1
|
Foßelteder J, Brauchart T, Schlacher A, Sconocchia T, Özkaya E, Auinger L, Schlenke P, Sill H, Zebisch A, Reinisch A. Engineered cytokine-expressing MSCs support ex vivo culture of human HSPCs and AML cells. Exp Hematol 2025:104790. [PMID: 40274186 DOI: 10.1016/j.exphem.2025.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
CD34+ human hematopoietic stem and progenitor cells (HSPCs) and primary patient-derived leukemia cells are important tools for basic and translational research. Their limited availability demands additional expansion ex vivo in many cases. The use of either cytokine cocktails or co-cultures with mesenchymal stromal cells (MSCs) has advanced cell expansion but combinations of both have not been addressed extensively so far. Here, we present a novel approach to generate human cytokine-expressing MSCs (ceMSCs) via genetic engineering. Co-culture with ceMSCs and their culture supernatant led to an efficient expansion and maintenance of functional CD34+CD45RA-CD90+CD201+CD49c+ HSCs ex vivo. Similarly, ceMSCs and their culture supernatant support the growth of cytokine-dependent leukemic cell lines in vitro, and improved the survival, maintenance, and expansion of patient-derived acute myeloid leukemia (AML) cells, a cell population very challenging to be cultured ex vivo. ceMSCs even surpass the support provided by wild-type MSCs or external cytokines alone. Therefore, ceMSCs offer a cost-effective, straightforward alternative to traditional cytokine supplementation, enhancing the feasibility of ex vivo studies on healthy and leukemic stem and progenitor cells, including therapeutic drug testing and mechanistic investigations.
Collapse
Affiliation(s)
- Johannes Foßelteder
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Thomas Brauchart
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Angelika Schlacher
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Tommaso Sconocchia
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Erdem Özkaya
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Lisa Auinger
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Heinz Sill
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria; Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Andreas Reinisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria; Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
2
|
do Nascimento MC, Pereira-Martins DA, Machado-Neto JA, Rego EM. Acute myeloid leukemia-derived bone marrow mesenchymal cells exhibit improved support for leukemic cell proliferation. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S48-S52. [PMID: 38307829 PMCID: PMC11726071 DOI: 10.1016/j.htct.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION The bone marrow (BM) microenvironment plays a significant role in acute myeloid leukemia (AML) genesis and there is evidence that BM mesenchymal stromal cells (BMMSCs) can support leukemia progenitor cell proliferation and survival and provide resistance to cytotoxic therapies. HYPOTHESIS AND METHOD Nevertheless, currently unknown are the relevance of the spatial localization of AML cells relative to the BMMSCs and whether BMMSCs from patients with AML and healthy subjects have similar properties. To address these issues, we performed a differential gene expression analysis using RNA-sequencing data generated from healthy donors (HDs) and leukemic BMMSCs. RESULTS The Gene Set Enrichment Analysis (GSEA) revealed that leukemic BMMSCs were associated with the terms "positive regulation of cell cycle", "angiogenesis" and "signaling by the estimated glomerular filtration rate (eGFR)", whereas healthy donor (HD)-derived BMMSCs were associated with "programmed cell death in response to the reactive oxygen species (ROS)", "negative regulation of the cytochrome C from the mitochondria" and "interferon signaling". Next, we evaluated the mitochondrial superoxide production in AML cells in a co-culture layered model. The superoxide production was reduced in leukemic cells in close contact (adhered to the surface or beneath the cell layer) with BMMSCs, indicating lower oxidative stress. CONCLUSION Taken together, our results suggest that AML-derived BMMSCs are transcriptionally rewired and can reduce the metabolic stress of leukemic cells.
Collapse
Affiliation(s)
- Mariane Cristina do Nascimento
- Center for Cell-Based Therapy, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Hematology Division, LIM31, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Diego A Pereira-Martins
- Center for Cell-Based Therapy, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Hematology Division, LIM31, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | - Eduardo M Rego
- Center for Cell-Based Therapy, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Hematology Division, LIM31, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Safi R, Mohsen-Kanson T, Kouzi F, El-Saghir J, Dermesrobian V, Zugasti I, Zibara K, Menéndez P, El Hajj H, El-Sabban M. Direct Interaction Between CD34 + Hematopoietic Stem Cells and Mesenchymal Stem Cells Reciprocally Preserves Stemness. Cancers (Basel) 2024; 16:3972. [PMID: 39682159 DOI: 10.3390/cancers16233972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES A specialized microenvironment in the bone marrow, composed of stromal cells including mesenchymal stem cells (MSCs), supports hematopoietic stem cell (HSC) self-renewal, and differentiation bands play an important role in leukemia development and progression. The reciprocal direct interaction between MSCs and CD34+ HSCs under physiological and pathological conditions is yet to be fully characterized. METHODS Here, we established a direct co-culture model between MSCs and CD34+ HSCs or MSCs and acute myeloid leukemia cells (THP-1, Molm-13, and primary cells from patients) to study heterocellular communication. RESULTS Following MSCs-CD34+ HSCs co-culture, the expression of adhesion markers N-Cadherin and connexin 43 increased in both cell types, forming gap junction channels. Moreover, the clonogenic potential of CD34+ HSCs was increased. However, direct contact of acute myeloid leukemia cells with MSCs reduced the expression levels of connexin 43 and N-Cadherin in MSCs. The impairment in gap junction formation may potentially be due to a defect in the acute myeloid leukemia-derived MSCs. Interestingly, CD34+ HSCs and acute myeloid leukemia cell lines attenuated MSC osteoblastic differentiation upon prolonged direct cell-cell contact. CONCLUSIONS In conclusion, under physiological conditions, connexin 43 and N-Cadherin interaction preserves stemness of both CD34+ HSCs and MSCs, a process that is compromised in acute myeloid leukemia, pointing to the possible role of gap junctions in modulating stemness.
Collapse
Affiliation(s)
- Rémi Safi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Tala Mohsen-Kanson
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Farah Kouzi
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Jamal El-Saghir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vera Dermesrobian
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Inés Zugasti
- Department of Hematology, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Kazem Zibara
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, 28029 Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), 08028 Barcelona, Spain
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
4
|
Grigorieva O, Basalova N, Dyachkova U, Novoseletskaya E, Vigovskii M, Arbatskiy M, Kulebyakina M, Efimenko A. Modeling the profibrotic microenvironment in vitro: Model validation. Biochem Biophys Res Commun 2024; 733:150574. [PMID: 39208646 DOI: 10.1016/j.bbrc.2024.150574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Establishing the molecular and cellular mechanisms of fibrosis requires the development of validated and reproducible models. The complexity of in vivo models challenges the monitoring of an individual cell fate, in some cases making it impossible. However, the set of factors affecting cells in vitro culture systems differ significantly from in vivo conditions, insufficiently reproducing living systems. Thus, to model profibrotic conditions in vitro, usually the key profibrotic factor, transforming growth factor beta (TGFβ-1) is used as a single factor. TGFβ-1 stimulates the differentiation of fibroblasts into myofibroblasts, the main effector cells promoting the development and progression of fibrosis. However, except for soluble factors, the rigidity and composition of the extracellular matrix (ECM) play a critical role in the differentiation process. To develop the model of more complex profibrotic microenvironment in vitro, we used a combination of factors: decellularized ECM synthesized by human dermal fibroblasts in the presence of ascorbic acid if cultured as cell sheets and recombinant TGFβ-1 as a supplement. When culturing human mesenchymal stromal cells derived from adipose tissue (MSCs) under described conditions, we observed differentiation of MSCs into myofibroblasts due to increased number of cells with stress fibrils with alpha-smooth muscle actin (αSMA), and increased expression of myofibroblast marker genes such as collagen I, EDA-fibronectin and αSMA. Importantly, secretome of MSCs changed in these profibrotic microenvironment: the secretion of the profibrotic proteins SPARC and fibulin-2 increased, while the secretion of the antifibrotic hepatocyte growth factor (HGF) decreased. Analysis of transciptomic pattern of regulatory microRNAs in MSCs revealed 49 miRNAs with increased expression and 3 miRNAs with decreased expression under profibrotic stimuli. Bioinformatics analysis confirmed that at least 184 gene targets of the differently expressed miRNAs genes were associated with fibrosis. To further validate the developed model of profibrotic microenvironment, we cultured human dermal fibroblasts in these conditions and observed increased expression of fibroblast activation protein (FAPa) after 12 h of cultivation as well as increased level of αSMA and higher number of αSMA + stress fibrils after 72 h. The data obtained allow us to conclude that the conditions formed by the combination of profibrotic ECM and TGFβ-1 provide a complex profibrotic microenvironment in vitro. Thus, this model can be applicable in studying the mechanism of fibrosis development, as well as for the development of antifibrotic therapy.
