1
|
Otsuka S, Dutta D, Wu CJ, Alam MS, Ashwell JD. Calcineurin is an adaptor required for assembly of the TCR signaling complex. Cell Rep 2024; 43:114568. [PMID: 39088318 PMCID: PMC11407306 DOI: 10.1016/j.celrep.2024.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
The serine/threonine phosphatase calcineurin is a component of the T cell receptor (TCR) signalosome, where it promotes T cell activation by dephosphorylating LckS59. Using small interfering RNA (siRNA)-mediated knockdown and CRISPR-Cas9-targeted genetic disruption of the calcineurin A chain α and β isoforms, we find that calcineurin also functions as an adaptor in TCR-signaled human T cells. Unlike inhibition of its phosphatase activity, in the absence of calcineurin A, TCR signaling results in attenuated actin rearrangement, markedly reduced TCR-Lck microcluster formation and recruitment of the adaptor RhoH, and diminished phosphorylation of critical targets downstream of Lck such as TCRζ and ZAP-70. Reconstitution of deficient T cells with either calcineurin Aα or Aβ restores TCR microcluster formation and signaling, as does reconstitution with a phosphatase-inactive Aα chain. These results assign a non-enzymatic adaptor function to calcineurin in the formation and stabilization of a functional TCR signaling complex.
Collapse
Affiliation(s)
- Shizuka Otsuka
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debjani Dutta
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan-Jin Wu
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad S Alam
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Terekhova M, Swain A, Bohacova P, Aladyeva E, Arthur L, Laha A, Mogilenko DA, Burdess S, Sukhov V, Kleverov D, Echalar B, Tsurinov P, Chernyatchik R, Husarcikova K, Artyomov MN. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C +GZMB -CD8 + memory T cells and accumulation of type 2 memory T cells. Immunity 2023; 56:2836-2854.e9. [PMID: 37963457 DOI: 10.1016/j.immuni.2023.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Extensive, large-scale single-cell profiling of healthy human blood at different ages is one of the critical pending tasks required to establish a framework for the systematic understanding of human aging. Here, using single-cell RNA/T cell receptor (TCR)/BCR-seq with protein feature barcoding, we profiled 317 samples from 166 healthy individuals aged 25-85 years old. From this, we generated a dataset from ∼2 million cells that described 55 subpopulations of blood immune cells. Twelve subpopulations changed with age, including the accumulation of GZMK+CD8+ T cells and HLA-DR+CD4+ T cells. In contrast to other T cell memory subsets, transcriptionally distinct NKG2C+GZMB-CD8+ T cells counterintuitively decreased with age. Furthermore, we found a concerted age-associated increase in type 2/interleukin (IL)4-expressing memory subpopulations across CD4+ and CD8+ T cell compartments (CCR4+CD8+ Tcm and Th2 CD4+ Tmem), suggesting a systematic functional shift in immune homeostasis with age. Our work provides novel insights into healthy human aging and a comprehensive annotated resource.
Collapse
Affiliation(s)
- Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ekaterina Aladyeva
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Laura Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anwesha Laha
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Samantha Burdess
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Vladimir Sukhov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Computer Technologies Laboratory, ITMO University, Saint Petersburg 197101, Russia
| | - Denis Kleverov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Computer Technologies Laboratory, ITMO University, Saint Petersburg 197101, Russia
| | - Barbora Echalar
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Petr Tsurinov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; JetBrains Research, 8021 Paphos, Cyprus
| | - Roman Chernyatchik
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; JetBrains Research, 80639 Munich, Germany
| | - Kamila Husarcikova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
3
|
Nagase H, Shitara A, Ohno Y, Satoh K, Kashimata M. Loss of Cdc42 in Exocrine Acini Decreases Saliva Secretion but Increases Tear Secretion-A Potential Model of Exocrine Gland Senescence. Int J Mol Sci 2023; 24:17220. [PMID: 38139048 PMCID: PMC10743476 DOI: 10.3390/ijms242417220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cdc42 is a small GTPase essential for the cell cycle, morphogenesis, and cell adhesion, and it is involved in the polarity of epithelial cells. However, the functional roles of Cdc42 in exocrine glands, such as the maintenance of acini and water secretion, are not yet well understood. In this study, we generated acinar-cell-specific Cdc42 conditional knockout (Cdc42cKO) mice to assess their maintenance of acinar cells and physiological functions in the salivary glands (SGs) and lacrimal glands (LGs). Our data revealed that the loss of Cdc42 altered the luminal structures to bulging structures and induced acinar cell apoptosis in both the parotid glands (PGs) and LGs of Cdc42cKO mice. Interestingly, saliva secretion in response to pilocarpine stimulation was decreased in the Cdc42cKO group, whereas tear secretion was increased. Consistent with the water secretion results, protein expression of the water channel AQP5 in acinar cells was also decreased in the PGs but conversely increased in the LGs. Moreover, the changes that increased AQP5 expression in LGs occurred in the acinar cells rather than the duct cells. The present study demonstrates that Cdc42 is involved in the structural and survival maintenance of acinar cells in SGs and LGs. On the other hand, depletion of Cdc42 caused the opposite physiological phenomena between PGs and LGs.
