1
|
Wijetunga NA, Yahalom J, Imber BS. The art of war: using genetic insights to understand and harness radiation sensitivity in hematologic malignancies. Front Oncol 2025; 14:1478078. [PMID: 40191738 PMCID: PMC11968681 DOI: 10.3389/fonc.2024.1478078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 04/09/2025] Open
Abstract
It is well established that hematologic malignancies are often considerably radiosensitive, which enables usage of far lower doses of therapeutic radiotherapy. This review summarizes the currently known genomic landscape of hematologic malignancies, particularly as it relates to radiosensitivity and the field of radiation oncology. By tracing the historical development of the modern understanding of radiosensitivity, we focus on the discovery and implications of pivotal mutated genes in hematologic malignancies such as TP53, ATM, and other genes critical to DNA repair pathways. These genetic insights have contributed significantly to the advancement of personalized medicine, aiming to enhance treatment precision and outcomes, and there is an opportunity to extend these insights to personalized radiotherapy. We explore the transition from early discoveries to the current efforts in integrating comprehensive genomic data into clinical practice. Specific examples from Hodgkin lymphoma, non-Hodgkin lymphoma, and plasma cell neoplasms illustrate how genetic mutations could influence radiosensitivity and impact subsequent radiotherapeutic response. Despite the advancements, challenges remain in translating these genetic insights into routine clinical practice, particularly due to the heterogeneity of alterations and the complex interactions within cancer signaling pathways. We emphasize the potential of radiogenomics to address these challenges by identifying genetic markers that predict radiotherapy response and toxicity, thereby refining treatment strategies. The need for robust decision support systems, standardized protocols, and ongoing education for healthcare providers is critical to the successful integration of genomic data into radiation therapy. As research continues to validate genetic markers and explore novel therapeutic combinations, the promise of personalized radiotherapy becomes increasingly attainable, offering the potential to significantly improve outcomes for patients with hematologic malignancies.
Collapse
Affiliation(s)
- N. Ari Wijetunga
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, United States
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Brandon S. Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
2
|
Liu J, Farrow M, Seymour L, Desai J, Loong HH, Ivy P, Koyoma T, Cook N, Blagden S, Garralda E, Massard C, Tolcher AW, Adashek JJ, Zhang L, Zhao S, Shen L, Kurzrock R, El-Deiry WS, Subbiah V, Joshua AM. Accelerating the Future of Oncology Drug Development: The Role of Consortia in the Delivery of Precision Oncology Early Phase Clinical Trials. J Clin Oncol 2025; 43:735-747. [PMID: 39808749 DOI: 10.1200/jco-24-01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE Over the past 15 years, the landscape of early phase clinical trials (EPCTs) has undergone a remarkable expansion in both quantity and intricacy. The proliferation of sites, trials, sponsors, and contract research organizations has surged exponentially, marking a significant shift in research conduct. However, EPCT operations suffer from numerous inefficiencies, such as cumbersome start-up processes, which are particularly critical when drug safety and the recommended phase II dose need to be established in a timely manner. Networks and consortia may overcome some of these challenges of enrolling suitable patients and streamlining start-up, particularly when distance and disease trajectory come into play. DESIGN In this article, we provide an overview of EPCT consortia in adult oncology across different continents assembled through systematic review of the literature and snowball sampling methodology. We illustrate their scope, structure, funding, and achievements. RESULTS Fifteen EPCT consortia were identified including two in the United States, three in Europe, five in Asia-Pacific, two intercontinental consortia, and three within private oncology networks. These consortia vary in their scope, funding, and structure from government-funded models such as the National Cancer Institute Experimental Therapeutics Clinical Trials Networks through charitably funded and private research organizations. EPCT consortia play a role in collaborative research, molecular tumor boards to provide patient-centric biomarker-matched treatments, and streamlining trial conduct to improve timelines and cost efficiency. CONCLUSION The growth in EPCT activity and complexity has resulted in expansion in the number of EPCT consortia globally. By actively engaging with regulatory bodies and pharmaceutical and contract research organization industries, consortia have an opportunity to address the evolving challenges faced in this field and to accelerate the translation of scientific discoveries into clinical practice.
Collapse
Affiliation(s)
- Jia Liu
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine & Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Max Farrow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Lesley Seymour
- Canadian Cancer Trials Group, Queens University, Kingston, ON, Canada
| | - Jayesh Desai
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Herbert H Loong
- The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Percy Ivy
- National Cancer Institute, Bethesda, MD
| | | | - Natalie Cook
- The Christie NHS Foundation Trust and University of Manchester, Manchester, United Kingdom
| | - Sarah Blagden
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Elena Garralda
- Research Unit for Molecular Therapy of Cancer (UITM), Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Oncology Department, Hospital Universitario Vall d'Hebron (HUVH), Barcelona, Spain
- Phase I Unit-NEXT Oncology, Hospital Quirón Salud, Barcelona, Spain
| | - Christophe Massard
- Département d'Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Jacob J Adashek
- START Center for Cancer Research, San Antonio, TX
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD
| | - Li Zhang
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Centre for Cancer, Guangzhou, China
| | - Shen Zhao
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Provincial Clinical Research Centre for Cancer, Guangzhou, China
| | - Lin Shen
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukie, WI
- Worldwide Innovative Network (WIN) Consortium in Cancer Personalized Medicine, Paris, France
| | - Wafik S El-Deiry
- Medical College of Wisconsin, Milwaukie, WI
- Worldwide Innovative Network (WIN) Consortium in Cancer Personalized Medicine, Paris, France
- The Legorreta Cancer Center at Brown University, Providence, RI
| | | | - Anthony M Joshua
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine & Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
3
|
Fu S, Zou P, Fang Z, Zhou X, Chen J, Gong C, Quan L, Lin B, Chen Q, Lang J, Chen M. Incidence and risk of endocrine and metabolic abnormalities linked to PARP inhibitors in solid tumors: a meta-analysis. BMC Cancer 2025; 25:183. [PMID: 39891102 PMCID: PMC11783722 DOI: 10.1186/s12885-025-13579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) serve as crucial therapeutic agents in solid tumor treatment. Preclinical investigations suggest a potential protective function of PARPi against endocrine and metabolic impairments. Nevertheless, the existing body of evidence remains inconclusive on this aspect. PURPOSE Our aim was to evaluate the potential impact of PARPi on endocrine and metabolic disruptions in clinical trials. DATA SOURCES We conducted a comprehensive search across the Medline, EMBASE, PubMed, and Web of Science databases, along with the ClinicalTrials.gov registry. STUDY SELECTION Phase II/III randomized controlled trials (RCTs) investigating the effects of PARPi in metabolic and endocrine processes were selected for inclusion in patients with solid tumors. DATA EXTRACTION The primary outcomes of interest encompassed metabolic and endocrine dysfunctions. DATA SYNTHESIS A total of 26 trials (n = 9,590 patients) were included in our meta-analysis. Niraparib demonstrated an increased risk of any-grade hyperglycemia (OR = 2.15, 95% CI 1.28-3.62), with patients receiving PARPi for metastatic pancreatic cancer showing a higher susceptibility to any-grade hyperglycemia (OR = 1.78, 95% CI 1.04-3.04). Conversely, rucaparib exhibited a potential ameliorative effect on hyperglycemia (OR = 0.54, 95% CI 0.30-0.97). No statistically significant disparities were observed for other outcomes associated with PARPi utilization. LIMITATIONS Among these RCTs included, 50% were assessed as low qualities due to high risk of bias. CONCLUSIONS Our meta-analysis demonstrated that PARPi may exert adverse effects on endocrine and metabolic pathways. Close monitoring of hyperglycemia is recommended for patients undergoing niraparib therapy, especially those with pancreatic cancer. TRIAL REGISTRATION This meta-Analysis was prospectively registered in the PROSPERO database with ID CRD42023457959.
Collapse
Affiliation(s)
- Shunlian Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Pingjin Zou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zengyi Fang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinxiang Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Junyang Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Cuicui Gong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Li Quan
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Bing Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P.R. China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P.R. China.
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
4
|
Li S, Lei N, Chen M, Guo R, Han L, Qiu L, Wu F, Jiang S, Tong N, Wang K, Li Y, Chang L. Exploration of organoids in ovarian cancer: From basic research to clinical translation. Transl Oncol 2024; 50:102130. [PMID: 39303357 PMCID: PMC11437877 DOI: 10.1016/j.tranon.2024.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Ovarian cancer is a highly heterogeneous tumor with a poor prognosis. The lack of reliable and efficient research models that can accurately mimic heterogeneity has impeded in-depth investigations and hindered the clinical translation of research findings in ovarian cancer. Organoid models have emerged as a promising in vitro approach, demonstrating remarkable fidelity to the histological, molecular, genomic, and transcriptomic features of their tissues of origin. In recent years, organoids have contributed to advancing our understanding of ovarian cancer initiation, metastasis, and drug resistance mechanisms, as well as facilitating clinical screening of effective therapeutic agents. The establishment of high-throughput organoid culture systems, coupled with cutting-edge technologies such as organ-on-a-chip, genetic engineering, and 3D printing, has tremendous potential for accelerating ovarian cancer research translation. In this review, we present a comprehensive overview of the latest exploration of organoids in basic ovarian cancer research and clinical translation. Furthermore, we discuss the prospects and challenges associated with the use of organoids and related novel technologies in the context of ovarian cancer. This review provides insights into the application of organoids in ovarian cancer.