Collapse
Affiliation(s)
- Olga Grigorieva
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia.
| | - Nataliya Basalova
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Uliana Dyachkova
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Ekaterina Novoseletskaya
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Maksim Vigovskii
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Mikhail Arbatskiy
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Maria Kulebyakina
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Anastasia Efimenko
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| |
Collapse
|
5
|
Yamaguchi A, Hashimoto Y, Negishi J. Fabrication of a cell culture scaffold that mimics the composition and structure of bone marrow extracellular matrix. J Biosci Bioeng 2024; 138:83-88. [PMID: 38643031 DOI: 10.1016/j.jbiosc.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
Cell culture models that mimic tissue environments are useful for cell and extracellular matrix (ECM) function analysis. Decellularized tissues with tissue-specific ECM are expected to be applied as cell culture scaffolds, however, it is often difficult for seeded cells to permeate their structures. In this study, we evaluated the adhesion and proliferation of mouse fibroblasts seeded onto decellularized bone marrow scaffolds that we fabricated from adult and fetal porcine. Decellularized fetal bone marrow displays more cell attachment and faster cell proliferation than decellularized adult bone marrow. Our findings suggest that decellularized fetal bone marrow is useful as a cell culture scaffold with bone marrow ECM and structure.
Collapse
Affiliation(s)
- Ayana Yamaguchi
- Department of Textile Science and Technology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-006, Japan
| | - Jun Negishi
- Department of Textile Science and Technology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-006, Japan.
| |
Collapse
|
6
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
7
|
Park HS, Lee BC, Chae DH, Yu A, Park JH, Heo J, Han MH, Cho K, Lee JW, Jung JW, Dunbar CE, Oh MK, Yu KR. Cigarette smoke impairs the hematopoietic supportive property of mesenchymal stem cells via the production of reactive oxygen species and NLRP3 activation. Stem Cell Res Ther 2024; 15:145. [PMID: 38764093 PMCID: PMC11103961 DOI: 10.1186/s13287-024-03731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.
Collapse
Affiliation(s)
- Hyun Sung Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Byung-Chul Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Dong-Hoon Chae
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Aaron Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Han Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jiyoung Heo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Myoung Hee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Keonwoo Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Ji-Won Jung
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mi-Kyung Oh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Kyung-Rok Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
8
|
Sakurai M, Ishitsuka K, Becker HJ, Yamazaki S. Ex vivo expansion of human hematopoietic stem cells and clinical applications. Cancer Sci 2024; 115:698-705. [PMID: 38221718 PMCID: PMC10921004 DOI: 10.1111/cas.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare population of cells found in the bone marrow that play a critical role in lifelong hematopoiesis and the reconstitution of the hematopoietic system after hematopoietic stem cell transplantation. Hematopoietic stem cell transplantation remains the only curative treatment for patients with refractory hematologic disorders, and umbilical cord blood (CB) serves as an alternative stem cell source due to its several advantageous characteristics, including human leukocyte antigen flexibility and reduced donor burden. However, CB also has the disadvantage of containing a small number of cells, resulting in limited donor selection and a longer time for engraftment. Therefore, the development of techniques to expand HSCs ex vivo, particularly umbilical CB, is a goal in hematology. While various combinations of cytokines were once the mainstream approach, these protocols had limited expansion rates and did not lead to clinical application. However, in recent years, the development of a technique in which small molecules are added to cytokines has enabled the stable, long-term ex vivo expansion of human HSCs. Clinical trials of expanded umbilical CB using these techniques have been undertaken and have confirmed their efficacy and safety. In addition, we have successfully developed a recombinant-cytokine-free and albumin-free culture system for the long-term expansion of human HSCs. This approach could offer the potential for more selective expansion of human HSCs compared to previous protocols. This review discusses ex vivo culture protocols for expanding human HSCs and presents the results of clinical trials using these techniques, along with future perspectives.
Collapse
Affiliation(s)
- Masatoshi Sakurai
- Division of Hematology, Department of MedicineKeio University School of MedicineTokyoJapan
| | - Kantaro Ishitsuka
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
- Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
9
|
Shirdare M, Amiri F, Samiee MP, Safari A. Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture. Mol Biol Rep 2024; 51:189. [PMID: 38270694 DOI: 10.1007/s11033-023-09041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/13/2023] [Indexed: 01/26/2024]
Abstract
Mesenchymal stem cells (MSCs) and Hematopoietic stem cells (HSCs) are two types of bone marrow stem cells that can proliferate and differentiate into different cell lineages. HSCs interact with MSCs under protective conditions, called niche. Numerous studies have indicated supportive effects of MSCs on HSCs proliferation and differentiation. Furthermore, HSCs have many clinical applications and could treat different hematologic and non-hematologic diseases. For this purpose, there is a need to perform in vitro studies to optimize their expansion. Therefore, various methods including co-culture with MSCs are used to address the limitations of HSCs culture. Some parameters that might be effective for improving the MSC/ HSC co-culture systems. Manipulating culture condition to enhance MSC paracrine activity, scaffolds, hypoxia, culture medium additives, and the use of various MSC sources, have been examined in different studies. In this article, we investigated the potential factors for optimizing HSCs/ MSCs co-culture. It might be helpful to apply a suitable approach for providing high-quality HSCs and improving their therapeutic applications.
Collapse
Affiliation(s)
- Mandana Shirdare
- Central Medical Laboratory, Vice Chancellor for Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Pouya Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
10
|
Dijkhuis L, Johns A, Ragusa D, van den Brink SC, Pina C. Haematopoietic development and HSC formation in vitro: promise and limitations of gastruloid models. Emerg Top Life Sci 2023; 7:439-454. [PMID: 38095554 PMCID: PMC10754337 DOI: 10.1042/etls20230091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Haematopoietic stem cells (HSCs) are the most extensively studied adult stem cells. Yet, six decades after their first description, reproducible and translatable generation of HSC in vitro remains an unmet challenge. HSC production in vitro is confounded by the multi-stage nature of blood production during development. Specification of HSC is a late event in embryonic blood production and depends on physical and chemical cues which remain incompletely characterised. The precise molecular composition of the HSC themselves is incompletely understood, limiting approaches to track their origin in situ in the appropriate cellular, chemical and mechanical context. Embryonic material at the point of HSC emergence is limiting, highlighting the need for an in vitro model of embryonic haematopoietic development in which current knowledge gaps can be addressed and exploited to enable HSC production. Gastruloids are pluripotent stem cell-derived 3-dimensional (3D) cellular aggregates which recapitulate developmental events in gastrulation and early organogenesis with spatial and temporal precision. Gastruloids self-organise multi-tissue structures upon minimal and controlled external cues, and are amenable to live imaging, screening, scaling and physicochemical manipulation to understand and translate tissue formation. In this review, we consider the haematopoietic potential of gastruloids and review early strategies to enhance blood progenitor and HSC production. We highlight possible strategies to achieve HSC production from gastruloids, and discuss the potential of gastruloid systems in illuminating current knowledge gaps in HSC specification.
Collapse
Affiliation(s)
- Liza Dijkhuis
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Ayona Johns
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | - Denise Ragusa
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | | | - Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| |
Collapse
|
11
|
Rubio-Lara JA, Igarashi KJ, Sood S, Johansson A, Sommerkamp P, Yamashita M, Lin DS. Expanding hematopoietic stem cell ex vivo: recent advances and technical considerations. Exp Hematol 2023; 125-126:6-15. [PMID: 37543237 DOI: 10.1016/j.exphem.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic hierarchy, which are responsible for sustaining the lifelong production of mature blood and immune cells. Due to their superior long-term regenerative capacity, HSC therapies such as stem cell transplantation have been used in a broad range of hematologic disorders. However, the rarity of this population in vivo considerably limits its clinical applications and large-scale analyses such as screening and safety studies. Therefore, ex vivo culture methods that allow long-term expansion and maintenance of functional HSCs are instrumental in overcoming the difficulties in studying HSC biology and improving HSC therapies. In this perspective, we discuss recent advances and technical considerations for three ex vivo HSC expansion methods including 1) polyvinyl alcohol-based HSC expansion, 2) mesenchymal stromal cell-HSC co-culture, and 3) two-/three-dimensional hydrogel HSC culture. This review summarizes the presentations and discussions from the 2022 International Society for Experimental Hematology (ISEH) Annual Meeting New Investigator Technology Session.