Collapse
Affiliation(s)
- Haruna Nagase
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Akiko Shitara
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|
4
|
Assing K, Jørgensen SE, Sandgaard KS, De Keukeleere K, B-Hansen M, Petersen MS, Hartling UB, Vaal TMKD, Nielsen C, Jakobsen MA, Watt E, Adams S, Hao Q, Fagerberg C, Mogensen TH. A Novel CDC42 Variant with Impaired Thymopoiesis, IL-7R Signaling, PAK1 Binding, and TCR Repertoire Diversity. J Clin Immunol 2023; 43:1927-1940. [PMID: 37581646 PMCID: PMC10661826 DOI: 10.1007/s10875-023-01561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
Genetic variants in cell division cycle 42 (CDC42) can manifest with dysmorphic features, autoinflammation, hemophagocytic lymphohistiocytosis, and thrombocytopenia, whereas defective thymopoiesis is a rare disease manifestation. We report a novel CDC42 missense variant (c.46A > G, p.Lys16Glu) resulting in infection and HPV-driven carcinogenesis in the mosaic mother and impaired thymopoiesis and profound T cell lymphopenia in the heterozygous daughter identified through newborn screening for SCID. We found that surface expression of IL-7Rα (CD127) was decreased, consistent with reduced IL-7-induced STAT5 phosphorylation and accelerated apoptotic T cell death. Consistent with the vital role of IL-7 in regulating thymopoiesis, both patients displayed reduced T cell receptor CDR3 repertoires. Moreover, the CDC42 variant prevented binding to the downstream effector, p21-activated kinase (PAK)1, suggesting this impaired interaction to underlie reduced IL-7Rα expression and signaling. Here, we provide the first report of severely compromised thymopoiesis and perturbed IL-7Rα signaling caused by a novel CDC42 variant and presenting with diverging clinical and immunological phenotypes in patients.
Collapse
Affiliation(s)
- Kristian Assing
- Department of Clinical Immunology, Odense University Hospital (OUH), Odense, Denmark.
| | | | | | | | - Marie B-Hansen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Mikkel S Petersen
- Department of Clinical Immunology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Ulla B Hartling
- Department of Pediatrics, Odense University Hospital (OUH), Odense, Denmark
| | | | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital (OUH), Odense, Denmark
| | - Marianne A Jakobsen
- Department of Clinical Immunology, Odense University Hospital (OUH), Odense, Denmark
| | - Eleanor Watt
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stuart Adams
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Qin Hao
- Department of Clinical Genetics, Odense University Hospital (OUH), Odense, Denmark
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital (OUH), Odense, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University (AU), Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark.