Collapse
Affiliation(s)
- Siyu Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyu Chen
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Liping Han
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Luojie Qiu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Fengling Wu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Shan Jiang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Ningyao Tong
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Kunmei Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia.
| | - Lei Chang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China.
| |
Collapse
|
5
|
Fröhlich LM, Villar-Miyar A, Heintze T, Sauer B, Schittek B. PARP1 expression predicts PARP inhibitor sensitivity and correlates with metastatic potential and overall survival in melanoma. Int J Cancer 2024; 155:203-210. [PMID: 38619111 DOI: 10.1002/ijc.34947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Metastatic melanoma is still a difficult-to-treat cancer type owing to its frequent resistance mechanisms to targeted and immunotherapy. Therefore, we aimed to unravel novel therapeutic strategies for melanoma patients. Preclinical and clinical studies show that melanoma patients may benefit from a treatment with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). In this study, we focus on PARP1 as a potential biomarker to predict the response of melanoma cells to PARPi therapy. We found that melanoma cells with high basal PARP1 expression exhibit significantly increased cell death after PARPi treatment owing to higher PARP1 trapping compared with melanoma cells with low PARP1 expression. In addition, we could demonstrate that PARP1 expression levels are low in nonmalignant skin cells, and metastatic melanomas show considerably higher PARP1 levels compared with primary melanomas. Most strikingly, we found that high PARP1 levels correlate with worse overall survival of late stage metastasized melanoma patients. In conclusion, we show that PARP1 might act as a biomarker to predict the response to PARPi therapy, and that in particular the late stage metastasized melanoma patients are especially sensitive to PARPi therapy owing to elevated PARP1 expression. Our data suggest that the PARPi cytotoxicity primarily will affect the high PARP1 expressing melanoma cells, rather than the low PARP1 expressing nonmalignant skin cells resulting in only low side effects.
Collapse
Affiliation(s)
- Lisa Marie Fröhlich
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Ana Villar-Miyar
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Tamara Heintze
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Birgit Sauer
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Long L, Zhang H, Zhou Z, Duan L, Fan D, Wang R, Xu S, Qiao D, Zhu W. Pyrrole-containing hybrids as potential anticancer agents: An insight into current developments and structure-activity relationships. Eur J Med Chem 2024; 273:116470. [PMID: 38762915 DOI: 10.1016/j.ejmech.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cancer poses a significant threat to human health. Therefore, it is urgent to develop potent anti-cancer drugs with excellent inhibitory activity and no toxic side effects. Pyrrole and its derivatives are privileged heterocyclic compounds with significant diverse pharmacological effects. These compounds can target various aspects of cancer cells and have been applied in clinical settings or are undergoing clinical trials. As a result, pyrrole has emerged as a promising drug scaffold and has been further probed to get novel entities for the treatment of cancer. This article reviews recent research progress on anti-cancer drugs containing pyrrole. It focuses on the mechanism of action, biological activity, and structure-activity relationships of pyrrole derivatives, aiming to assist in designing and synthesizing innovative pyrrole-based anti-cancer compounds.
Collapse
Affiliation(s)
- Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - ZhiHui Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
7
|
Lin C, Liu C, Hu P, Zou Z, Sun G. Design, synthesis, biological evaluation of novel piperidine-based derivatives as potent poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Bioorg Chem 2024; 148:107455. [PMID: 38772289 DOI: 10.1016/j.bioorg.2024.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a crucial member of DNA repair enzymes responsible for repairing DNA single-strand breaks. Developing PARP inhibitors based on synthetic lethality strategies is an effective approach for treating breast cancer and other diseases. In this study, a series of novel piperidine-based benzamide derivatives were designed and synthesized using structure-based drug design principles. The anticancer activities of these compounds were evaluated against five human cancer cell lines (MDA-MB-436, CAPAN-1, SW-620, HepG2, SKOV3, and PC3) and the preliminary structure-activity relationships were delineated. Among the compounds, 6a and 15d demonstrated potent antiproliferative effects against MDA-MB-436 cells with IC50 values of 8.56 ± 1.07 μM and 6.99 ± 2.62 μM, respectively. Furthermore, both compounds exhibited excellent inhibitory activity against PARP-1, with IC50 values of 8.33 nM and 12.02 nM, respectively. Mechanistic investigations revealed that 6a and 15d effectively inhibited colony formation and cell migration of HCT116 cells. Moreover, they induced apoptosis by upregulating the expression of Bax and cleaved Caspase-3, while downregulating the expression of Caspase-3 and Bcl-2 in HCT116 cells. Based on its impressive pharmacodynamic data in vitro, we conducted a study to evaluate the efficacy of 15d in a xenograft tumor model in mice when used in combination with cytotoxic agents. Collectively, these findings suggest that 15d could be promising drug candidates worthy of further investigation.
Collapse
Affiliation(s)
- Chao Lin
- Yantai Institute of Materia Medica, Shandong 264000, China
| | - Chang Liu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Panpan Hu
- School of Anesthesiology, Naval Medical University, Shanghai, 200433 , China
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai , 200433 , China; School of Anesthesiology, Naval Medical University, Shanghai, 200433 , China.
| | - Geng Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai , 200433 , China; School of Anesthesiology, Naval Medical University, Shanghai, 200433 , China.
| |
Collapse
|
8
|
Sajjad F, Jalal A, Jalal A, Gul Z, Mubeen H, Rizvi SZ, Un-Nisa EA, Asghar A, Butool F. Multi-omic analysis of dysregulated pathways in triple negative breast cancer. Asia Pac J Clin Oncol 2024. [PMID: 38899578 DOI: 10.1111/ajco.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The aggressive characteristics of triple-negative breast cancer (TNBC) and the absence of targeted medicines make TNBC a challenging clinical case. The molecular landscape of TNBC has been well-understood thanks to recent developments in multi-omic analysis, which have also revealed dysregulated pathways and possible treatment targets. This review summarizes the utilization of multi-omic approaches in elucidating TNBC's complex biology and therapeutic avenues. Dysregulated pathways including cell cycle progression, immunological modulation, and DNA damage response have been uncovered in TNBC by multi-omic investigations that integrate genomes, transcriptomics, proteomics, and metabolomics data. Methods like this pave the door for the discovery of new therapeutic targets, such as the EGFR, PARP, and mTOR pathways, which in turn direct the creation of more precise treatments. Recent developments in TNBC treatment strategies, including immunotherapy, PARP inhibitors, and antibody-drug conjugates, show promise in clinical trials. Emerging biomarkers like MUC1, YB-1, and immune-related markers offer insights into personalized treatment approaches and prognosis prediction. Despite the strengths of multi-omic analysis in offering a more comprehensive view and personalized treatment strategies, challenges exist. Large sample sizes and ensuring high-quality data remain crucial for reliable findings. Multi-omic analysis has revolutionized TNBC research, shedding light on dysregulated pathways, potential targets, and emerging biomarkers. Continued research efforts are imperative to translate these insights into improved outcomes for TNBC patients.
Collapse
Affiliation(s)
- Fatima Sajjad
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmer Jalal
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Amir Jalal
- Department of Biochemistry, Sahara Medical College, Narowal, Pakistan
| | - Zulekha Gul
- Environmental and Biological Science, Nanjing University of Science and Technology, Nanjing, China
| | - Hira Mubeen
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Seemal Zahra Rizvi
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ex Alim Un-Nisa
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Farah Butool
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University Lahore, Lahore, Pakistan
| |
Collapse
|
9
|
Satora M, Kułak K, Zaremba B, Grunwald A, Świechowska-Starek P, Tarkowski R. New hopes and promises in the treatment of ovarian cancer focusing on targeted treatment-a narrative review. Front Pharmacol 2024; 15:1416555. [PMID: 38948462 PMCID: PMC11212463 DOI: 10.3389/fphar.2024.1416555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Unfortunately, ovarian cancer is still diagnosed most often only in an advanced stage and is also the most lethal gynecological cancer. Another problem is the fact that treated patients have a high risk of disease recurrence. Moreover, ovarian cancer is very diverse in terms of molecular, histological features and mutations. Many patients may also develop platinum resistance, resulting in poor response to subsequent lines of treatment. To improve the prognosis of patients with ovarian cancer, it is expected to make better existing and implement new, promising treatment methods. Targeted therapies seem very promising. Currently, bevacizumab - a VEGF inhibitor and therapy with olaparib - a polyADP-ribose polymerase inhibitor are approved. Other methods worth considering in the future include: folate receptor α, immune checkpoints or other immunotherapy methods. To improve the treatment of ovarian cancer, it is also important to ameliorate the determination of molecular features to describe and understand which group of patients will benefit most from a given treatment method. This is important because a larger group of patients treated for ovarian cancer can have a greater chance of surviving longer without recurrence.
Collapse
Affiliation(s)
- Małgorzata Satora
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Kułak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Zaremba
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Grunwald
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | | | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
10
|
Chen X, Yang W, Roberts CWM, Zhang J. Developmental origins shape the paediatric cancer genome. Nat Rev Cancer 2024; 24:382-398. [PMID: 38698126 PMCID: PMC11571274 DOI: 10.1038/s41568-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
11
|
Torrado C, Plummer R, Yap TA. Poly(ADP-Ribose) Polymerase Inhibitor Development: Promising Strategies to Move Beyond Approved Indications. JCO Precis Oncol 2024; 8:e2400204. [PMID: 38865670 PMCID: PMC11653999 DOI: 10.1200/po.24.00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 06/14/2024] Open
Abstract
Biomarker-based patient selection and rational combinations show promise in expanding the use of PARP inhibitors.
