and Prognostic Biomarkers in Cancer. Noncoding RNA 2022; 8:ncrna8050066. [PMID: 36287118 PMCID: PMC9607539 DOI: 10.3390/ncrna8050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Enhancers are distal cis-acting elements that are commonly recognized to regulate gene expression via cooperation with promoters. Along with regulating gene expression, enhancers can be transcribed and generate a class of non-coding RNAs called enhancer RNAs (eRNAs). The current discovery of abundant tissue-specific transcription of enhancers in various diseases such as cancers raises questions about the potential role of eRNAs in disease diagnosis and therapy. This review aimed to demonstrate the current understanding of eRNAs in cancer research with a focus on the potential roles of eRNAs as prognostic and diagnostic biomarkers in cancers.
Collapse
Affiliation(s)
- Somayeh Panahi-Moghadam
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran 1417614411, Iran
| | - Shirin Farivar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
- Correspondence:
| |
Collapse
|
8
|
Gene Transcription as a Therapeutic Target in Leukemia. Int J Mol Sci 2021; 22:ijms22147340. [PMID: 34298959 PMCID: PMC8304797 DOI: 10.3390/ijms22147340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Blood malignancies often arise from undifferentiated hematopoietic stem cells or partially differentiated stem-like cells. A tight balance of multipotency and differentiation, cell division, and quiescence underlying normal hematopoiesis requires a special program governed by the transcriptional machinery. Acquisition of drug resistance by tumor cells also involves reprogramming of their transcriptional landscape. Limiting tumor cell plasticity by disabling reprogramming of the gene transcription is a promising strategy for improvement of treatment outcomes. Herein, we review the molecular mechanisms of action of transcription-targeted drugs in hematological malignancies (largely in leukemia) with particular respect to the results of clinical trials.
Collapse
|