| |
Collapse
|
5
|
Bhasin SS, Thomas BE, Summers RJ, Sarkar D, Mumme H, Pilcher W, Emam M, Raikar SS, Park SI, Castellino SM, Graham DK, Bhasin MK, DeRyckere D. Pediatric T-cell acute lymphoblastic leukemia blast signature and MRD associated immune environment changes defined by single cell transcriptomics analysis. Sci Rep 2023; 13:12556. [PMID: 37532715 PMCID: PMC10397284 DOI: 10.1038/s41598-023-39152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Different driver mutations and/or chromosomal aberrations and dysregulated signaling interactions between leukemia cells and the immune microenvironment have been implicated in the development of T-cell acute lymphoblastic leukemia (T-ALL). To better understand changes in the bone marrow microenvironment and signaling pathways in pediatric T-ALL, bone marrows collected at diagnosis (Dx) and end of induction therapy (EOI) from 11 patients at a single center were profiled by single cell transcriptomics (10 Dx, 5 paired EOI, 1 relapse). T-ALL blasts were identified by comparison with healthy bone marrow cells. T-ALL blast-associated gene signature included SOX4, STMN1, JUN, HES4, CDK6, ARMH1 among the most significantly overexpressed genes, some of which are associated with poor prognosis in children with T-ALL. Transcriptome profiles of the blast cells exhibited significant inter-patient heterogeneity. Post induction therapy expression profiles of the immune cells revealed significant changes. Residual blast cells in MRD+ EOI samples exhibited significant upregulation (P < 0.01) of PD-1 and RhoGDI signaling pathways. Differences in cellular communication were noted in the presence of residual disease in T cell and hematopoietic stem cell compartments in the bone marrow. Together, these studies generate new insights and expand our understanding of the bone marrow landscape in pediatric T-ALL.
Collapse
Affiliation(s)
- Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Debasree Sarkar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hope Mumme
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - William Pilcher
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mohamed Emam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj K Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Szczawińska-Popłonyk A, Popłonyk N, Badura-Stronka M, Juengling J, Huhn K, Biskup S, Bancerz B, Walkowiak J. The clinical phenotype with gastrostomy and abdominal wall infection in a pediatric patient with Takenouchi-Kosaki syndrome due to a heterozygous c.191A > G (p.Tyr64Cys) variant in CDC42: a case report. Front Genet 2023; 14:1108852. [PMID: 37347054 PMCID: PMC10280004 DOI: 10.3389/fgene.2023.1108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
The CDC42 (cell division cycle homolog 42) gene product, Cdc42 belongs to the Rho GTPase family which plays a pivotal role in the regulation of multiple cellular functions, including cell cycle progression, motility, migration, proliferation, transcription activation, and reactive oxygen species production. The Cdc42 molecule controls various tissue-specific functional pathways underpinning organogenesis as well as developmental integration of the hematopoietic and immune systems. Heterozygous c.191A>G (p.Tyr64Cys) pathogenic variants in CDC42 cause Takenouchi-Kosaki syndrome characterized by a spectrum of phenotypic features comprising psychomotor developmental delay, sensorineural hearing loss, growth retardation, facial dysmorphism, cardiovascular and urinary tract malformations, camptodactyly, accompanied by thrombocytopenia and immunodeficiency of variable degree. Herein, we report a pediatric patient with the Takenouchi-Kosaki syndrome due to a heterozygous p.Tyr64Cys variant in CDC42 manifesting as a congenital malformation complex accompanied by macrothrombocytopenia, poor specific antibody response, B and T cell immunodeficiency, and low serum immunoglobulin A level. We also suggst that feeding disorders, malnutrition, and a gastrointestinal infection could be a part of the phenotypic characteristics of Takenouchi-Kosaki syndrome supporting the hypothesis of immune dysregulation and systemic inflammation occurring in the p.Tyr64Cys variant in CDC42.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Karol Jonscher University Hospital, Poznań University of Medical Sciences, Poznań, Poland
| | - Natalia Popłonyk
- Student Scientific Society, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Badura-Stronka
- Centers for Medical Genetics Genesis, Poznań, Poland
- Chair and Department of Medical Genetics, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Kerstin Huhn
- Zentrum Fur Humangenetik Tübingen, Tübingen, Germany
| | - Saskia Biskup
- Zentrum Fur Humangenetik Tübingen, Tübingen, Germany
- CeGaT GmbH, Tübingen, Germany
| | - Bartłomiej Bancerz