Collapse
Affiliation(s)
- Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ruth Plummer
- Newcastle University and Northern Centre for Cancer Care, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, United Kigdom
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, TX
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Song Y, Ran W, Jia H, Yao Q, Li G, Chen Y, Wang X, Xiao Y, Sun M, Lu X, Xing X. Next-generation sequencing-based analysis of homologous recombination repair gene variant in ovarian cancer. Heliyon 2024; 10:e23684. [PMID: 38298632 PMCID: PMC10827683 DOI: 10.1016/j.heliyon.2023.e23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 02/02/2024] Open
Abstract
Background Ovarian cancer is the leading cause of death from gynecological malignancies. Investigating the HRR-related gene status, notably BRCA1/2 in different regions and populations is of great significance for formulating accurate target therapy. Methods We collected 124 ovarian cancer cases from the Affiliated Hospital of.Qingdao University, detected the genomic alteration of 32 genes by NGS, including.19 HRR-related genes, 9 proto-oncogenes and 4 tumor suppressor genes. Clinicopathological characteristics, variants, clinical significance, and correlation with prognosis were analyzed. Results The incidence of HRR-related gene mutation was 59.68 % and no statistical significance was found with multiple clinicopathological characteristics. BRCA1/2 (27.42 %) were the most frequent mutated HRR genes. 23 (18.55 %) cases harbored gBRCA1/2 mutation, with all BRCA1 mutations were pathogenic/likely pathogenic and 2 cases of BRCA2 mutation was variant of uncertain significance. Somatic BRCA1/2 mutations were found in 12 (9.68 %) cases, and sBRCA1/2 had a higher frequency in less common ovarian cancer than high-grade serous carcinoma. HRR-related gene mutation status was associated with better prognosis than HRR wild-type. Conclusions Somatic BRCA1/2 mutation has higher incidence in less common ovarian cancer. HRR gene mutation status is an independent prognosis factor in ovarian cancer. Clarifying the HRR gene status is important for the selection of target therapy as well as the evaluation of prognosis.
Collapse
Affiliation(s)
- Yaolin Song
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Wenwen Ran
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Huiqing Jia
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Guangqi Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Yang Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Xiaonan Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Yujing Xiao
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Mengqi Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Xiao Lu
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, China
| |
Collapse
|
13
|
Fu X, Li P, Zhou Q, He R, Wang G, Zhu S, Bagheri A, Kupfer G, Pei H, Li J. Mechanism of PARP inhibitor resistance and potential overcoming strategies. Genes Dis 2024; 11:306-320. [PMID: 37588193 PMCID: PMC10425807 DOI: 10.1016/j.gendis.2023.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023] Open
Abstract
PARP inhibitors (PARPi) are a kind of cancer therapy that targets poly (ADP-ribose) polymerase. PARPi is the first clinically approved drug to exert synthetic lethality by obstructing the DNA single-strand break repair process. Despite the significant therapeutic effect in patients with homologous recombination (HR) repair deficiency, innate and acquired resistance to PARPi is a main challenge in the clinic. In this review, we mainly discussed the underlying mechanisms of PARPi resistance and summarized the promising solutions to overcome PARPi resistance, aiming at extending PARPi application and improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ping Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qi Zhou
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Guannan Wang
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shiya Zhu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Amir Bagheri
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gary Kupfer
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
14
|
Dong Q, Yu T, Chen B, Liu M, Sun X, Cao H, Liu K, Xu H, Wang Y, Zhuang S, Jin Z, Liang H, Hui Y, Gu Y. Mutant RB1 enhances therapeutic efficacy of PARPis in lung adenocarcinoma by triggering the cGAS/STING pathway. JCI Insight 2023; 8:e165268. [PMID: 37937640 PMCID: PMC10721263 DOI: 10.1172/jci.insight.165268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) are approved for cancer therapy according to their synthetic lethal interactions, and clinical trials have been applied in non-small cell lung cancer. However, the therapeutic efficacy of PARPis in lung adenocarcinoma (LUAD) is still unknown. We explored the effect of a mutated retinoblastoma gene (RB1) on PARPi sensitivity in LUAD. Bioinformatic screening was performed to identify PARPi-sensitive biomarkers. Here, we showed that viability of LUAD cell lines with mutated RB1 was significantly decreased by PARPis (niraparib, rucaparib, and olaparib). RB1 deficiency induced genomic instability, prompted cytosolic double-stranded DNA (dsDNA) formation, activated the cGAS/STING pathway, and upregulated downstream chemokines CCL5 and CXCL10, triggering immune cell infiltration. Xenograft experiments indicated that PARPi treatment reduced tumorigenesis in RB1-KO mice. Additionally, single-cell RNA sequencing analysis showed that malignant cells with downregulated expression of RB1 had more communications with other cell types, exhibiting activation of specific signaling such as GAS, IFN response, and antigen-presenting and cytokine activities. Our findings suggest that RB1 mutation mediates the sensitivity to PARPis through a synthetic lethal effect by triggering the cGAS/STING pathway and upregulation of immune infiltration in LUAD, which may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Tong Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Xiang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huiying Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Huanhuan Xu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Yuquan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuping Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zixin Jin
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| |
Collapse
|
15
|
Legrand AJ, Choul-li S, Villeret V, Aumercier M. Poly(ADP-ribose) Polyremase-1 (PARP-1) Inhibition: A Promising Therapeutic Strategy for ETS-Expressing Tumours. Int J Mol Sci 2023; 24:13454. [PMID: 37686260 PMCID: PMC10487777 DOI: 10.3390/ijms241713454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Souhaila Choul-li
- Département de Biologie, Faculté des Sciences, Université Chouaib Doukkali, BP-20, El Jadida 24000, Morocco;
| | - Vincent Villeret
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Marc Aumercier
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
16
|
Discovery of novel benzamide derivatives bearing benzamidophenyl and phenylacetamidophenyl scaffolds as potential antitumor agents via targeting PARP-1. Eur J Med Chem 2023; 251:115243. [PMID: 36921527 DOI: 10.1016/j.ejmech.2023.115243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) plays a crucial role in DNA damage repair and has been identified as a promising therapeutic target in cancer therapy. As a continuation of our efforts on the development of novel PARP-1 inhibitors with potent anticancer activity, a series of benzamide derivatives containing the benzamidophenyl and phenylacetamidophenyl scaffolds were designed and synthesized based on the structure optimization of our previously reported compound IX. All target compounds were screened for their in vitro antiproliferative activities against human colorectal cancer cells (HCT116, DLD-1 and SW480) and human normal colonic epithelial cells (NCM460). Among them, compound 13f exhibited the most potent anticancer activity against HCT116 cells and DLD-1 cells with IC50 = 0.30 μM and 2.83 μM, respectively. Moreover, 13f displayed significant selectivity in inhibiting HCT116 cancer cells over the normal NCM460 cells. Furthermore, 13f exhibited excellent PARP-1 inhibitory effect with IC50 = 0.25 nM. Besides, 13f was found to effectively inhibit colony formation and migration of HCT116 cells. Studies on the mechanisms revealed that 13f could arrest cell cycle at G2/M phase, accumulate DNA double-strand breaks, reduce mitochondrial membrane potential and ultimately induce apoptosis in HCT116 cells. In addition, molecular docking study indicated that 13f could combine firmly with the catalytic pocket of PARP-1 through multiple hydrogen bond interactions. Collectively, these findings demonstrated that 13f could serve as a promising anticancer candidate and deserves further investigation.
Collapse
|
17
|
Design, synthesis and molecular modeling study of certain quinazolinone derivatives targeting poly (ADP-ribose) polymerase 1 (PARP-1) enzyme as anti-breast cancer and radio-sensitizers. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Lu G, Nie W, Xin M, Meng Y, Gu J, Miao H, Cheng X, Chan AS, Zou Y. Design, synthesis, biological evaluation and molecular docking study of novel urea-based benzamide derivatives as potent poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Eur J Med Chem 2022; 243:114790. [DOI: 10.1016/j.ejmech.2022.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/03/2022]
|
19
|
Schleicher EM, Moldovan GL. CRISPR screens guide the way for PARP and ATR inhibitor biomarker discovery. FEBS J 2022; 289:7854-7868. [PMID: 34601817 PMCID: PMC9003637 DOI: 10.1111/febs.16217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
DNA repair pathways are heavily studied for their role in cancer initiation and progression. Due to the large amount of inherent DNA damage in cancer cells, tumor cells profoundly rely on proper DNA repair for efficient cell cycle progression. Several current chemotherapeutics promote excessive DNA damage in cancer cells, thus leading to cell death during cell cycle progression. However, if the tumor has efficient DNA repair mechanisms, DNA-damaging therapeutics may not be as effective. Therefore, directly inhibiting DNA repair pathways alone and in combination with chemotherapeutics that cause DNA damage may result in improved clinical outcomes. Nevertheless, tumors can acquire resistance to DNA repair inhibitors. It is essential to understand the genetic mechanisms underlying this resistance. Genome-wide CRISPR screening has emerged as a powerful tool to identify biomarkers of resistance or sensitivity to DNA repair inhibitors. CRISPR knockout and CRISPR activation screens can be designed to investigate how the loss or overexpression of any human gene impacts resistance or sensitivity to specific inhibitors. This review will address the role of CRISPR screening in identifying biomarkers of resistance and sensitivity to DNA repair pathway inhibitors. We will focus on inhibitors targeting the PARP1 and ATR enzymes, and how the biomarkers identified from CRISPR screens can help inform the treatment plan for cancer patients.