Collapse
Affiliation(s)
| | - Kyomi J Igarashi
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Shubhankar Sood
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alban Johansson
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Pia Sommerkamp
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Dawn S Lin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Mathis K, Kohon AI, Black S, Meckes B. Light-Controlled Cell-Cell Assembly Using Photocaged Oligonucleotides. ACS MATERIALS AU 2023; 3:386-393. [PMID: 38090125 PMCID: PMC10347689 DOI: 10.1021/acsmaterialsau.3c00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 09/29/2024]
Abstract
The interactions between heterogeneous cell populations play important roles in dictating various cell behaviors. Cell-cell contact mediates communication through the exchange of signaling molecules, electrical coupling, and direct membrane-linked ligand-receptor interactions. In vitro culturing of multiple cell types with control over their specific arrangement is difficult, especially in three-dimensional (3D) systems. While techniques that allow one to control the arrangement of cells and direct contact between different cell types have been developed that expand upon simple co-culture methods, specific control over heterojunctions that form between cells is not easily accomplished with current methods, such as 3D cell-printing. In this article, DNA-mediated cell interactions are combined with cell-compatible photolithographic approaches to control cell assembly. Specifically, cells are coated with oligonucleotides containing DNA nucleobases that are protected with photocleavable moieties; this coating facilitated light-controlled cell assembly when these cells were mixed with cells coated with complementary oligonucleotides. By combining this technology with digital micromirror devices mounted on a microscope, selective activation of specific cell populations for interactions with other cells was achieved. Importantly, this technique is rapid and uses non-UV light sources. Taken together, this technique opens new pathways for on-demand programming of complex cell structures.
Collapse
Affiliation(s)
- Katelyn Mathis
- Department
of Biomedical Engineering, University of
North Texas, 3940 N Elm Street, Denton, Texas 76207, United States
- BioDiscovery
Institute, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Afia Ibnat Kohon
- Department
of Biomedical Engineering, University of
North Texas, 3940 N Elm Street, Denton, Texas 76207, United States
- BioDiscovery
Institute, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Stephen Black
- Department
of Biomedical Engineering, University of
North Texas, 3940 N Elm Street, Denton, Texas 76207, United States
- BioDiscovery
Institute, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Brian Meckes
- Department
of Biomedical Engineering, University of
North Texas, 3940 N Elm Street, Denton, Texas 76207, United States
- BioDiscovery
Institute, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
13
|
Collet BC, Davis DR. Mechanisms of Cardiac Repair in Cell Therapy. Heart Lung Circ 2023; 32:825-835. [PMID: 37031061 DOI: 10.1016/j.hlc.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 04/08/2023]
Abstract
Heart failure is an important cause of morbidity and mortality. More than 20 years ago, special interest was drawn to cell therapy as a means of restoring damaged hearts to working condition. But progress has not been straightforward as many of our initial assumptions turned out to be wrong. In this review, we critically examine the last 20 years of progress in cardiac cell therapy and focus on several of the popular beliefs surrounding cell therapy to illustrate the mechanisms involved in restoring heart function after cardiac injury. Are they true or false?
Collapse
Affiliation(s)
- Bérénice C Collet
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
14
|
Murai N, Koyanagi-Aoi M, Terashi H, Aoi T. Re-generation of cytotoxic γδT cells with distinctive signatures from human γδT-derived iPSCs. Stem Cell Reports 2023; 18:853-868. [PMID: 36963392 PMCID: PMC10147660 DOI: 10.1016/j.stemcr.2023.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
For a long time, ex vivo-expanded peripheral-blood-derived γδT cell (PBγδT)-based immunotherapy has been attractive, and clinical trials have been undertaken. However, the difficulty in expanding cytotoxic γδT cells to an adequate number has been a major limitation to the efficacy of treatment in most cases. We successfully re-generated γδT cells from γδT cell-derived human induced pluripotent stem cells (iPSCs). The iPSC-derived γδT cells (iγδTs) killed several cancer types in a major histocompatibility complex (MHC)-unrestricted manner. Single-cell RNA sequencing (scRNA-seq) revealed that the iγδTs were identical to a minor subset of PBγδTs. Compared with a major subset of PBγδTs, the iγδTs showed a distinctive gene expression pattern: lower CD2, CD5, and antigen-presenting genes; higher CD7, KIT, and natural killer (NK) cell markers. The iγδTs expressed granzyme B and perforin but not interferon gamma (IFNγ). Our data provide a new source for γδT cell-based immunotherapy without quantitative limitation.
Collapse
Affiliation(s)
- Nobuyuki Murai
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan; Division of Plastic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Hiroto Terashi
- Division of Plastic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan.
| |
Collapse
|
15
|
Mesenchymal stromal cell-associated migrasomes: a new source of chemoattractant for cells of hematopoietic origin. Cell Commun Signal 2023; 21:36. [PMID: 36788616 PMCID: PMC9926842 DOI: 10.1186/s12964-022-01028-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/24/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Multipotent mesenchymal stromal cells (MSCs) are precursors of various cell types. Through soluble factors, direct cell-cell interactions and other intercellular communication mechanisms such as extracellular vesicles and tunneling nanotubes, MSCs support tissue homeostasis. In the bone marrow microenvironment, they promote hematopoiesis. The interaction between MSCs and cancer cells enhances the cancer and metastatic potential. Here, we have demonstrated that plastic-adherent MSCs isolated from human bone marrow generate migrasomes, a newly discovered organelle playing a role in intercellular communication. RESULTS Migrasomes are forming a network with retraction fibers behind the migrating MSCs or surrounding them after membrane retraction. The MSC markers, CD44, CD73, CD90, CD105 and CD166 are present on the migrasome network, the latter being specific to migrasomes. Some migrasomes harbor the late endosomal GTPase Rab7 and exosomal marker CD63 indicating the presence of multivesicular bodies. Stromal cell-derived factor 1 (SDF-1) was detected in migrasomes, suggesting that they play a chemoattractant role. Co-cultures with KG-1a leukemic cells or primary CD34+ hematopoietic progenitors revealed that MSC-associated migrasomes attracted them, a process intercepted by the addition of AMD3100, a specific CXCR4 receptor inhibitor, or recombinant SDF-1. An antibody directed against CD166 reduced the association of hematopoietic cells and MSC-associated migrasomes. In contrast to primary CD34+ progenitors, leukemic cells can take up migrasomes. CONCLUSION Overall, we described a novel mechanism used by MSCs to communicate with cells of hematopoietic origin and further studies are needed to decipher all biological aspects of migrasomes in the healthy and transformed bone marrow microenvironment. Video Abstract.
Collapse
|
16
|
Simulated microgravity affects stroma-dependent ex vivo myelopoiesis. Tissue Cell 2023; 80:101987. [PMID: 36481580 DOI: 10.1016/j.tice.2022.101987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Microgravity is known negatively affect physiology of living beings, including hematopoiesis. Dysregulation of hematopoietic cells and supporting stroma relationships in bone marrow niche may be in charge. We compared the efficacy of ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) in presence of native or osteocommitted MSCs under simulated microgravity (Smg) using Random Positioning Machine (RPM). In comparison with 1 g, a decrease of MSC-associated HSPCs and an increase of floating HSPCs was observed after 7 days of Smg exposure. Among floating HSPCs, primitive progenitors were presented by late CD34+/133-. Total CFUs as well as erythroid (BFU-E) and granulocytic (CFU-G) numbers were lower. MSC-associated primitive HSPCs demonstrated increased proportion of late CD34+/133- in expense of early CD34-/133+. Osteo-MSCs preferentially supported late primitive CD34+ and more committed HSPCs as followed from increase of CFUs, and CD235a+ erythroid progenitors. Under Smg, an increased VEGF, eotaxin, and GRO-a levels, and a decrease in RANTES were found in the osteo-MSC-HSPC co-cultures. IL-6,-8, -13, G-CSF, GRO-a, MCP-3, MIP-1b, VEGF increased in co-culture with osteo-MSCs vs intact MSCs. Based on the findings, the misbalance between primitive/committed HSPCs and a decrease in hematopoiesis-supportive activity of osteocommitted cells are supposed to underline hematopoietic disorders during space flights.