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Karol Jonscher University Hospital, Poznań University of Medical Sciences, Poznań, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Karol Jonscher University Hospital, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
7
|
Ahmad Mokhtar AM, Salikin NH, Haron AS, Amin-Nordin S, Hashim IF, Mohd Zaini Makhtar M, Zulfigar SB, Ismail NI. RhoG's Role in T Cell Activation and Function. Front Immunol 2022; 13:845064. [PMID: 35280994 PMCID: PMC8913496 DOI: 10.3389/fimmu.2022.845064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
The role of RhoG in T cell development is redundant with other Racs subfamily members, and this redundancy may be attributed to redundant signal transduction pathways. However, the absence of RhoG increases TCR signalling and proliferation, implying that RhoG activity is critical during late T cell activation following antigen–receptor interaction. Moreover, RhoG is required to halt signal transduction and prevent hyper-activated T cells. Despite increase in TCR signalling, cell proliferation is inhibited, implying that RhoG induces T cell anergy by promoting the activities of transcription factors, including nuclear factor of activated T cell (NFAT)/AP-1. The role of NFAT plays in T cell anergy is inducing the transcription of anergy-associated genes, such as IL-2, IL-5, and IFN-γ. Although information about RhoG in T cell-related diseases is limited, mutant forms of RhoG, Ala151Ser and Glu171Lys have been observed in thymoma and hemophagocytic lymphohistiocytosis (HLH), respectively. Current information only focuses on these two diseases, and thus the role of RhoG in normal and pathological circumstances should be further investigated. This approach is necessary because RhoG and its associated proteins represent prospective targets for attack particularly in the therapy of cancer and immune-mediated illnesses.
Collapse
Affiliation(s)
- Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Nor Hawani Salikin
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Malaysia
| | | | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ilie Fadzilah Hashim
- Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Malaysia.,Fellow of Center for Global Sustainability Studies, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Siti Balqis Zulfigar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Nurul Izza Ismail
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
8
|
Rastogi D, Johnston AD, Nico J, Loh LN, Jorge Y, Suzuki M, Macian F, Greally JM. Functional Genomics of the Pediatric Obese Asthma Phenotype Reveal Enrichment of Rho-GTPase Pathways. Am J Respir Crit Care Med 2020; 202:259-274. [PMID: 32255672 PMCID: PMC7365356 DOI: 10.1164/rccm.201906-1199oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Obesity-related asthma disproportionately affects minority children and is associated with nonatopic T-helper type 1 (Th1) cell polarized inflammation that correlates with pulmonary function deficits. Its underlying mechanisms are poorly understood.Objectives: To use functional genomics to identify cellular mechanisms associated with nonatopic inflammation in obese minority children with asthma.Methods: CD4+ (cluster of differentiation 4-positive) Th cells from 59 obese Hispanic and African American children with asthma and 61 normal-weight Hispanic and African American children with asthma underwent quantification of the transcriptome and DNA methylome and genotyping. Expression and methylation quantitative trait loci revealed the contribution of genetic variation to transcription and DNA methylation. Adjusting for Th-cell subtype proportions discriminated loci where transcription or methylation differences were driven by differences in subtype proportions from loci that were independently associated with obesity-related asthma.Measurements and Main Results: Obese children with asthma had more memory and fewer naive Th cells than normal-weight children with asthma. Differentially expressed and methylated genes and methylation quantitative trait loci in obese children with asthma, independent of Th-cell subtype proportions, were enriched in Rho-GTPase pathways. Inhibition of CDC42 (cell division cycle 42), one of the Rho-GTPases associated with Th-cell differentiation, was associated with downregulation of the IFNγ, but not the IL-4, gene. Differential expression of the RPS27L (40S ribosomal protein S27-like) gene, part of the p53/mammalian target of rapamycin pathway, was due to nonrandom distribution of expression quantitative trait loci variants between groups. Differentially expressed and/or methylated genes, including RPS27L, were associated with pulmonary function deficits in obese children with asthma.Conclusions: We found enrichment of Rho-GTPase pathways in obese asthmatic Th cells, identifying them as a novel therapeutic target for obesity-related asthma, a disease that is suboptimally responsive to current therapies.