Collapse
Affiliation(s)
- Emily M. Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
20
|
Inderjeeth AJ, Topp M, Sanij E, Castro E, Sandhu S. Clinical Application of Poly(ADP-ribose) Polymerase (PARP) Inhibitors in Prostate Cancer. Cancers (Basel) 2022; 14:5922. [PMID: 36497408 PMCID: PMC9736565 DOI: 10.3390/cancers14235922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Approximately a quarter of men with metastatic castrate resistant prostate cancer (mCRPC) have alterations in homologous recombination repair (HRR). These patients exhibit enhanced sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Leveraging the synthetic lethality between PARP inhibition and HRR deficiency, studies have established marked clinical benefit and a survival advantage from PARP inhibitors (PARPi) in mCRPC, most notably in cancers with BRCA1/2 alterations. The role of PARPi is evolving beyond patients with HRR alterations, with studies increasingly focused on exploiting synergistic effects from combination therapeutics. Strategies combining PARP inhibitors with androgen receptor pathway inhibitors, radiation, radioligand therapy, chemotherapy and immunotherapy demonstrate potential additional benefits in mCRPC and these approaches are rapidly moving into the metastatic hormone sensitive treatment paradigm. In this review we summarise the development and expanding role of PARPi in prostate cancer including biomarkers of response, the relationship between the androgen receptor and PARP, evidence for combination therapeutics and the future directions of PARPi in precision medicine for prostate cancer.
Collapse
Affiliation(s)
| | - Monique Topp
- Peter MacCallum Cancer Centre, Melbourne, VIC 3065, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC 3065, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3168, Australia
- Department of Medicine St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Elena Castro
- Department Medical Oncology, 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, Melbourne, VIC 3065, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
21
|
Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers (Basel) 2022; 14:cancers14235795. [PMID: 36497275 PMCID: PMC9741207 DOI: 10.3390/cancers14235795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells.
Collapse
|
22
|
PARP inhibitors in small cell lung cancer: The underlying mechanisms and clinical implications. Biomed Pharmacother 2022; 153:113458. [DOI: 10.1016/j.biopha.2022.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
|
23
|
Liu Y, Wang M, Liu W, Jing J, Ma H. Olaparib and Doxorubicin Co-Loaded Polypeptide Nanogel for Enhanced Breast Cancer Therapy. Front Bioeng Biotechnol 2022; 10:904344. [PMID: 35586554 PMCID: PMC9108339 DOI: 10.3389/fbioe.2022.904344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Although great progress has been made in improving the efficacy of cancer treatment through combination treatment using drug agents, there are still challenges in improving the efficiency of drug delivery. In this study, olaparib and doxorubicin were co-loaded on disulfide bond cross-linked polypeptide nanogels for the treatment of breast cancer in mouse models. Under stimulation of a high glutathione environment in cancer cells, the drug is quickly released from the nanogel to target cancer cells. In addition, compared with free drugs and single-drug-loaded nanogels, dual-drug- co-loaded nanogels exhibit the best anti-cancer effect and demonstrated excellent biological safety. Therefore, the co-delivery of olaparib and doxorubicin through polypeptide nanogels presents good prospects for application as anti-cancer treatment.
Collapse
Affiliation(s)
- Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Meiyan Wang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Wanru Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Jili Jing
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Hongshuang Ma
- Department of Rheumatology and Immunology, First Hospital, Jilin University, Changchun, China
- *Correspondence: Hongshuang Ma,
| |
Collapse
|
24
|
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers (Basel) 2022; 14:cancers14071821. [PMID: 35406593 PMCID: PMC8997380 DOI: 10.3390/cancers14071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The current routine treatment for glioblastoma (GB), the most lethal high-grade brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence, targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested with the potential to lead to a more personalized GB therapy. Abstract Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.
Collapse
|
25
|
Next Generation Sequencing and Molecular Biomarkers in Ovarian Cancer—An Opportunity for Targeted Therapy. Diagnostics (Basel) 2022; 12:diagnostics12040842. [PMID: 35453890 PMCID: PMC9030726 DOI: 10.3390/diagnostics12040842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the deadliest of all gynecologic malignancies claiming the lives of nearly 14,000 women in the United States annually. Despite therapeutic advances, the ovarian cancer mortality rate has remained stagnant since the 1980’s. The molecular heterogeneity of ovarian cancers suggest they may be more effectively treated via precision medicine. Current guidelines recommend germline and somatic testing for all new epithelial ovarian cancer diagnoses to assist providers in identifying candidates for targeted therapies. Next generation sequencing (NGS) identifies targetable, driver, and novel mutations used to guide treatment decisions. Performing NGS is standard of care in many other malignancies, but for ovarian cancer the use of NGS in daily practice is still emerging. This review discusses the targetable genetic mutations and role of NGS and molecular biomarker testing in the treatment of ovarian cancer.
Collapse
|
26
|
Cyclin-Dependent Kinase Synthetic Lethality Partners in DNA Damage Response. Int J Mol Sci 2022; 23:ijms23073555. [PMID: 35408915 PMCID: PMC8998982 DOI: 10.3390/ijms23073555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are pivotal mediators and effectors of the DNA damage response (DDR) that regulate both the pathway components and proteins involved in repair processes. Synthetic lethality (SL) describes a situation in which two genes are linked in such a way that the lack of functioning of just one maintains cell viability, while depletion of both triggers cell death. Synthetic lethal interactions involving CDKs are now emerging, and this can be used to selectively target tumor cells with DNA repair defects. In this review, SL interactions of CDKs with protooncogene products MYC, poly (ADP-ribose) polymerase (PARP-1), and cellular tumor antigen p53 (TP53) are discussed. The individual roles of each of the SL partners in DDR are described.
Collapse
|
27
|
Stapleton SE, Darlington AS, Minchom A, Pal A, Raynaud F, Wiseman T. Assessing cognitive toxicity in early phase trials - What are we missing? Psychooncology 2022; 31:405-415. [PMID: 34651364 DOI: 10.1002/pon.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Novel therapies, such as, small protein molecule inhibitors and immunotherapies are first tested clinically in Phase I trials. Moving on to later phase trials and ultimately standard practice. A key aim of these early clinical trials is to define a toxicity profile; however, the emphasis is often on safety. The concern is cognitive toxicity is poorly studied in this context and may be under-reported. The aim of this review is to map evidence of cognitive assessment, toxicity, and confounding factors within reports from Phase I trials and consider putative mechanisms of impairment aligned with mechanisms of novel therapies. METHODS A scoping review methodology was applied to the search of databases, including Embase, MEDLINE, Clinicaltrials.gov. A [keyword search was conducted, results screened for duplication then inclusion/exclusion criteria applied. Articles were further screened for relevance; data organised into categories and charted in a tabular format]. Evidence was collated and summarised into a narrative synthesis. RESULTS Despite the availability of robust ways to assess cognitive function, these are not routinely included in the conduct of early clinical trials. Reports of cognitive toxicity in early Phase I trials are limited and available evidence on this shows that a proportion of patients experience impaired cognitive function over the course of participating in a Phase I trial. Links are identified between the targeted action of some novel therapies and putative mechanisms of cognitive impairment. CONCLUSION The review provides rationale for research investigating cognitive function in this context. A study exploring the cognitive function of patients on Phase I trials and the feasibility of formally assessing this within early clinical trials is currently underway at the Royal Marsden.
Collapse
Affiliation(s)
- Sarah E Stapleton
- Royal Marsden Hospital Drug Development Unit, Sutton, UK
- University of Southampton, Southampton, UK
| | | | - Anna Minchom
- Royal Marsden Hospital Drug Development Unit, Sutton, UK
- Institute of Cancer Research, Sutton, UK
| | - Abhijit Pal
- Royal Marsden Hospital Drug Development Unit, Sutton, UK
- Institute of Cancer Research, Sutton, UK
| | - Florence Raynaud
- Royal Marsden Hospital Drug Development Unit, Sutton, UK
- Institute of Cancer Research, Sutton, UK
| | | |
Collapse
|
28
|
The role of PARP inhibitors in gastrointestinal cancers. Crit Rev Oncol Hematol 2022; 171:103621. [PMID: 35124199 DOI: 10.1016/j.critrevonc.2022.103621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The use of BReast CAncer (BRCA) mutations as biomarkers for sensitivity to DNA damage response (DDR) targeted drugs and platinum agents is well documented in breast and gynaecological cancers. More recently the successful use DDR targeted therapies including poly (ADP-ribose) polymerases (PARP) inhibitors has been shown to extend to other germline and somatic deficiencies within the homologous recombination (HR) pathway1-3. Gastrointestinal (GI) cancers are lagging behind other tumour types when it comes to personalising treatment with targeted therapies. Current methods of identifying PARP-inhibitor sensitivity in gastrointestinal cancers are based on analogies from other cancer types despite there being a lack of uniformity in determining HR status between tumour types. There is an urgent clinical need to better understand the treatment implications of DDR alterations in gastrointestinal cancers. We have reviewed PARP-inhibitor use in pancreatic, gastroesophageal, hepatobiliary and colorectal cancers and explored HRD as a biomarker for sensitivity to PARP-inhibitors.