Collapse
|
17
|
Dupard SJ, Garcia AG, Bourgine PE. Customizable 3D printed perfusion bioreactor for the engineering of stem cell microenvironments. Front Bioeng Biotechnol 2023; 10:1081145. [PMID: 36698631 PMCID: PMC9870251 DOI: 10.3389/fbioe.2022.1081145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Faithful modeling of tissues and organs requires the development of systems reflecting their dynamic 3D cellular architecture and organization. Current technologies suffer from a lack of design flexibility and complex prototyping, preventing their broad adoption by the scientific community. To make 3D cell culture more available and adaptable we here describe the use of the fused deposition modeling (FDM) technology to rapid-prototype 3D printed perfusion bioreactors. Our 3D printed bioreactors are made of polylactic acid resulting in reusable systems customizable in size and shape. Following design confirmation, our bioreactors were biologically validated for the culture of human mesenchymal stromal cells under perfusion for up to 2 weeks on collagen scaffolds. Microenvironments of various size/volume (6-12 mm in diameter) could be engineered, by modulating the 3D printed bioreactor design. Metabolic assay and confocal microscopy confirmed the homogenous mesenchymal cell distribution throughout the material pores. The resulting human microenvironments were further exploited for the maintenance of human hematopoietic stem cells. Following 1 week of stromal coculture, we report the recapitulation of 3D interactions between the mesenchymal and hematopoietic fractions, associated with a phenotypic expansion of the blood stem cell populations.Our data confirm that perfusion bioreactors fit for cell culture can be generated using a 3D printing technology and exploited for the 3D modeling of complex stem cell systems. Our approach opens the gates for a more faithful investigation of cellular processes in relation to a dynamic 3D microenvironment.
Collapse
Affiliation(s)
- Steven J. Dupard
- Cell, Tissue and Organ engineering laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ engineering laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Paul E. Bourgine
- Cell, Tissue and Organ engineering laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Manzo P, Scala P, Giudice V, Gorrese M, Bertolini A, Morini D, D'Alto F, Pepe R, Pedicini A, Izzo B, Verdesca F, Langella M, Serio B, Della Porta G, Selleri C. c-Kit M541L variant is related to ineffective hemopoiesis predisposing to clonal evolution in 3D in vitro biomimetic co-culture model of bone marrow niche. Heliyon 2022; 8:e11998. [DOI: 10.1016/j.heliyon.2022.e11998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
|
19
|
Huang X, Wang Y, Wang T, Wen F, Liu S, Oudeng G. Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Front Bioeng Biotechnol 2022; 10:1049965. [PMID: 36507253 PMCID: PMC9730123 DOI: 10.3389/fbioe.2022.1049965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem cells (HSCs) provide a life-long supply of haemopoietic cells and are indispensable for clinical transplantation in the treatment of malignant hematological diseases. Clinical applications require vast quantities of HSCs with maintained stemness characteristics. Meeting this demand poses often insurmountable challenges for traditional culture methods. Creating a supportive artificial microenvironment for the culture of HSCs, which allows the expansion of the cells while maintaining their stemness, is becoming a new solution for the provision of these rare multipotent HSCs. Hydrogels with good biocompatibility, excellent hydrophilicity, tunable biochemical and biophysical properties have been applied in mimicking the hematopoietic niche for the efficient expansion of HSCs. This review focuses on recent progress in the use of hydrogels in this specialized application. Advanced biomimetic strategies use for the creation of an artificial haemopoietic niche are discussed, advances in combined use of hydrogel matrices and microfluidics, including the emerging organ-on-a-chip technology, are summarized. We also provide a brief description of novel stimulus-responsive hydrogels that are used to establish an intelligent dynamic cell microenvironment. Finally, current challenges and future perspectives of engineering hydrogels for HSC biomedicine are explored.
Collapse
Affiliation(s)
- Xiaochan Huang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Yuting Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Tianci Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Kale VP. A chimeric feeder comprising transforming growth factor beta 1- and basic fibroblast growth factor-primed bone marrow-derived mesenchymal stromal cells suppresses the expansion of hematopoietic stem and progenitor cells. Cell Biol Int 2022; 46:2132-2141. [PMID: 36073008 DOI: 10.1002/cbin.11904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/20/2022] [Indexed: 12/19/2022]
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) physically associate with the hematopoietic stem cells (HSCs), forming a unique HSC niche. Owing to this proximity, the signaling mechanisms prevailing in the BMSCs affect the fate of the HSCs. In addition to cell-cell and cell-extracellular matrix interactions, various cytokines and growth factors present in the BM milieu evoke signaling mechanisms in the BMSCs. Previously, I have shown that priming of human BMSCs with transforming growth factor β1 (TGFβ1), a cytokine consistently found at active sites of hematopoiesis, boosts their hematopoiesis-supportive ability. Basic fibroblast growth factor (bFGF), another cytokine present in the marrow microenvironment, positively regulates hematopoiesis. Hence, I examined whether priming human BMSCs with bFGF improves their hematopoiesis-supportive ability. I found that bFGF-primed BMSCs stimulate hematopoiesis, as seen by a significant increase in colony formation from the bone marrow cells briefly interacted with them and the extensive proliferation of CD34+ HSCs cocultured with them. However, contrary to my expectation, I found that chimeric feeders comprising a mixture of TGF-primed and bFGF-primed BMSCs exerted a suppressive effect. These data demonstrate that though the TGF- and bFGF-primed BMSCs exert a salutary effect on hematopoiesis when used independently, they exert a suppressive effect when presented as a chimera. These findings suggest that the combinatorial effect of various priming agents and cytokines on the functionality of BMSCs toward the target tissues needs to be critically evaluated before they are clinically applied.
Collapse
Affiliation(s)
- Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Pune, Maharashtra, India.,National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
21
|
Srivastava J, Katiyar S, Chaturvedi CP, Nityanand S. Extracellular vesicles from bone marrow mesenchymal stromal cells of severe aplastic anemia patients attenuate hematopoietic functions of CD34 + hematopoietic stem and progenitor cells. Cell Biol Int 2022; 46:1970-1976. [PMID: 35998254 DOI: 10.1002/cbin.11885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/07/2022]
Abstract
Mesenchymal stromal cells (MSC) regulate hematopoiesis in the bone marrow (BM) niche and extracellular vesicles (EVs) released by BM-MSC are important mediators of the cross-talk between BM-MSC and hematopoietic stem and progenitor cells (HSPC). We have previously demonstrated that BM-MSC of severe aplastic anemia (SAA) patients have an altered expression of hematopoiesis regulatory molecules. In the present study, we observed that CD34+ HSPC when cocultured with BM-MSC EVs from aplastic anemia patients exhibited a significant reduction in colony-forming units (p = .001), cell proliferation (p = .002), and increased apoptosis (p > .001) when compared to coculture with BM-MSC EVs from controls. Collectively, our results highlight that EVs derived from the BM-MSC of SAA patients impair the hematopoiesis supporting function of HSPC.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology and Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shobhita Katiyar
- Department of Hematology and Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Chandra P Chaturvedi
- Department of Hematology and Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Soniya Nityanand
- Department of Hematology and Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Kulkarni R. Early Growth Response Factor 1 in Aging Hematopoietic Stem Cells and Leukemia. Front Cell Dev Biol 2022; 10:925761. [PMID: 35923847 PMCID: PMC9340249 DOI: 10.3389/fcell.2022.925761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with various hematological disorders and a higher risk of myeloproliferative disorders. An aged hematopoietic system can be characterized by decreased immune function and increased myeloid cell production. Hematopoietic stem cells (HSCs) regulate the production of blood cells throughout life. The self-renewal and regenerative potential of HSCs determine the quality and quantity of the peripheral blood cells. External signals from the microenvironment under different conditions determine the fate of the HSCs to proliferate, self-renew, differentiate, or remain quiescent. HSCs respond impromptu to a vast array of extracellular signaling cascades such as cytokines, growth factors, or nutrients, which are crucial in the regulation of HSCs. Early growth response factor 1 (EGR1) is one of the key transcription factors controlling HSC proliferation and their localization in the bone marrow (BM) niche. Downregulation of Egr1 activates and recruits HSCs for their proliferation and differentiation to produce mature blood cells. Increased expression of Egr1 is implicated in immuno-aging of HSCs. However, dysregulation of Egr1 is associated with hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myelogenous leukemia (CML). Here, we summarize the current understanding of the role of EGR1 in the regulation of HSC functionality and the manifestation of leukemia. We also discuss the alternative strategies to rejuvenate the aged HSCs by targeting EGR1 in different settings.