Collapse
Affiliation(s)
- Deepa Rastogi
- Department of Pediatrics
- Department of Pathology, and
| | - Andrew D. Johnston
- Department of Genetics, Albert Einstein College of Medicine, New York, New York
| | | | | | | | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, New York, New York
| | | | - John M. Greally
- Department of Genetics, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
9
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Abstract
Rat models of human type 1 diabetes have been shown to be of great importance for the elucidation of the mechanisms underlying the development of autoimmune diabetes. The three major well-established spontaneous rat models are the BioBreeding (BB) diabetes-prone rat, the Komeda diabetes-prone (KDP) rat, and the IDDM (LEW.1AR1-iddm) rat. Their distinctive features are described with special reference to their pathology, immunology, and genetics and compared with the situation in patients with type 1 diabetes mellitus. For all three established rat models, a distinctive genetic mutation has been identified that is responsible for the manifestation of the diabetic syndrome in these rat strains.
Collapse
Affiliation(s)
- Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany. .,Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Tanja Arndt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Dirk Wedekind
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Kessal K, Liang H, Rabut G, Daull P, Garrigue JS, Docquier M, Melik Parsadaniantz S, Baudouin C, Brignole-Baudouin F. Conjunctival Inflammatory Gene Expression Profiling in Dry Eye Disease: Correlations With HLA-DRA and HLA-DRB1. Front Immunol 2018; 9:2271. [PMID: 30374345 PMCID: PMC6196257 DOI: 10.3389/fimmu.2018.02271] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/12/2018] [Indexed: 01/24/2023] Open
Abstract
Purpose: In several multicenter clinical trials, HLA-DR was found to be a potential biomarker of dry eye disease (DED)'s severity and prognosis. Given the fact that HLA-DR receptor is a heterodimer consisting in an alpha and a beta chain, we intended to investigate the correlation of inflammatory targets with the corresponding transcripts, HLA-DRA and HLA-DRB1, to characterize specific targets closely related to HLA-DR expressed in conjunctival cells from patients suffering from DED of various etiologies. Methods: A prospective study was conducted in 88 patients with different forms of DED. Ocular symptom scores, ocular-staining grades, tear breakup time (TBUT) and Schirmer test were evaluated. Superficial conjunctival cells were collected by impression cytology and total RNAs were extracted for analyses using the new NanoString® nCounter technology based on an inflammatory human code set containing 249 inflammatory genes. Results: Two hundred transcripts were reliably detected in conjunctival specimens at various levels ranging from 1 to 222,546 RNA copies. Overall, from the 88 samples, 21 target genes showed a highly significant correlation (R > 0.8) with HLA-DRA and HLA-DRB1, HLA-DRA and B1 presenting the highest correlation (R = 0.9). These selected targets belonged to eight family groups, namely interferon and interferon-stimulated genes, tumor necrosis factor superfamily and related factors, Toll-like receptors and related factors, complement system factors, chemokines/cytokines, the RIPK enzyme family, and transduction signals such as the STAT and MAPK families. Conclusions: We have identified a profile of 21 transcripts correlated with HLA-DR expression, suggesting closely regulated signaling pathways and possible direct or indirect interactions between them. The NanoString® nCounter technology in conjunctival imprints could constitute a reliable tool in the future for wider screening of inflammatory biomarkers in DED, usable in very small samples. Broader combinations of biomarkers associated with HLA-DR could be analyzed to develop new diagnostic approaches, identify tighter pathophysiological gene signatures and personalize DED therapies more efficiently.