Collapse
|
29
|
Abuhadra N, Stecklein S, Sharma P, Moulder S. Early-stage Triple-negative Breast Cancer: Time to Optimize Personalized Strategies. Oncologist 2022; 27:30-39. [PMID: 35305094 PMCID: PMC8842325 DOI: 10.1093/oncolo/oyab003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of breast cancers diagnosed worldwide, which amounts to almost 200 000 cases each year. Although historically TNBC is considered difficult to treat with a poor prognosis, there is emerging evidence showing excellent response rates in a subset of TNBC patients. Attempts to de-escalate chemotherapy in hormone-receptor-positive (HR+) and HER2-neu amplified breast cancer subtypes have been successful. At present, robust strategies to personalize therapy in early-stage TNBC do not exist, and despite excellent response rates in a subset of patients, all patients are exposed to the same several cycles of cytotoxic chemotherapy. Personalizing therapy in TNBC represents a challenge due to the scarcity of treatment options outside of cytotoxic chemotherapy and limited predictive and prognostic biomarkers to tailor treatment. Recent developments in understanding TNBC biology have sparked interest in exploring treatment optimization and personalization with the goal of achieving excellent response rates and long-term clinical outcomes, while simultaneously reducing physical, psychological, and financial toxicities for select patients. Here, we provide an update on the current evidence to support future studies examining de-escalating chemotherapy in patients with low-risk TNBC and adjuvant intensification strategies to improve outcomes for patients who are at high risk for systemic failure despite current standard-of-care treatments.
Collapse
Affiliation(s)
- Nour Abuhadra
- Breast Medicine Service, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shane Stecklein
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Priyanka Sharma
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Stacy Moulder
- Eli Lilly and Company. Lilly Corporate Center, Indianapolis, IN, USA
| |
Collapse
|
30
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
31
|
Kong Y, Xu C, Sun X, Sun H, Zhao X, He N, Ji K, Wang Q, Du L, Wang J, Zhang M, Liu Y, Wang Y, Liu Q. BLM helicase inhibition synergizes with PARP inhibition to improve the radiosensitivity of olaparib resistant non-small cell lung cancer cells by inhibiting homologous recombination repair. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0178. [PMID: 34846107 PMCID: PMC9425185 DOI: 10.20892/j.issn.2095-3941.2021.0178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: We aimed to investigate the radiosensitizing efficacy of the poly-ADP-ribose polymerase (PARP) inhibitor, olaparib, and the Bloom syndrome protein (BLM) helicase inhibitor, ML216, in non-small cell lung cancer (NSCLC) cells. Methods: Radiosensitization of NSCLC cells was assessed by colony formation and tumor growth assays. Mechanistically, the effects of ML216, olaparib, and radiation on cell and tumor proliferation, DNA damage, cell cycle, apoptosis, homologous recombination (HR) repair, and non-homologous end joining (NHEJ) repair activity were determined. Results: Both olaparib and ML216 enhanced the radiosensitivities of olaparib-sensitive H460 and H1299 cells, which was seen as decreased surviving fractions and Rad51 foci, increased total DNA damage, and γH2AX and 53BP1 foci (P < 0.05). The expressions of HR repair proteins were remarkably decreased in olaparib-treated H460 and H1299 cells after irradiation (P < 0.05), while olaparib combined with ML216 exerted a synergistic radiosensitization effect on olaparib-resistant A549 cells. In addition to increases of double strand break (DSB) damage and decreases of Rad51 foci, olaparib combined with ML216 also increased pDNA-PKcs (S2056) foci, abrogated G2 cell cycle arrest, and induced apoptosis in A549 lung cancer after irradiation in vitro and in vivo (P < 0.05). Moreover, Western blot showed that olaparib combined with ML216 and irradiation inhibited HR repair, promoted NHEJ repair, and inactivated cell cycle checkpoint signals both in vitro and in vivo (P < 0.05). Conclusions: Taken together, these results showed the efficacy of PARP and BLM helicase inhibitors for radiosensitizing NSCLC cells, and supported the model that BLM inhibition sensitizes cells to PARP inhibitor-mediated radiosensitization, as well as providing the basis for the potential clinical development of this combination for tumors intrinsically resistant to PARP inhibitors and radiotherapy.
Collapse
Affiliation(s)
- Yangyang Kong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaohui Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaotong Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
32
|
Shackelford RE, Li Y, Ghali GE, Kevil CG. Bad Smells and Broken DNA: A Tale of Sulfur-Nucleic Acid Cooperation. Antioxidants (Basel) 2021; 10:1820. [PMID: 34829691 PMCID: PMC8614844 DOI: 10.3390/antiox10111820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that exerts numerous physiologic and pathophysiologic effects. Recently, a role for H2S in DNA repair has been identified, where H2S modulates cell cycle checkpoint responses, the DNA damage response (DDR), and mitochondrial and nuclear genomic stability. In addition, several DNA repair proteins modulate cellular H2S concentrations and cellular sulfur metabolism and, in turn, are regulated by cellular H2S concentrations. Many DDR proteins are now pharmacologically inhibited in targeted cancer therapies. As H2S and the enzymes that synthesize it are increased in many human malignancies, it is likely that H2S synthesis inhibition by these therapies is an underappreciated aspect of these cancer treatments. Moreover, both H2S and DDR protein activities in cancer and cardiovascular diseases are becoming increasingly apparent, implicating a DDR-H2S signaling axis in these pathophysiologic processes. Taken together, H2S and DNA repair likely play a central and presently poorly understood role in both normal cellular function and a wide array of human pathophysiologic processes. Here, we review the role of H2S in DNA repair.
Collapse
Affiliation(s)
- Rodney E. Shackelford
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| | - Yan Li
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| | - Ghali E. Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA;
| | - Christopher G. Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| |
Collapse
|
33
|
Development of New Cancer Treatment by Identifying and Focusing the Genetic Mutations or Altered Expression in Gynecologic Cancers. Genes (Basel) 2021; 12:genes12101593. [PMID: 34680987 PMCID: PMC8535522 DOI: 10.3390/genes12101593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
With the advent of next-generation sequencing (NGS), The Cancer Genome Atlas (TCGA) research network has given gynecologic cancers molecular classifications, which impacts clinical practice more and more. New cancer treatments that identify and target pathogenic abnormalities of genes have been in rapid development. The most prominent progress in gynecologic cancers is the clinical efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors, which have shown breakthrough benefits in reducing hazard ratios (HRs) (HRs between 0.2 and 0.4) of progression or death from BRCA1/2 mutated ovarian cancer. Immune checkpoint inhibition is also promising in cancers that harbor mismatch repair deficiency (dMMR)/microsatellite instability (MSI). In this review, we focus on the druggable genetic alterations in gynecologic cancers by summarizing literature findings and completed and ongoing clinical trials.
Collapse
|
34
|
Shan Y, Wang F, Wei Z, Lu Y. Synthetic lethality theory approaches to effective substance discovery and functional mechanisms elucidation of anti-cancer phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153718. [PMID: 34531099 DOI: 10.1016/j.phymed.2021.153718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Longstanding, successful use of combinations of phytopharmaceuticals in traditional Chinese medicine (TCM) has caught the attention of several pharmacologists to natural medicines. However, the development and popularisation of TCM is mainly limited because of the unavailability of reports clarifying the mechanisms of action and pharmacologically active ingredients in such formulations. Previous studies on natural medicines have mostly focused on their dominant components using forward pharmacology which often neglects trace components. It is necessary to assess the pharmacological and therapeutic superiority of many such trace components in comparison with single constituents. PURPOSE In this study, we aimed to propose a new pharmacological research strategy for TCM. In particular, we presented the possibility that the effective mechanism of action of trace components of TCM is based on synthetic lethality. We sincerely hope to explore this theory further. METHOD We obtained retrieve published research information related to synthetic lethality, phytochemicals and Chinese medicine from PubMed and Google scholar. Based on the inclusion criteria, 71 studies were selected and discussed in this review. RESULTS As an interaction among genes, synthetic lethality can amplify co-regulatory biological effects exponentially. Synthetic strategies have been successfully applied for research and development of anti-tumour agents, including poly ADP-ribose polymerase inhibitors and clinical combination of chemotherapeutic agents for efficacy enhancement and toxicity reduction. TCM drugs contain several secondary metabolites to combat environmental stresses, providing a multi-component basis for corresponding synergistic targets. Therefore, we aimed to study whether this method could be used to identify active components present in trace amounts in TCM drugs. Based on a reverse concept of target-component-effect and identified synergistic targets, we explored the mechanisms of action of weakly active components present in trace amounts in TCM drugs to assess combinations of potential synergistic components. CONCLUSION This pattern of synthetic lethality not only elucidated the mechanisms of action of TCM drugs from a new perspective but also inspired future studies on discovering naturally occurring active components.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhonghong Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Yin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
35
|
Shridhar Deshpande N, Mahendra GS, Aggarwal NN, Gatphoh BFD, Revanasiddappa BC. Insilico design, ADMET screening, MM-GBSA binding free energy of novel 1,3,4 oxadiazoles linked Schiff bases as PARP-1 inhibitors targeting breast cancer. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00321-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Poly(ADP-ribose) polymerases (PARPs), a nuclear protein belongs to a new class of drugs, which mainly target tumours with DNA repair defects. They are mainly involved in the multiple cellular processes in addition to the DNA repair process. They act directly on the base excision repair, which is considered as one of the important pathway for cell survival in breast cancer. These belong to the active members of DNA repair assembly and evolved as a key target in the anti-cancer drug discovery. 1,3,4-Oxadiazoles are also well known anticancer agents.
Results
A novel series of 1,3,4-oxadiazoles linked to Schiff bases (T1-21) were designed and subjected to In-silico analysis against PARP-1 (PDB ID:5DS3) enzyme targeting against breast cancer. Molecular docking study for the designed compounds (T1-21) was performed by In-silico ADMET screening by QikProp module, Glide module and MM-GBSA binding free energy calculations by using Schrodinger suit 2019–2. The PARP-1 enzyme shows the binding affinity against the newly designed molecules (T1-21) based on the glide scores. Compounds T21, T12 showed very good glide score by the molecular docking studies and compared with the standard Tamoxifen. The binding free energies by the MM-GBSA assay were found to be consistent. The pharmacokinetic (ADMET) parameters of all the newly designed compounds were found to be in the acceptable range.