Collapse
|
23
|
Nandakumar N, Mohan M, Thilakan AT, Sidharthan HK, Janarthanan R, Sharma D, Nair SV, Sathy BN. Bioengineered 3D microfibrous-matrix modulates osteopontin release from MSCs and facilitates the expansion of hematopoietic stem cells. Biotechnol Bioeng 2022; 119:2964-2978. [PMID: 35799309 DOI: 10.1002/bit.28175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
The osteopontin released from mesenchymal stem cells (MSC) undergoing lineage differentiation can negatively influence the expansion of hematopoietic stem cells (HSCs) in co-culture systems developed for expanding HSCs. Therefore, minimising the amount of osteopontin in the co-culture system is important for the successful ex vivo expansion of HSCs. Towards this goal, a bioengineered 3D microfibrous-matrix that can maintain MSCs in less osteopontin-releasing conditions has been developed, and its influence on the expansion of HSCs has been studied. The newly developed 3D matrix significantly decreased the release of osteopontin, depending on the MSC culture conditions used during the priming period before HSC seeding. The culture system with the lowest amount of osteopontin facilitated a more than 24-fold increase in HSC number in 1 week time period. Interestingly, the viability of expanded cells and the CD34+ pure population of HSCs were found to be the highest in the low osteopontin-containing system. Therefore, bioengineered microfibrous 3D matrices seeded with MSCs, primed under suitable culture conditions, can be an improved ex vivo expansion system for HSC culture. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Niji Nandakumar
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Malini Mohan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Akhil T Thilakan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Hridhya K Sidharthan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R Janarthanan
- Centre for Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepti Sharma
- Department of Obstetrics and Gynaecology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Shantikumar V Nair
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Binulal N Sathy
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
24
|
Sarvar DP, Effatpanah H, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived extracellular vesicles: novel approach in hematopoietic stem cell transplantation. Stem Cell Res Ther 2022; 13:202. [PMID: 35578300 PMCID: PMC9109321 DOI: 10.1186/s13287-022-02875-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (MSCs) play a crucial role in the regulation of hematopoiesis. These cells affect the process through direct cell–cell contact, as well as releasing various trophic factors and extracellular vehicles (EVs) into the bone marrow microenvironment. MSC-derived EVs (MSC-EVs) are prominent intercellular communication tolls enriched with broad-spectrum bioactive factors such as proteins, cytokines, lipids, miRNAs, and siRNAs. They mimic some effects of MSCs by direct fusion with hematopoietic stem cells (HSC) membranes in the bone marrow (BM), thereby affecting HSC fate. MSC-EVs are attractive scope in cell-free therapy because of their unique capacity to repair BM tissue and regulate proliferation and differentiation of HSCs. These vesicles modulate the immune system responses and inhibit graft-versus-host disease following hematopoietic stem cell transplantation (HSCT). Recent studies have demonstrated that MSC-EVs play an influential role in the BM niches because of their unprecedented capacity to regulate HSC fate. Therefore, the existing paper intends to speculate upon the preconditioned MSC-EVs as a novel approach in HSCT.
Collapse
Affiliation(s)
| | | | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
26
|
Kouchakian MR, Koruji M, Najafi M, Moniri SF, Asgari A, Shariatpanahi M, Moosavi SA, Asgari HR. Human umbilical cord mesenchymal stem cells express cholinergic neuron markers during co-culture with amniotic membrane cells and retinoic acid induction. Med J Islam Repub Iran 2022; 35:129. [PMID: 35321367 PMCID: PMC8840847 DOI: 10.47176/mjiri.35.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Background: A wide variety of cytokines are released from human amniotic membrane cells (hAMCs), which can increase the rate of differentiation of mesenchymal stem cells into the neurons. We studied the effect of Retinoic Acid (RA) on the differentiation rate of human Umbilical Cord Mesenchymal Stem Cells (hUMSCs) which were co-cultured with hAMCs. Methods: In this experimental study, both hUMSCs and hAMCs were isolated from postpartum human umbilical cords and placenta respectively. The expression of mesenchymal (CD73, CD90 and CD105), hematopoietic and endothelial (CD34 and CD45) markers in hUMSCs were confirmed by flow cytometry. The hUMSCs were cultured in four distinct groups: group 1) Control, group 2) Co-culture with hAMCs, group 3) RA treatment and group 4) Co-culture with hAMCs treated by RA. Twelve days after culturing, the expression of NSE, MAP2 and ChAT differentiation genes and their related proteins were examined by real-time PCR and immunocytochemistry respectively. Results: The flow-cytometry analysis indicated increased expression of mesenchymal markers and a low expression of both hematopoietic and endothelial markers (CD73:98.24%, CD90: 97.32%, CD105: 90.75%, CD34: 2.96%, and CD45:1.74%). Moreover, the expression of both NSE and MAP2 markers was increased significantly in all studied groups in comparison to the control group On the other hand, the expression of ChAT had a significant increase in the group 2 and 4 (RA and RA+ co-culture). Conclusion: RA can be used as an effective inducer to differentiate hUMSCs into cholinergic-like cells, and hAMCs could increase the number of differentiated cells as an effective factor.
Collapse
Affiliation(s)
| | - Morteza Koruji
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farzaneh Moniri
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Asgari
- School of Pharmacy, Zanjan University of medical sciences, Zanjan, Iran
| | - Marjan Shariatpanahi
- Department of Toxicology & Pharmacology, School of Pharmacy, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Akbar Moosavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
In Vitro Models of Bone Marrow Remodelling and Immune Dysfunction in Space: Present State and Future Directions. Biomedicines 2022; 10:biomedicines10040766. [PMID: 35453515 PMCID: PMC9031916 DOI: 10.3390/biomedicines10040766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Spaceflight affects the body on every level. Reports on astronaut health identify bone marrow remodelling and dysfunction of the innate immune system as significant health risks of long-term habitation in space. Microgravity-induced alterations of the bone marrow induce physical changes to the bone marrow stem cell niche. Downstream effects on innate immunity are expected due to impaired hematopoiesis and myelopoiesis. To date, few studies have investigated these effects in real microgravity and the sparsely available literature often reports contrasting results. This emphasizes a need for the development of physiologically relevant in vitro models of the bone marrow stem cell niche, capable of delivering appropriate sample sizes for robust statistics. Here, we review recent findings on the impact of spaceflight conditions on innate immunity in in vitro and animal models and discusses the latest in vitro models of the bone marrow stem cell niche and their potential translatability to gravitational biology research.
Collapse
|
28
|
Shamsasenjan K, Timari H, Saleh M. The effect of mesenchymal stem cell-derived microvesicles on differentiation of umbilical cord blood-derived CD34+ cells toward myeloid lineage. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Effect of expansion of human umbilical cord blood CD34 + cells on neurotrophic and angiogenic factor expression and function. Cell Tissue Res 2022; 388:117-132. [PMID: 35106623 PMCID: PMC8976778 DOI: 10.1007/s00441-022-03592-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
The use of CD34 + cell-based therapies has largely been focused on haematological conditions. However, there is increasing evidence that umbilical cord blood (UCB) CD34 + -derived cells have neuroregenerative properties. Due to low cell numbers of CD34 + cells present in UCB, expansion is required to produce sufficient cells for therapeutic purposes, especially in adults or when frequent applications are required. However, it is not known whether expansion of CD34 + cells has an impact on their function and neuroregenerative capacity. We addressed this knowledge gap in this study, via expansion of UCB-derived CD34 + cells using combinations of LDL, UM171 and SR-1 to yield large numbers of cells and then tested their functionality. CD34 + cells expanded for 14 days in media containing UM171 and SR-1 resulted in over 1000-fold expansion. The expanded cells showed an up-regulation of the neurotrophic factor genes BDNF, GDNF, NTF-3 and NTF-4, as well as the angiogenic factors VEGF and ANG. In vitro functionality testing showed that these expanded cells promoted angiogenesis and, in brain glial cells, promoted cell proliferation and reduced production of reactive oxygen species (ROS) during oxidative stress. Collectively, this study showed that our 14-day expansion protocol provided a robust expansion that could produce enough cells for therapeutic purposes. These expanded cells, when tested in in vitro, maintained functionality as demonstrated through promotion of cell proliferation, attenuation of ROS production caused by oxidative stress and promotion of angiogenesis.
Collapse
|
30
|
Safety Assessment of Autologous Stem Cell Combination Therapy in Patients With Decompensated Liver Cirrhosis: A Pilot Study. J Clin Exp Hepatol 2022; 12:80-88. [PMID: 35068788 PMCID: PMC8766547 DOI: 10.1016/j.jceh.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Haematopoietic stem cell (HSC) infusion has demonstrated short-term improvement in liver functions in patients with chronic liver disease. The combination of HSC with mesenchymal stem cells (MSCs), which has an immunomodulatory effect, may augment the effects and enhance the duration of improvements on liver functions. The aim of the present study was to assess the safety of infusing the combination of autologous HSCs and MSCs in decompensated liver cirrhosis. METHODS In phase I of the study, in vitro assessment was performed to observe the effect of coculturing MSCs with HSCs on their viability and cytokine profiles. Phase II of the study was to assess the safety of combination of stem cell infusions. Bone marrow (50 ml) was aspirated for MSC isolation and expansion using standard protocol. Patients received subcutaneous doses (n = 5) of granulocyte colony-stimulating factor (G-CSF) for stem cell mobilization followed by leukapheresis for harvesting HSCs using CliniMacs. HSCs and MSCs were infused through the hepatic artery under fluoroscopic guidance and were monitored for any adverse effects. RESULTS In vitro studies revealed 94% viable HSCs in coculture similar to monoculture. HSCs released only interleukin (IL)-8, whereas MSCs secreted IL-8 and IL-6 in monocultures, and both IL-8 and IL-6 were secreted in coculture. G-CSF administration- and bone marrow aspiration-related complications were not observed. Infusion of the cells through the hepatic artery was safe, and no postprocedural complications were noted. CONCLUSION The combination of autologous HSC and MSC infusion is a safe procedure in patients with decompensated liver cirrhosis, and the outcomes needed to be assessed in larger studies. TRIAL NUMBER NCT04243681.