Collapse
Affiliation(s)
- Karima Kessal
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Hong Liang
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Ghislaine Rabut
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Mylene Docquier
- iGE3 Genomics Platform University of Geneva, Geneva, Switzerland
| | | | - Christophe Baudouin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, Ambroise Paré Hospital, APHP, University of Versailles Saint-Quentin en Yvelines, Boulogne-Billancourt, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Sorbonne Paris Cité Université Paris Descartes, Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
12
|
Shin JY, Wey M, Umutesi HG, Sun X, Simecka J, Heo J. Thiopurine Prodrugs Mediate Immunosuppressive Effects by Interfering with Rac1 Protein Function. J Biol Chem 2016; 291:13699-714. [PMID: 27189938 DOI: 10.1074/jbc.m115.694422] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/19/2022] Open
Abstract
6-Thiopurine (6-TP) prodrugs include 6-thioguanine and azathioprine. Both are widely used to treat autoimmune disorders and certain cancers. This study showed that a 6-thioguanosine triphosphate (6-TGTP), converted in T-cells from 6-TP, targets Rac1 to form a disulfide adduct between 6-TGTP and the redox-sensitive GXXXXGK(S/T)C motif of Rac1. This study also showed that, despite the conservation of the catalytic activity of RhoGAP (Rho-specific GAP) on the 6-TGTP-Rac1 adduct to produce the biologically inactive 6-thioguanosine diphosphate (6-TGDP)-Rac1 adduct, RhoGEF (Rho-specific GEF) cannot exchange the 6-TGDP adducted on Rac1 with free guanine nucleotide. The biologically inactive 6-TGDP-Rac1 adduct accumulates in cells because of the ongoing combined actions of RhoGEF and RhoGAP. Because other Rho GTPases, such as RhoA and Cdc42, also possess the GXXXXGK(S/T)C motif, the proposed mechanism for the inactivation of Rac1 also applies to RhoA and Cdc42. However, previous studies have shown that CD3/CD28-stimulated T-cells contain more activated Rac1 than other Rho GTPases such as RhoA and Cdc42. Accordingly, Rac1 is the main target of 6-TP in activated T-cells. This explains the T-cell-specific Rac1-targeting therapeutic action of 6-TP that suppresses the immune response. This proposed mechanism for the action of 6-TP on Rac1 performs a critical role in demonstrating the capability to design a Rac1-targeting chemotherapeutic agent(s) for autoimmune disorders. Nevertheless, the results also suggest that the targeting action of other Rho GTPases in other organ cells, such as RhoA in vascular cells, may be linked to cytotoxicities because RhoA plays a key role in vasculature functions.
Collapse
Affiliation(s)
- Jin-Young Shin
- From the Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019
| | - Michael Wey
- From the Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019
| | - Hope G Umutesi
- From the Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019
| | - Xiangle Sun
- the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, and
| | - Jerry Simecka
- the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, and the Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Jongyun Heo
- From the Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019,
| |
Collapse
|
13
|
Sinha B, Rubens M. Systemic immune activation in HIV and potential therapeutic options. Immunopharmacol Immunotoxicol 2014; 36:89-95. [PMID: 24552614 DOI: 10.3109/08923973.2014.890217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT Advancement in HIV treatment has evolved over the last two decades with the discovery of new drugs and approaches. Studies have demonstrated that HIV-infected individuals have elevated immune activation even during effective antiretroviral therapy. Persistently elevated immune activation has been one of the main obstacles against developing an effective approach for curing HIV. OBJECTIVE This review examines the mechanism of microbial translocation in HIV-infected individuals and currently investigated potential therapeutic approaches. METHODS We searched PubMed and Medline for peer-reviwed articles and recent HIV/AIDS conference abstracts and papers. Narrative review method was used since the objectives of the study were mechanism of microbial translocation and mechanism of action of multiple drugs against it. RESULTS Microbial translocation occurs as a result of the disruption of epithelial barrier and immunological dysfunction within the intestinal tract due to defective tight junctions, loss of TH17 type CD4(+) T cells, impaired liver architecture, and depletion of intestinal myelomonocytic cells. Potent and effective way to intervene microbial translocation is to target the mechanism of actions involved in microbial translocation by restoration of beneficial microbiata with supplemental probiotics/prebiotics, increased clearance of microbial products from systemic circulation with targeted antibodies and restoration of intestinal integrity with antibiotics. CONCLUSIONS Number of promising drug molecules against microbial translocation are currently under various stages of trials and the results of these trials will hopefully contribute significantly toward effective therapeutic intervention. However, studies also need to explore the effect of combination drugs to abrogate microbial translocation.