Conclusion
The selected 1,3,4-oxadiazole-schiff base conjugates seems to be one of the potential source for the further development of anticancer agents against PARP-1 enzyme. The results revealed that some of the compounds T21, T17, T14, T13, T12, T8 with good glide scores showed very significant activity against breast cancer
Collapse
|
36
|
Kawahara N, Yamada Y, Kobayashi H. CCNE1 Is a Putative Therapeutic Target for ARID1A-Mutated Ovarian Clear Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22115869. [PMID: 34070839 PMCID: PMC8198755 DOI: 10.3390/ijms22115869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Ovarian clear cell carcinoma (OCCC) is resistant to platinum chemotherapy and is characterized by poor prognosis. Today, the use of poly (ADP-ribose) polymerase (PARP) inhibitor, which is based on synthetic lethality strategy and characterized by cancer selectivity, is widely used for new types of molecular-targeted treatment of relapsed platinum-sensitive ovarian cancer. However, it is less effective against OCCC. Methods: We conducted siRNA screening to identify synthetic lethal candidates for the ARID1A mutation; as a result, we identified Cyclin-E1 (CCNE1) as a potential target that affects cell viability. To further clarify the effects of CCNE1, human OCCC cell lines, namely TOV-21G and KOC7c (ARID1A mutant lines), and RMG-I and ES2 (ARID1A wild type lines) were transfected with siRNA targeting CCNE1 or a control vector. Results: Loss of CCNE1 reduced proliferation of the TOV-21G and KOC7c cells but not of the RMG-I and ES2 cells. Furthermore, in vivo interference of CCNE1 effectively inhibited tumor cell proliferation in a xenograft mouse model. Conclusion: This study showed for the first time that CCNE1 is a synthetic lethal target gene to ARID1A-mutated OCCC. Targeting this gene may represent a putative, novel, anticancer strategy in OCCC treatment.
Collapse
Affiliation(s)
- Naoki Kawahara
- Correspondence: ; Tel.: +81-744-29-8877; Fax: +81-(744)-23-6557
| | | | | |
Collapse
|
37
|
Byers LA, Bentsion D, Gans S, Penkov K, Son C, Sibille A, Owonikoko TK, Groen HJM, Gay CM, Fujimoto J, de Groot P, Dunbar M, Kang K, He L, Sehgal V, Glasgow J, Bach BA, Ellis PM. Veliparib in Combination with Carboplatin and Etoposide in Patients with Treatment-Naïve Extensive-Stage Small Cell Lung Cancer: A Phase 2 Randomized Study. Clin Cancer Res 2021; 27:3884-3895. [PMID: 33947690 DOI: 10.1158/1078-0432.ccr-20-4259] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This study investigated the efficacy and safety of oral PARP inhibitor veliparib, plus carboplatin and etoposide in patients with treatment-naïve, extensive-stage small cell lung cancer (ED-SCLC). PATIENTS AND METHODS Patients were randomized 1:1:1 to veliparib [240 mg twice daily (BID) for 14 days] plus chemotherapy followed by veliparib maintenance (400 mg BID; veliparib throughout), veliparib plus chemotherapy followed by placebo (veliparib combination only), or placebo plus chemotherapy followed by placebo (control). Patients received 4-6 cycles of combination therapy, then maintenance until unacceptable toxicity/progression. The primary endpoint was progression-free survival (PFS) with veliparib throughout versus control. RESULTS Overall (N = 181), PFS was improved with veliparib throughout versus control [hazard ratio (HR), 0.67; 80% confidence interval (CI), 0.50-0.88; P = 0.059]; median PFS was 5.8 and 5.6 months, respectively. There was a trend toward improved PFS with veliparib throughout versus control in SLFN11-positive patients (HR, 0.6; 80% CI, 0.36-0.97). Median overall survival (OS) was 10.1 versus 12.4 months in the veliparib throughout and control arms, respectively (HR, 1.43; 80% CI, 1.09-1.88). Grade 3/4 adverse events were experienced by 82%, 88%, and 68% of patients in the veliparib throughout, veliparib combination-only and control arms, most commonly hematologic. CONCLUSIONS Veliparib plus platinum chemotherapy followed by veliparib maintenance demonstrated improved PFS as first-line treatment for ED-SCLC with an acceptable safety profile, but there was no corresponding benefit in OS. Further investigation is warranted to define the role of biomarkers in this setting.
Collapse
Affiliation(s)
| | - Dmitry Bentsion
- Sverdlovsk Regional Oncology Center, Yekaterinburg, Russian Federation
| | - Steven Gans
- Respiratory Diseases, Hospital Saint Jansdal, Harderwijk, the Netherlands
| | - Konstantin Penkov
- Private Medical Institution Euromedservice, St. Petersburg, Russian Federation
| | - ChoonHee Son
- Department of Pulmonology, Dong-A University, Busan, Korea
| | | | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Carl M Gay
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- The University of Texas MD Anderson Cancer Center, Houston, Texas.,Nagasaki University, Nagasaki, Japan
| | | | | | | | - Lei He
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | - Peter M Ellis
- Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
Le BV, Podszywalow-Bartnicka P, Maifrede S, Sullivan-Reed K, Nieborowska-Skorska M, Golovine K, Yao JC, Nejati R, Cai KQ, Caruso LB, Swatler J, Dabrowski M, Lian Z, Valent P, Paietta EM, Levine RL, Fernandez HF, Tallman MS, Litzow MR, Huang J, Challen GA, Link D, Tempera I, Wasik MA, Piwocka K, Skorski T. TGFβR-SMAD3 Signaling Induces Resistance to PARP Inhibitors in the Bone Marrow Microenvironment. Cell Rep 2020; 33:108221. [PMID: 33027668 DOI: 10.1016/j.celrep.2020.108221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic lethality triggered by PARP inhibitor (PARPi) yields promising therapeutic results. Unfortunately, tumor cells acquire PARPi resistance, which is usually associated with the restoration of homologous recombination, loss of PARP1 expression, and/or loss of DNA double-strand break (DSB) end resection regulation. Here, we identify a constitutive mechanism of resistance to PARPi. We report that the bone marrow microenvironment (BMM) facilitates DSB repair activity in leukemia cells to protect them against PARPi-mediated synthetic lethality. This effect depends on the hypoxia-induced overexpression of transforming growth factor beta receptor (TGFβR) kinase on malignant cells, which is activated by bone marrow stromal cells-derived transforming growth factor beta 1 (TGF-β1). Genetic and/or pharmacological targeting of the TGF-β1-TGFβR kinase axis results in the restoration of the sensitivity of malignant cells to PARPi in BMM and prolongs the survival of leukemia-bearing mice. Our finding may lead to the therapeutic application of the TGFβR inhibitor in patients receiving PARPis.
Collapse
Affiliation(s)
- Bac Viet Le
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | | | - Silvia Maifrede
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Sullivan-Reed
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Margaret Nieborowska-Skorska
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Konstantin Golovine
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Juo-Chin Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lisa Beatrice Caruso
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Julian Swatler
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland
| | - Michal Dabrowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Bioinformatics, Warsaw, Poland
| | - Zhaorui Lian
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna and Ludwig-Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | - Elisabeth M Paietta
- Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hugo F Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL, USA
| | - Martin S Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Italo Tempera
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Cytometry, Warsaw, Poland.
| | - Tomasz Skorski
- Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Ramadan SK, Elrazaz EZ, Abouzid KAM, El-Naggar AM. Design, synthesis and in silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors. RSC Adv 2020; 10:29475-29492. [PMID: 35521104 PMCID: PMC9055986 DOI: 10.1039/d0ra05943a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Herein, we report an eco-friendly synthesis of a new series of quinazolinone-based derivatives as potential PARP-1 inhibitors. The 4-quinazolinone scaffold was utilized as a bioisostere to the phthalazinone core of the reference compound Olaparib. Most of the synthesized compounds displayed appreciable inhibitory activity against PARP-1. Compound 12c showed inhibitory activity at IC50 = 30.38 nM comparable to Olaparib, which has IC50 = 27.89 nM. Cell cycle analysis was performed for compounds 12a and 12c, and both exhibited cell growth arrest at G2/M phase in the MCF-7 cell line. In addition, both compounds increased the programmed apoptosis compared to the control. Furthermore, molecular docking of the final compounds into the PARP-1 active site was executed to explore their probable binding modes. Also, a computational QSAR and in silico ADMET study was performed. The results of this study revealed that some of the newly synthesized compounds could serve as a new framework to discover new PARP-1 inhibitors with anti-cancer activity.