Collapse
Key Words
- 7-AAD, 7-aminoactinomycin D
- AFP, alpha-fetoprotein
- CBA, cytokine cytometric bead assay
- CLD, chronic liver disease
- DMEM-KO, Dulbecco's modified Eagle's Knock out medium
- FBS, foetal bovine serum
- G-CSF, granulocyte colony-stimulating factor
- HSC, haematopoietic stem cell
- IL, interleukin
- MELD, Model for End-Stage Liver Disease
- MNC, mononuclear cell
- MSC, mesenchymal stem cell
- SOP, standard operating procedure
- TJLB, transjugular liver biopsy
- USG, ultrasonography
- cath-lab, cardiac catheterization laboratory
- cirrhosis of liver
- combination of stem cells
- mesenchymal stem cells
- stem cells
Collapse
|
31
|
Tanhuad N, Thongsa-Ad U, Sutjarit N, Yoosabai P, Panvongsa W, Wongniam S, Suksamrarn A, Piyachaturawat P, Anurathapan U, Borwornpinyo S, Chairoungdua A, Hongeng S, Bhukhai K. Ex vivo expansion and functional activity preservation of adult hematopoietic stem cells by a diarylheptanoid from Curcuma comosa. Biomed Pharmacother 2021; 143:112102. [PMID: 34474347 DOI: 10.1016/j.biopha.2021.112102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs, CD34+ cells) have shown therapeutic efficacy for transplantation in various hematological disorders. However, a large quantity of HSCs is required for transplantation. Therefore, strategies to increase HSC numbers and preserve HSC functions through ex vivo culture are critically required. Here, we report that expansion medium supplemented with ASPP 049, a diarylheptanoid isolated from Curcuma comosa, and a cocktail of cytokines markedly increased numbers of adult CD34+ cells. Interestingly, phenotypically defined primitive HSCs (CD34+CD38-CD90+) were significantly increased under ASPP 049 treatment relative to control. ASPP 049 treatment also improved two functional properties of HSCs, as evidenced by an increased number of CD34+CD38- cells in secondary culture (self-renewal) and the growth of colony-forming units as assessed by colony formation assay (multilineage differentiation). Transplantation of cultured CD34+ cells into immunodeficient mice demonstrated the long-term reconstitution and differentiation ability of ASPP 049-expanded cells. RNA sequencing and KEGG analysis revealed that Hippo signaling was the most likely pathway involved in the effects of ASPP 049. These results suggest that ASPP 049 improved ex vivo expansion and functional preservation of expanded HSCs. Our findings provide a rationale for the use of ASPP 049 to grow HSCs prior to hematological disease treatment.
Collapse
Affiliation(s)
- Nopmullee Tanhuad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Ploychompoo Yoosabai
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirapope Wongniam
- Central Instrument Facility Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand.
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
32
|
Bessy T, Candelas A, Souquet B, Saadallah K, Schaeffer A, Vianay B, Cuvelier D, Gobaa S, Nakid-Cordero C, Lion J, Bories JC, Mooney N, Jaffredo T, Larghero J, Blanchoin L, Faivre L, Brunet S, Théry M. Hematopoietic progenitors polarize in contact with bone marrow stromal cells in response to SDF1. J Cell Biol 2021; 220:212662. [PMID: 34570198 PMCID: PMC8479938 DOI: 10.1083/jcb.202005085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
The fate of hematopoietic stem and progenitor cells (HSPCs) is regulated by their interaction with stromal cells in the bone marrow. However, the cellular mechanisms regulating HSPC interaction with these cells and their potential impact on HSPC polarity are still poorly understood. Here we evaluated the impact of cell–cell contacts with osteoblasts or endothelial cells on the polarity of HSPC. We found that an HSPC can form a discrete contact site that leads to the extensive polarization of its cytoskeleton architecture. Notably, the centrosome was located in proximity to the contact site. The capacity of HSPCs to polarize in contact with stromal cells of the bone marrow appeared to be specific, as it was not observed in primary lymphoid or myeloid cells or in HSPCs in contact with skin fibroblasts. The receptors ICAM, VCAM, and SDF1 were identified in the polarizing contact. Only SDF1 was independently capable of inducing the polarization of the centrosome–microtubule network.
Collapse
Affiliation(s)
- Thomas Bessy
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Adrian Candelas
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Benoit Souquet
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France.,Alveole, Paris, France
| | - Khansa Saadallah
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Alexandre Schaeffer
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Benoit Vianay
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Damien Cuvelier
- Sorbonne Université, Paris, France.,Institut Pierre Gilles de Gennes, Paris Sciences et Lettres Research University, Paris, France.,Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique, UMR 144, Paris, France
| | - Samy Gobaa
- Group of Biomaterials and Microfluidics Core Facility, Institut Pasteur, Paris, France
| | - Cecilia Nakid-Cordero
- Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Institut de Recherche Saint Louis, Paris, France
| | - Julien Lion
- Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Institut de Recherche Saint Louis, Paris, France
| | - Jean-Christophe Bories
- Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Institut de Recherche Saint Louis, Paris, France
| | - Nuala Mooney
- Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Institut de Recherche Saint Louis, Paris, France
| | - Thierry Jaffredo
- Laboratoire de Biologie du Développement, Centre national de la recherche scientifique, UMR 7622, Institut National de la Santé et de la Recherche Médicale U1156, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Jerome Larghero
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Laurent Blanchoin
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Stephane Brunet
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| | - Manuel Théry
- Cytomorpho Lab, Human Immunology, Pathophysiology, Immunotherapy, Unit 976, Institut National de la Santé et de la Recherche Médicale, CEA, Assistance Publique - Hôpitaux de Paris, Université de Paris, Institut de Recherche Saint Louis, Paris, France.,Cytomorpho Lab, Laboratoire Physiologie Cellulaire et Végétale, UMR 5168, CEA, Institut national de recherche en agriculture, alimentation et environment, Centre national de la recherche scientifique, Université Grenoble-Alpes, Interdisciplinary Research Institute of Grenoble, Grenoble, France
| |
Collapse
|
33
|
Rattananon P, Anurathapan U, Bhukhai K, Hongeng S. The Future of Gene Therapy for Transfusion-Dependent Beta-Thalassemia: The Power of the Lentiviral Vector for Genetically Modified Hematopoietic Stem Cells. Front Pharmacol 2021; 12:730873. [PMID: 34658870 PMCID: PMC8517149 DOI: 10.3389/fphar.2021.730873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023] Open
Abstract
β-thalassemia, a disease that results from defects in β-globin synthesis, leads to an imbalance of β- and α-globin chains and an excess of α chains. Defective erythroid maturation, ineffective erythropoiesis, and shortened red blood cell survival are commonly observed in most β-thalassemia patients. In severe cases, blood transfusion is considered as a mainstay therapy; however, regular blood transfusions result in chronic iron overload with life-threatening complications, e.g., endocrine dysfunction, cardiomyopathy, liver disease, and ultimately premature death. Therefore, transplantation of healthy hematopoietic stem cells (HSCs) is considered an alternative treatment. Patients with a compatible human leukocyte antigen (HLA) matched donor can be cured by allogeneic HSC transplantation. However, some recipients faced a high risk of morbidity/mortality due to graft versus host disease or graft failure, while a majority of patients do not have such HLA match-related donors. Currently, the infusion of autologous HSCs modified with a lentiviral vector expressing the β-globin gene into the erythroid progenitors of the patient is a promising approach to completely cure β-thalassemia. Here, we discuss a history of β-thalassemia treatments and limitations, in particular the development of β-globin lentiviral vectors, with emphasis on clinical applications and future perspectives in a new era of medicine.
