1
|
Lebedev T, Mikheeva A, Gasca V, Spirin P, Prassolov V. Systematic Comparison of FBS and Medium Variation Effect on Key Cellular Processes Using Morphological Profiling. Cells 2025; 14:336. [PMID: 40072065 PMCID: PMC11898771 DOI: 10.3390/cells14050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/15/2025] Open
Abstract
Although every cell biologist knows the importance of selecting the right growth conditions and it is well known that the composition of growth medium may vary depending on a product brand or lot affecting many cellular processes, still those effects are poorly systematized. We addressed this issue by comparing the effect of 12 fetal bovine sera (FBS) and eight growth media from different brands on the morphological and functional parameters of five cell types: lung adenocarcinoma, neuroblastoma, glioblastoma, embryonic kidney, and colorectal cancer cells. Using high-throughput imaging, we compared cell proliferation; performed morphological profiling based on the imaging of 561,519 cells; measured extracellular regulated kinases (ERK1/2) activity, mitochondria potential, and lysosome accumulation; and compared cell sensitivity to drugs, response to EGF stimulation, and ability to differentiate. We found that changes in cell proliferation and morphology were independent, and morphological changes were associated with differences in mitochondria potential or the cell's ability to differentiate. Surprisingly, the most drastic differences were detected in serum-free conditions, where medium choice affected cell survival and response to EGF. Overall, our data may be used to improve the reproducibility of experiments involving cell cultures, and the effects of 28 growth conditions on proliferation and 44 morphological parameters can be explored through a Shinyapp.
Collapse
Affiliation(s)
- Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.M.); (V.G.); (P.S.); (V.P.)
| | | | | | | | | |
Collapse
|
2
|
Mikheeva AM, Bogomolov MA, Gasca VA, Sementsov MV, Spirin PV, Prassolov VS, Lebedev TD. Improving the power of drug toxicity measurements by quantitative nuclei imaging. Cell Death Discov 2024; 10:181. [PMID: 38637526 PMCID: PMC11026393 DOI: 10.1038/s41420-024-01950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Imaging-based anticancer drug screens are becoming more prevalent due to development of automated fluorescent microscopes and imaging stations, as well as rapid advancements in image processing software. Automated cell imaging provides many benefits such as their ability to provide high-content data, modularity, dynamics recording and the fact that imaging is the most direct way to access cell viability and cell proliferation. However, currently most publicly available large-scale anticancer drugs screens, such as GDSC, CTRP and NCI-60, provide cell viability data measured by assays based on colorimetric or luminometric measurements of NADH or ATP levels. Although such datasets provide valuable data, it is unclear how well drug toxicity measurements can be integrated with imaging data. Here we explored the relations between drug toxicity data obtained by XTT assay, two quantitative nuclei imaging methods and trypan blue dye exclusion assay using a set of four cancer cell lines with different morphologies and 30 drugs with different mechanisms of action. We show that imaging-based approaches provide high accuracy and the differences between results obtained by different methods highly depend on drug mechanism of action. Selecting AUC metrics over IC50 or comparing data where significantly drugs reduced cell numbers noticeably improves consistency between methods. Using automated cell segmentation protocols we analyzed mitochondria activity in more than 11 thousand drug-treated cells and showed that XTT assay produces unreliable data for CDK4/6, Aurora A, VEGFR and PARP inhibitors due induced cell size growth and increase in individual mitochondria activity. We also explored several benefits of image-based analysis such as ability to monitor cell number dynamics, dissect changes in total and individual mitochondria activity from cell proliferation, and ability to identify chromatin remodeling drugs. Finally, we provide a web tool that allows comparing results obtained by different methods.
Collapse
Affiliation(s)
- Alesya M Mikheeva
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Mikhail A Bogomolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentina A Gasca
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Mikhail V Sementsov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
| | - Timofey D Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia.
| |
Collapse
|
3
|
Subtype of Neuroblastoma Cells with High KIT Expression Are Dependent on KIT and Its Knockdown Induces Compensatory Activation of Pro-Survival Signaling. Int J Mol Sci 2022; 23:ijms23147724. [PMID: 35887076 PMCID: PMC9324519 DOI: 10.3390/ijms23147724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer with high clinical and molecular heterogeneity, and patients with high-risk tumors have limited treatment options. Receptor tyrosine kinase KIT has been identified as a potential marker of high-risk NB and a promising target for NB treatment. We investigated 19,145 tumor RNA expression and molecular pathway activation profiles for 20 cancer types and detected relatively high levels of KIT expression in NB. Increased KIT expression was associated with activation of cell survival pathways, downregulated apoptosis induction, and cell cycle checkpoint control pathways. KIT knockdown with shRNA encoded by lentiviral vectors in SH-SY5Y cells led to reduced cell proliferation and apoptosis induction up to 50%. Our data suggest that apoptosis induction was caused by mitotic catastrophe, and there was a 2-fold decrease in percentage of G2-M cell cycle phase after KIT knockdown. We found that KIT knockdown in NB cells leads to strong upregulation of other pro-survival growth factor signaling cascades such as EPO, NGF, IL-6, and IGF-1 pathways. NGF, IGF-1 and EPO were able to increase cell proliferation in KIT-depleted cells in an ERK1/2-dependent manner. Overall, we show that KIT is a promising therapeutic target in NB, although such therapy efficiency could be impeded by growth factor signaling activation.
Collapse
|