Collapse
|
14
|
Luo C, Qu H, Ma J, Wang J, Li C, Yang C, Hu X, Li N, Shu D. Genome-wide association study of antibody response to Newcastle disease virus in chicken. BMC Genet 2013; 14:42. [PMID: 23663563 PMCID: PMC3654938 DOI: 10.1186/1471-2156-14-42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 05/06/2013] [Indexed: 11/21/2022] Open
Abstract
Background Since the first outbreak in Indonesia in 1926, Newcastle disease has become one of the most common and contagious bird diseases throughout the world. To date, enhancing host antibody response by vaccination remains the most efficient strategy to control outbreaks of Newcastle disease. Antibody response plays an important role in host resistance to Newcastle disease, and selection for antibody response can effectively improve disease resistance in chickens. However, the molecular basis of the variation in antibody response to Newcastle disease virus (NDV) is not clear. The aim of this study was to detect genes modulating antibody response to NDV by a genome-wide association study (GWAS) in chickens. Results To identify genes or chromosomal regions associated with antibody response to NDV after immunization, a GWAS was performed using 39,833 SNP markers in a chicken F2 resource population derived from a cross between two broiler lines that differed in their resistance. Two SNP effects reached 5% Bonferroni genome-wide significance (P<1.26×10-6). These two SNPs, rs15354805 and rs15355555, were both on chicken (Gallus gallus) chromosome 1 and spanned approximately 600 Kb, from 100.4 Mb to 101.0 Mb. Rs15354805 is in intron 7 of the chicken Roundabout, axon guidance receptor, homolog 2 (ROBO2) gene, and rs15355555 is located about 243 Kb upstream of ROBO2. Rs15354805 explained 5% of the phenotypic variation in antibody response to NDV, post immunization, in chickens. Rs15355555 had a similar effect as rs15354805 because of its linkage disequilibrium with rs15354805 (r2=0.98). Conclusion The region at about 100 Mb from the proximal end of chicken chromosome 1, including the ROBO1 and ROBO2 genes, has a strong effect on the antibody response to the NDV in chickens. This study paves the way for further research on the host immune response to NDV.
Collapse
Affiliation(s)
- Chenglong Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou 510640, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Meuwissen PJ, Stolp B, Iannucci V, Vermeire J, Naessens E, Saksela K, Geyer M, Vanham G, Arien KK, Fackler OT, Verhasselt B. Identification of a highly conserved valine-glycine-phenylalanine amino acid triplet required for HIV-1 Nef function. Retrovirology 2012; 9:34. [PMID: 22537596 PMCID: PMC3476393 DOI: 10.1186/1742-4690-9-34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/27/2012] [Indexed: 12/02/2022] Open
Abstract
Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.
Collapse
Affiliation(s)
- Pieter J Meuwissen
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, Ghent, (B-9000), Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sakabe I, Asai A, Iijima J, Maruyama M. Age-related guanine nucleotide exchange factor, mouse Zizimin2, induces filopodia in bone marrow-derived dendritic cells. IMMUNITY & AGEING 2012; 9:2. [PMID: 22494997 PMCID: PMC3359169 DOI: 10.1186/1742-4933-9-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/11/2012] [Indexed: 01/10/2023]
Abstract
Background We recently isolated and identified Zizimin2 as a functional factor that is highly expressed in murine splenic germinal center B cells after immunization with T-cell-dependent antigen. Zizimin2 was revealed to be a new family member of Dock (dedicator of cytokinesis), Dock11, which is the guanine nucleotide exchange factor for Cdc42, a low-molecular-weight GTPase. However, the molecular function of Zizimin2 in acquired immunity has not been elucidated. Results In this study, we show that the protein expression of Zizimin2, which is also restricted to lymphoid tissues and lymphocytes, is reduced in aged mice. Over-expression of full-length Zizimin2 induced filopodial formation in 293T cells, whereas expression of CZH2 domain inhibited it. Stimulation of Fcγ receptor and Toll-like receptor 4 triggered Zizimin2 up-regulation and Cdc42 activation in bone marrow-derived dendritic cells. Conclusions These data suggest that Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration.
Collapse
Affiliation(s)
- Isamu Sakabe
- Department of Mechanism of Aging, Research Institute - National Center for Geriatrics and Gerontology, 35, Gengo, Morioka-Machi, Obu-city, Aichi 474-8511, Japan.
| | | | | | | |
Collapse
|