Collapse
Affiliation(s)
- Parin Rattananon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| |
Collapse
|
34
|
Hao J, Zhou H, Nemes K, Yen D, Zhao W, Bramlett C, Wang B, Lu R, Shen K. Membrane-bound SCF and VCAM-1 synergistically regulate the morphology of hematopoietic stem cells. J Cell Biol 2021; 220:212562. [PMID: 34402812 PMCID: PMC8374872 DOI: 10.1083/jcb.202010118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Membrane-bound factors expressed by niche stromal cells constitute a unique class of localized cues and regulate the long-term functions of adult stem cells, yet little is known about the underlying mechanisms. Here, we used a supported lipid bilayer (SLB) to recapitulate the membrane-bound interactions between hematopoietic stem cells (HSCs) and niche stromal cells. HSCs cluster membrane-bound stem cell factor (mSCF) at the HSC-SLB interface. They further form a polarized morphology with aggregated mSCF under a large protrusion through a synergy with VCAM-1 on the bilayer, which drastically enhances HSC adhesion. These features are unique to mSCF and HSCs among the factors and hematopoietic populations we examined. The mSCF-VCAM-1 synergy and the polarized HSC morphology require PI3K signaling and cytoskeletal reorganization. The synergy also enhances nuclear retention of FOXO3a, a crucial factor for HSC maintenance, and minimizes its loss induced by soluble SCF. Our work thus reveals a unique role and signaling mechanism of membrane-bound factors in regulating stem cell morphology and function.
Collapse
Affiliation(s)
- Jia Hao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Hao Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Kristen Nemes
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Daniel Yen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Winfield Zhao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Charles Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Bowen Wang
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Rong Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA.,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.,Department of Medicine, University of Southern California, Los Angeles, CA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.,USC Stem Cell, University of Southern California, Los Angeles, CA
| |
Collapse
|
35
|
Andreeva ER, Ezdakova MI, Bobyleva PI, Andrianova IV, Ratushnyy AY, Buravkova LB. Osteogenic Commitment of MSC Is Enhanced after Interaction with Umbilical Cord Blood Mononuclear Cells In Vitro. Bull Exp Biol Med 2021; 171:541-546. [PMID: 34542768 DOI: 10.1007/s10517-021-05266-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 11/28/2022]
Abstract
The effectiveness of stroma-dependent expansion of hematopoietic cells ex vivo may depend on the level of commitment of multipotent mesenchymal stromal cells (MSC). Markers of MSC osteodifferentiation and the level of soluble hematopoiesis regulators were determined during their interaction with umbilical cord blood mononuclears. After 72-h co-culturing, an increase in the expression of ALPL and alkaline phosphatase activity was revealed. In conditioned medium of co-cultures, the levels of osteopontin and osteoprotegerin were elevated and the levels of osteocalcin and sclerostin were reduced. Co-culturing of umbilical cord blood mononuclears with osteocommitted MSC was accompanied by more pronounced increase in the concentration of both positive (GM-CSF and G-CSF) and negative (IP-10, MIP-1α, and MCP-3) regulators of hematopoiesis. Thus, umbilical cord blood mononuclears induced the formation of early osteogenic progenitor phenotype in MSC ex vivo, providing the microenvironmental conditions necessary to support hematopoiesis. Preliminary osteocommitted MSC were more sensitive to the effect of umbilical cord blood mononuclears.
Collapse
Affiliation(s)
- E R Andreeva
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - M I Ezdakova
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - P I Bobyleva
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
| | - I V Andrianova
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - A Yu Ratushnyy
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - L B Buravkova
- State Scientific Centre - Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Comparison of the effects of co-transplantation of bone marrow hematopoietic stem cells and thymic multipotent stromal cells on the immune system of mice depending on methods. EUREKA: LIFE SCIENCES 2021. [DOI: 10.21303/2504-5695.2021.001993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Physical interaction of multipotent stromal cells (MSCs) and hematopoietic stem cells (HSCs) is a modern approach to effective and focused changes in the properties of HSCs. Resulting of those contact interaction is significant activation of cells with following immune system restoration.
The purpose of the study is to investigate the effect of co-transplantation of bone marrow hematopoietic stem cells (HSCs) and thymic multipotent stromal cells (MSCs) separately and as a union of cells on regeneration of the murine immune system, damaged by cyclophosphamide.
MSCs were obtained from thymuses of C57BL mice using explant technique. Bone marrow cells (BMCs) were obtained by flushing out the femur with a nutrient medium. BMCs were cocultivated for 2 hours on the monolayer of thymus-derived MSCs. The immune deficiency of mice was modelled by the treatment with cyclophosphamide (CP). After that, the cells were co-transplanted in two methods (separately into different the retroorbital sinus and as a union after co-cultivation) and the parameters of the immune system were evaluated. It was shown, that separate co-transplantation of BMCs and thymus-derived MSCs is associated with the restoration of the number of bone marrow cells, thymus, spleen and lymph nodes with an increase in the proliferation index of lymph node cells by 1.4 times compared to control. It normalized the previous reduced concentration of hemoglobin and hematocrit in the blood. Co-transplantation had a suppressive effect on the blast transformation reaction, induced by phytohemagglutinin, by 4.3 times, but showed a stimulating effect on DTHR response by 1.6 times compared to control.
Co-transplantation of the union of BMCs and MSCs is associated with the restoration of the number of bone marrow cells, spleen and lymph nodes. The level of spontaneous apoptosis of lymph node cells significantly increased by 3.3 times compared to control. It had not effect on hematological parameters, but is activated to impact the immune system. Thus, as a result of cells union administration showed normalization of the bactericidal activity of peritoneal macrophages, unlike the separate co-transplantation. This cells graft had a suppressive effect on the number of antibody-producing cells in the spleen by 4.2 times compared to control.
Previous co-cultivation and contact interaction of cells change the properties of cell graft. The effect of co-transplantation of BMCs and thymic MSCs is not a simple additive effect of cells. It is acquiring the features typical to certain cell types, and the expression of new characteristics. We assume this phenomenon as a result development of complex cells cooperative processes in vivo and in vitro
Collapse
|
37
|
Oliveira CS, Carreira M, Correia CR, Mano JF. The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:379-392. [PMID: 33683146 DOI: 10.1089/ten.teb.2021.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The repair process of bone fractures is a complex biological mechanism requiring the recruitment and in situ functionality of stem/stromal cells from the bone marrow (BM). BM mesenchymal stem/stromal cells have been widely explored in multiple bone tissue engineering applications, whereas the use of hematopoietic stem cells (HSCs) has been poorly investigated in this context. A reasonable explanation is the fact that the role of HSCs and their combined effect with other elements of the hematopoietic niches in the bone-healing process is still elusive. Therefore, in this review we intend to highlight the influence of HSCs in the bone repair process, mainly through the promotion of osteogenesis and angiogenesis at the bone injury site. For that, we briefly describe the main biological characteristics of HSCs, as well as their hematopoietic niches, while reviewing the biomimetic engineered BM niche models. Moreover, we also highlighted the role of HSCs in translational in vivo transplantation or implantation as promoters of bone tissue repair.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana Carreira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
38
|
Chen L, Zhou D, Li X, Yang B, Xu T. Bioprinting of Human Cord Blood-Derived CD34+ Cells and Exploration of the Multilineage Differentiation Ability in Vitro. ACS Biomater Sci Eng 2021; 7:2592-2604. [PMID: 33939424 DOI: 10.1021/acsbiomaterials.0c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The three-dimensional (3D) marrow microenvironment plays an essential role in regulating human cord blood-derived CD34+ cells (hCB-CD34+) migration, proliferation, and differentiation. Extensive in vitro and in vivo studies have aimed to recapitulate the main components of the bone marrow (BM) niche. Nonetheless, the models are limited by a lack of heterogeneity and compound structure. Here, we fabricated coaxial extruded core-shell tubular scaffolds and extrusion-based bioprinted cell-laden mesh scaffolds to mimic the functional niche in vitro. A multicellular mesh scaffold and two different core-shell tubular scaffolds were developed with human bone marrow-derived mesenchymal stromal cells (BMSCs) in comparison with a conventional 2D coculture system. A clear cell-cell connection was established in all three bioprinted constructs. Cell distribution and morphology were observed in different systems with scanning electron microscopy (SEM). Collected hCB-CD34+ cells were characterized by various stem cell-specific and lineage-specific phenotypic parameters. The results showed that compared with hCB-CD34+ cells cocultured with BMSCs in Petri dishes, the self-renewal potential of hCB-CD34+ cells was stronger in the tubular scaffolds after 14 days. Besides, cells in these core-shell constructs tended to obtain stronger differentiation potential of lymphoid and megakaryocytes, while cells encapsulated in mesh scaffolds obtained stronger differentiation tendency into erythroid cells. Consequently, 3D bioprinting technology could partially simulate the niche of human hematopoietic stem cells. The three models have their potential in stemness maintenance and multilineage differentiation. This study can provide initial effective guidance in the directed differentiation research and related screening of drug models for hematological diseases.