Collapse
Affiliation(s)
- Sayed K Ramadan
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Khaled A M Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University Abbassia 11566 Cairo Egypt
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City Sadat City Egypt
| | - Abeer M El-Naggar
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| |
Collapse
|
40
|
Zhang R, Hao J, Wu Q, Guo K, Wang C, Zhang WK, Liu W, Wang Q, Yang X. Dehydrocostus lactone inhibits cell proliferation and induces apoptosis by PI3K/Akt/Bad and ERS signalling pathway in human laryngeal carcinoma. J Cell Mol Med 2020; 24:6028-6042. [PMID: 32319208 PMCID: PMC7294112 DOI: 10.1111/jcmm.15131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
The anti-cancer effect of dehydrocostus lactone (DHL) derived from Saussurea costus (Falc.) Lipech against laryngeal carcinoma was assessed. The cytotoxic activity of DHL against laryngeal carcinoma is still obscure. Therefore, our study investigated the role of DHL in the growth inhibition of laryngeal carcinoma in vitro and in vivo, and the molecular mechanism of DHL-induced apoptosis in cancer cells of the larynx. The results showed that DHL inhibits the viability, migration and proliferation of Hep-2 and TU212 cells with little toxic effects on human normal larynx epithelial HBE cell line. Flow cytometry analysis (FAC) analysis and staining assay (Hoechst 33258) indicated that DHL stimulated Hep-2 and TU212 cell apoptosis in a dose-dependent manner. Mechanistically, DHL is capable of inhibiting Hep-2 and TU212 cell viability via promoting p53 and P21 function, meanwhile DHL dose-dependently induces Hep-2 and TU212 cells apoptosis via activating mitochondrial apoptosis by inhibiting PI3K/Akt/Bad pathway and stimulating endoplasmic reticulum stress-mediated apoptosis pathway. In vivo, DHL inhibited the growth of the Hep-2 nude mouse xenograft model and observed no significant signs of toxicity in the organs of nude mice. In vivo experiments further confirmed the anti-cancer effect of DHL on laryngeal carcinoma cells in vitro, and DHL-treated nude mice can reduce the volume of tumours. Together, our study indicated that DHL has the potential to inhibit human laryngeal carcinoma via activating mitochondrial apoptosis pathway by inhibiting PI3K/Akt/Bad signalling pathway and stimulating endoplasmic reticulum stress-mediated apoptosis pathway, providing a strategy for the treatment of human laryngeal carcinoma.
Collapse
Affiliation(s)
- Ren Zhang
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Ji Hao
- School of Pharmaceutical SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Kaiwen Guo
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Chao Wang
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Wei Kevin Zhang
- School of Pharmaceutical SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Wanxin Liu
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Xinzhou Yang
- School of Pharmaceutical SciencesSouth‐Central University for NationalitiesWuhanChina
| |
Collapse
|
41
|
Kobayashi M, Ishizaki Y, Owaki M, Matsumoto Y, Kakiyama Y, Hoshino S, Tagawa R, Sudo Y, Okita N, Akimoto K, Higami Y. Nutlin-3a suppresses poly (ADP-ribose) polymerase 1 by mechanisms different from conventional PARP1 suppressors in a human breast cancer cell line. Oncotarget 2020; 11:1653-1665. [PMID: 32405340 PMCID: PMC7210013 DOI: 10.18632/oncotarget.27581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays important roles in single strand DNA repair. PARP1 inhibitors enhance the effects of DNA damaging drugs in homologous recombination-deficient tumors including tumors with breast cancer susceptibility gene (BRCA1) mutation. Nutlin-3a, an analog of cis-imidazoline, inhibits degradation of murine double minute 2 (MDM2) and stabilizes p53. We previously reported that nutlin-3a induces PARP1 degradation in p53-dependent manner in mouse fibroblasts, suggesting nutlin-3a may be a PARP1 suppressor. Here, we investigated the effects of nutlin-3a on PARP1 in MCF-7, a human breast cancer cell line. Consistent with our previous results, nutlin-3a reduced PARP1 levels in dose- and time-dependent manners in MCF-7 cells, but this reduction was suppressed in p53 knockdown cells. RITA, a p53 stabilizer that binds to p53 itself, failed to reduce PARP1 protein levels. Moreover, transient MDM2 knockdown repressed nutlin-3a-mediated PARP1 reduction. The MG132 proteasome inhibitor, and knockdown of checkpoint with forkhead and ring finger domains (CHFR) and ring finger protein 146 (RNF146), E3 ubiquitin ligases targeting PARP1, suppressed nutlin-3a-induced PARP1 reduction. Short-term nutlin-3a treatment elevated the levels of PARylated PARP1, suggesting nutlin-3a promoted PARylation of PARP1, thereby inducing its proteasomal degradation. Furthermore, nutlin-3a-induced PARP1 degradation enhanced DNA-damaging effects of cisplatin in BRCA1 knockdown cells. Our study revealed that nutlin-3a is a PARP1 suppressor that induces PARP1 proteasomal degradation by binding to MDM2 and promoting autoPARylation of PARP1. Further analysis of the mechanisms in nutlin-3a-induced PARP1 degradation may lead to the development of novel PARP1 suppressors applicable for cancers with BRCA1 mutation.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Co-first authors
| | - Yuka Ishizaki
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Co-first authors
| | - Mika Owaki
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Co-first authors
| | - Yoko Matsumoto
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuri Kakiyama
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shunsuke Hoshino
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuka Sudo
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Naoyuki Okita
- Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-onoda, Yamaguchi 756-0884, Japan
| | - Kazunori Akimoto
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Laboratory of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
42
|
Alhmoud JF, Woolley JF, Al Moustafa AE, Malki MI. DNA Damage/Repair Management in Cancers. Cancers (Basel) 2020; 12:E1050. [PMID: 32340362 PMCID: PMC7226105 DOI: 10.3390/cancers12041050] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
DNA damage is well recognized as a critical factor in cancer development and progression. DNA lesions create an abnormal nucleotide or nucleotide fragment, causing a break in one or both chains of the DNA strand. When DNA damage occurs, the possibility of generated mutations increases. Genomic instability is one of the most important factors that lead to cancer development. DNA repair pathways perform the essential role of correcting the DNA lesions that occur from DNA damaging agents or carcinogens, thus maintaining genomic stability. Inefficient DNA repair is a critical driving force behind cancer establishment, progression and evolution. A thorough understanding of DNA repair mechanisms in cancer will allow for better therapeutic intervention. In this review we will discuss the relationship between DNA damage/repair mechanisms and cancer, and how we can target these pathways.
Collapse
Affiliation(s)
- Jehad F. Alhmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - John F. Woolley
- Department of Molecular & Clinical Pharmacology, Liverpool University, Liverpool L69 3GE, UK;
| | | | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, Doha P. O. Box 2713, Qatar;
| |
Collapse
|
43
|
Terraneo N, Jacob F, Dubrovska A, Grünberg J. Novel Therapeutic Strategies for Ovarian Cancer Stem Cells. Front Oncol 2020; 10:319. [PMID: 32257947 PMCID: PMC7090172 DOI: 10.3389/fonc.2020.00319] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic malignancies. Due to the lack of specific symptoms and screening methods, this disease is usually diagnosed only at an advanced and metastatic stage. The gold-standard treatment for OC patients consists of debulking surgery followed by taxane combined with platinum-based chemotherapy. Most patients show complete clinical remission after first-line therapy, but the majority of them ultimately relapse, developing radio- and chemoresistant tumors. It is now proposed that the cause of recurrence and reduced therapy efficacy is the presence of small populations of cancer stem cells (CSCs). These cells are usually resistant against conventional cancer therapies and for this reason, effective targeted therapies for the complete eradication of CSCs are urgently needed. In this review article, we highlight the mechanisms of CSC therapy resistance, epithelial-to-mesenchymal transition, stemness, and novel therapeutic strategies for ovarian CSCs.
Collapse
Affiliation(s)
- Nastassja Terraneo
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Jürgen Grünberg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
44
|
Genetic heterogeneity and evolutionary history of high-grade ovarian carcinoma and matched distant metastases. Br J Cancer 2020; 122:1219-1230. [PMID: 32099096 PMCID: PMC7156387 DOI: 10.1038/s41416-020-0763-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is the most frequent type of ovarian carcinoma, associated with poor clinical outcome and metastatic disease. Although metastatic processes are becoming more understandable, the genomic landscape and metastatic progression in HGSOC has not been elucidated. METHODS Multi-region whole-exome sequencing was performed on HGSOC primary tumours and their metastases (n = 33 tumour regions) from six patients. The resulting somatic variants were analysed to delineate tumour evolution and metastatic dissemination, and to compare the repertoire of events between primary HGSOC and metastasis. RESULTS All cases presented branching evolution patterns in primary HGSOC, with three cases further showing parallel evolution in which different mutations on separate branches of a phylogenetic tree converge on the same gene. Furthermore, linear metastatic progression was observed in 67% of cases with late dissemination, in which the metastatic tumour mostly acquires the same mutational process active in primary tumour, and parallel metastatic progression, with early dissemination in the remaining 33.3% of cases. Metastatic-specific SNVs were further confirmed as late dissemination events. We also found the involvement of metastatic-specific driver events in the Wnt/β-catenin pathway, and identified potential clinically actionable events in individual patients of the metastatic HGSOC cohort. CONCLUSIONS This study provides deeper insights into clonal evolution and mutational processes that can pave the way to new therapeutic targets.
Collapse
|
45
|
Sahin ID, Jönsson JM, Hedenfalk I. Crizotinib and PARP inhibitors act synergistically by triggering apoptosis in high-grade serous ovarian cancer. Oncotarget 2019; 10:6981-6996. [PMID: 31857852 PMCID: PMC6916751 DOI: 10.18632/oncotarget.27363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the predominant and most lethal histological type of epithelial ovarian cancer. During the last few years, several new treatment options with PARP inhibitors have emerged. The FDA has approved the PARP inhibitor olaparib (Lynparza™) as maintenance treatment after first-line platinum-containing chemotherapy and olaparib, niraparib (Zejula™) and rucaparib (Rubraca™) are approved as maintenance therapies in the recurrent, platinum-sensitive setting; nevertheless, development of resistance limits their efficacy. In this study, new combinatorial treatment strategies targeting key signaling pathways were explored to enhance the activity of PARP inhibitors in HGSOC. Carboplatin, olaparib, niraparib, the PI3K inhibitor LY294002 and the c-Met inhibitor crizotinib were used for this investigation. PARP inhibitors and carboplatin alone and in combination caused accumulation of DNA double-strand breaks and G2/M cell cycle arrest. In contrast, crizotinib alone or in combination with PARP inhibitors induced accumulation of cells in sub-G1. Crizotinib together with either of the PARP inhibitors was more strongly synergistic than combinations with a PARP inhibitor and carboplatin or the PI3K inhibitor. Sequential combination of crizotinib and a PARP inhibitor resulted in activation of ATM/CHK2 and inhibition of c-Met pathways, contributing to a decrease in RAD51 levels and induction of caspase-3 dependent apoptotic cell death and suggesting that the combination of crizotinib with a PARP inhibitor may be considered and further explored as a new therapeutic strategy in HGSOC.
Collapse
Affiliation(s)
- Irem Durmaz Sahin
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- School of Medicine, Koç University, Istanbul, Turkey
| | - Jenny-Maria Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
46
|
Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SRK, Abbaszadegan MR. Ovarian cancer stem cells and targeted therapy. J Ovarian Res 2019; 12:120. [PMID: 31810474 PMCID: PMC6896744 DOI: 10.1186/s13048-019-0588-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest ratio of mortality among gynecologic malignancies. Chemotherapy is one of the most common treatment options for ovarian cancer. However, tumor relapse in patients with advanced tumor stage is still a therapeutic challenge for its clinical management. MAIN BODY Therefore, it is required to clarify the molecular biology and mechanisms which are involved in chemo resistance to improve the survival rate of ovarian cancer patients. Cancer stem cells (CSCs) are a sub population of tumor cells which are related to drug resistance and tumor relapse. CONCLUSION In the present review, we summarized the recent findings about the role of CSCs in tumor relapse and drug resistance among ovarian cancer patients. Moreover, we focused on the targeted and combinational therapeutic methods against the ovarian CSCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu‐Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hadi Yari
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology, Tehran, Iran
| | - Meysam Moghbeli
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
47
|
Boraei AT, Singh PK, Sechi M, Satta S. Discovery of novel functionalized 1,2,4-triazoles as PARP-1 inhibitors in breast cancer: Design, synthesis and antitumor activity evaluation. Eur J Med Chem 2019; 182:111621. [DOI: 10.1016/j.ejmech.2019.111621] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
|
48
|
van der Noll R, Jager A, Ang JE, Marchetti S, Mergui-Roelvink MWJ, Lolkema MP, de Jonge MJA, van der Biessen DA, Brunetto AT, Arkenau HT, Tchakov I, Beijnen JH, de Bono JS, Schellens JHM. Phase I study of continuous olaparib capsule dosing in combination with carboplatin and/or paclitaxel (Part 1). Invest New Drugs 2019; 38:1117-1128. [PMID: 31667659 DOI: 10.1007/s10637-019-00856-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 09/12/2019] [Indexed: 11/26/2022]
Abstract
Background The PARP inhibitor olaparib has shown acceptable toxicity at doses of up to 400 mg twice daily (bid; capsule formulation) with encouraging signs of antitumor activity. Based on its mode of action, olaparib may sensitize tumor cells to DNA-damaging agents. This Phase I trial (NCT00516724) evaluated the safety, pharmacokinetics (PK) and preliminary efficacy of olaparib combined with carboplatin and/or paclitaxel. Methods Patients with advanced solid tumors received olaparib (capsule bid) plus carboplatin (Part A), carboplatin and paclitaxel (Part B), or paclitaxel (Part C). In each part of the study, different drug doses were given to define the most appropriate dose/drug combination to use in further studies. Safety assessments included evaluation of dose-limiting toxicities (DLTs; cycle 1 only), adverse events (AEs) and physical examinations. PK assessments of olaparib, carboplatin and paclitaxel were performed. Tumor responses (RECIST) were assessed every two cycles. Results Fifty-seven patients received treatment. DLTs were reported in two patients (both receiving olaparib 100 mg bid and carboplatin AUC 4; Part A, cohort 2): grade 1 thrombocytopenia with grade 2 neutropenia lasting for 16 days, and grade 2 neutropenia lasting for 7 days. Non-hematologic AEs were predominantly grade 1-2 and included fatigue (70%) and nausea (40%). Bone marrow suppression, mainly neutropenia (51%) and thrombocytopenia (25%), frequently led to dose modifications. Conclusions Olaparib in combination with carboplatin and/or paclitaxel resulted in increased hematologic toxicities, making it challenging to establish a dosing regimen that could be tolerated for multiple cycles without dose modifications.
Collapse
Affiliation(s)
- Ruud van der Noll
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| | - Agnes Jager
- Department of Medical Oncology, Erasmus University MC Cancer Institute, PO Box 5201, 3008, AE, Rotterdam, The Netherlands
| | - Joo Ern Ang
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Serena Marchetti
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Marja W J Mergui-Roelvink
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus University MC Cancer Institute, PO Box 5201, 3008, AE, Rotterdam, The Netherlands
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus University MC Cancer Institute, PO Box 5201, 3008, AE, Rotterdam, The Netherlands
| | - Diane A van der Biessen
- Department of Medical Oncology, Erasmus University MC Cancer Institute, PO Box 5201, 3008, AE, Rotterdam, The Netherlands
| | - Andre T Brunetto
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Hendrik-Tobias Arkenau
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Ilian Tchakov
- AstraZeneca, Alderley Park, Park Estate, Macclesfield, SK10 4TF, UK
- Eisai, Mosquito Way, Hatfield, AL10 9SN, UK
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Utrecht Institute of Pharmaceutical Science s (UIPS), Utrecht University, Domplein 29, 3512, JE, Utrecht, The Netherlands
| | - Johann S de Bono
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Utrecht Institute of Pharmaceutical Science s (UIPS), Utrecht University, Domplein 29, 3512, JE, Utrecht, The Netherlands
| |
Collapse
|
49
|
Chen H, Yuan J, Hao J, Wen Y, Lv Y, Chen L, Yang X. α-Humulene inhibits hepatocellular carcinoma cell proliferation and induces apoptosis through the inhibition of Akt signaling. Food Chem Toxicol 2019; 134:110830. [PMID: 31562948 DOI: 10.1016/j.fct.2019.110830] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy and a leading cause of cancer-related mortality. α-Humulene (HML) is a natural 11-membered monocyclic terpene with three E-configured double bonds isolated from Eupatorium odoratum L. We recently showed that HML has significant anti-HCC activity in vitro and in vivo. We found that HML was cytotoxic to HCC cells and induced mitochondrial apoptosis of HCC cells, promoting caspase-3 activation and PARP cleavage. HCC cells show abnormal Akt signaling to resist apoptosis. Mechanistically, HML was found to inhibit Akt activation, subsequently decreasing GSK-3 and Bad phosphorylation, promoting apoptotic induction. HML also inhibited cell proliferation and enhanced apoptosis in HCC tumor xenografts further highlighting its activity in vivo. Although HML showed minimal cytotoxicity to normal hepatocytes, weight loss was observed in mice administered HML. Taken together, these data provide important and novel insights into the anti-HCC effects of HML through its ability to inhibit Akt, reduced HCC cell proliferation, and enhanced HCC cell apoptotic induction in vitro and in vivo.
Collapse
Affiliation(s)
- Hao Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China; Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Jingquan Yuan
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China; Guangxi Institute of Medicinal Plant, Nanning, 530023, China.
| | - Ji Hao
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Yanzhang Wen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Yibing Lv
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Lu Chen
- Guangxi Institute of Medicinal Plant, Nanning, 530023, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
50
|
Genome-scale CRISPR knockout screen identifies TIGAR as a modifier of PARP inhibitor sensitivity. Commun Biol 2019; 2:335. [PMID: 31508509 PMCID: PMC6733792 DOI: 10.1038/s42003-019-0580-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Treatment of cancer with poly (ADP-ribose) polymerase (PARP) inhibitors is currently limited to cells defective in the homologous recombination (HR) pathway. Identification of genetic targets that induce or mimic HR deficiencies will extend the clinical utility of PARP inhibitors. Here we perform a CRISPR/Cas9-based genome-scale loss-of-function screen, using the sensitivity of PARP inhibitor olaparib as a surrogate. We identify C12orf5, encoding TP53 induced glycolysis and apoptosis regulator (TIGAR), as a modifier of PARP inhibitor response. We show that TIGAR is amplified in several cancer types, and higher expression of TIGAR associates with poor overall survival in ovarian cancer. TIGAR knockdown enhances sensitivity to olaparib in cancer cells via downregulation of BRCA1 and the Fanconi anemia pathway and increases senescence of these cells by affecting metabolic pathways and increasing the cytotoxic effects of olaparib. Our results indicate TIGAR should be explored as a therapeutic target for treating cancer and extending the use of PARP inhibitors. Pingping Fang et al. report a CRISPR/Cas9-based genome-scale loss-of-function screen identifying TIGAR as a modifier of response to PARP inhibition. The authors find that knockdown of TIGAR increases intracellular reactive oxygen species levels, enhances more DNA damage after olaparib treatment, and induces a state of “BRCAness”, suggesting that TIGAR is a potential therapeutic target in ovarian cancer patients.
Collapse
|