Collapse
Affiliation(s)
- Lidan Chen
- Centre of Maxillofacial Surgery and Digital Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Bin Yang
- Centre of Maxillofacial Surgery and Digital Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Precision Medicine and Healthcare, Tsinghua Berkeley Shenzhen Institute, Shenzhen 518055, People's Republic of China
| |
Collapse
|
39
|
Carreras P, González I, Gallardo M, Ortiz-Ruiz A, Morales ML, Encinas J, Martínez-López J. Long-Term Human Hematopoietic Stem Cell Culture in Microdroplets. MICROMACHINES 2021; 12:90. [PMID: 33467039 PMCID: PMC7830102 DOI: 10.3390/mi12010090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
We previously reported a new approach for micromanipulation and encapsulation of human stem cells using a droplet-based microfluidic device. This approach demonstrated the possibility of encapsulating and culturing difficult-to-preserve primary human hematopoietic stem cells using an engineered double-layered bead composed by an inner layer of alginate and an outer layer of Puramatrix. We also demonstrated the maintenance and expansion of Multiple Myeloma cells in this construction. Here, the presented microfluidic technique is applied to construct a 3D biomimetic model to recapitulate the human hematopoietic stem cell niche using double-layered hydrogel beads cultured in 10% FBS culture medium. In this model, the long-term maintenance of the number of cells and expansion of hHSCS encapsulated in the proposed structures was observed. Additionally, a phenotypic characterization of the human hematopoietic stem cells generated in the presented biomimetic model was performed in order to assess their long-term stemness maintenance. Results indicate that the ex vivo cultured human CD34+ cells from bone marrow were viable, maintained, and expanded over a time span of eight weeks. This novel long-term stem cell culture methodology could represent a novel breakthrough to improve Hematopoietic Progenitor cell Transplant (HPT) as well as a novel tool for further study of the biochemical and biophysical factors influencing stem cell behavior. This technology opens a myriad of new applications as a universal stem cell niche model potentially able to expand other types of cells.
Collapse
Affiliation(s)
- Pilar Carreras
- CSIC, Spanish National Research Council, 28006 Madrid, Spain;
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
| | - Itziar González
- CSIC, Spanish National Research Council, 28006 Madrid, Spain;
| | - Miguel Gallardo
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
| | - Maria Luz Morales
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
| | - Jessica Encinas
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
| | - Joaquín Martínez-López
- Hospital 12 Octubre, Hematology Department, Research Institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (M.L.M.); (J.E.); (J.M.-L.)
- CNIO, Spanish National Cancer Research Centre, Hematological Malignancies Research Unit, 28029 Madrid, Spain
- UCM, Medical Faculty, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
40
|
Buravkova LB, Ezdakova MI, Andrianova IV, Gornostaeva AN, Bobyleva PI, Andreeva ER. Сord blood hematopoietic stem cells ex vivo enhance the bipotential commitment of adipose mesenchymal stromal progenitors. Life Sci 2020; 268:118970. [PMID: 33383051 DOI: 10.1016/j.lfs.2020.118970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
AIMS Stroma-dependent ex vivo expansion of hematopoietic stem progenitor cells (HSPCs) is a valid approach for cell therapy needs. Our goal was to verify whether HSPCs can affect stromal cells to optimize their functions during ex vivo expansion. MAIN METHODS HSPCs from cord blood (cb) were cocultured with growth-arrested adipose mesenchymal stromal cells (MSCs). Commitment-related transcriptional and secretory profiles as well as hematopoiesis-supportive activity of intact and osteo-induced MSCs were examined. KEY FINDINGS During expansion, cbHSPCs affected the functional state of MSCs, contributing to the formation of early stromal progenitors with a bipotential osteo-adipogenic profile. This was evidenced by the upregulation of certain MSC genes of osteo- and adipodifferentiation (ALPL, RUNX2, BGLAP, CEBPA, ADIPOQ), as well as by elevated alkaline phosphatase activity and altered osteoprotein patterns. Joint paracrine profiles upon coculture were characterized by a balance of "positive" (GM-SCF) and "negative" (IP-10, MIP-1α, MCP-3) myeloid regulators, effectively supporting expansion of both committed and primitive cbHSPCs. Short-term (72 h) osteoinduction prior to coculture resulted in more pronounced shift of the bipotential transcriptomic and osteoprotein profiles. The increased proportions of late primitive CD133-/CD34+cbHSPCs and unipotent CFUs suggested that cbHSPCs after expansion on osteo-MSCs were more committed versus cbHSPCs from coculture with non-differentiated MSCs. SIGNIFICANCE During ex vivo expansion, cbHSPCs can drive the bipotential osteo-adipogenic commitment of MSCs, providing a specific hematopoiesis-supportive milieu. Short-term preliminary osteo-induction enhanced the development of the bipotential profile, leading to more pronounced functional polarization of cbHSPCs, which may be of interest in an applied context.
Collapse
Affiliation(s)
- L B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia; Faculty of Fundamental Medicine, Moscow State University, Moscow, Russia
| | - M I Ezdakova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - I V Andrianova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - A N Gornostaeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - P I Bobyleva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia; Faculty of Fundamental Medicine, Moscow State University, Moscow, Russia.
| | - E R Andreeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
Janagama D, Hui SK. 3-D Cell Culture Systems in Bone Marrow Tissue and Organoid Engineering, and BM Phantoms as In Vitro Models of Hematological Cancer Therapeutics-A Review. MATERIALS 2020; 13:ma13245609. [PMID: 33316977 PMCID: PMC7763362 DOI: 10.3390/ma13245609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
We review the state-of-the-art in bone and marrow tissue engineering (BMTE) and hematological cancer tissue engineering (HCTE) in light of the recent interest in bone marrow environment and pathophysiology of hematological cancers. This review focuses on engineered BM tissue and organoids as in vitro models of hematological cancer therapeutics, along with identification of BM components and their integration as synthetically engineered BM mimetic scaffolds. In addition, the review details interaction dynamics of various BM and hematologic cancer (HC) cell types in co-culture systems of engineered BM tissues/phantoms as well as their relation to drug resistance and cytotoxicity. Interaction between hematological cancer cells and their niche, and the difference with respect to the healthy niche microenvironment narrated. Future perspectives of BMTE for in vitro disease models, BM regeneration and large scale ex vivo expansion of hematopoietic and mesenchymal stem cells for transplantation and therapy are explained. We conclude by overviewing the clinical application of biomaterials in BM and HC pathophysiology and its challenges and opportunities.
Collapse
|
42
|
Lin HD, Fong CY, Biswas A, Bongso A. Allogeneic human umbilical cord Wharton's jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo. Stem Cell Res Ther 2020; 11:527. [PMID: 33298170 PMCID: PMC7724853 DOI: 10.1186/s13287-020-02048-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background The transplantation of human umbilical cord blood (UCB) CD34+ cells has been successfully used to treat hematological disorders but one major limitation has been the low cell numbers available. Mesenchymal stem cells (MSCs) lying within the bone marrow in vivo behave like a scaffold on which CD34+ cells interact and proliferate. We therefore evaluated the use of allogeneic MSCs from the human UC Wharton’s jelly (hWJSCs) as stromal support for the ex vivo expansion of CD34+ cells. Methods We performed an in-depth evaluation of the primitiveness, migration, adhesion, maturation, mitochondrial behavior, and pathway mechanisms of this platform using conventional assays followed by the evaluation of engraftment potential of the expanded CD34+ cells in an in vivo murine model. Results We demonstrate that hWJSCs and its conditioned medium (hWJSC-CM) support the production of significantly high fold changes of CD34+, CD34+CD133+, CD34+CD90+, CD34+ALDH+, CD34+CD45+, and CD34+CD49f+ cells after 7 days of interaction when compared to controls. In the presence of hWJSCs or hWJSC-CM, the CD34+ cells produced significantly more primitive CFU-GEMM colonies, HoxB4, and HoxA9 gene expression and lower percentages of CD34+CXCR4+ cells. There were also significantly higher N-cadherin+ cell numbers and increased cell migration in transwell migration assays. The CD34+ cells expanded with hWJSCs had significantly lower mitochondrial mass, mitochondrial membrane potential, and oxidative stress. Green Mitotracker-tagged mitochondria from CD34+ cells were observed lying within red CellTracker-tagged hWJSCs under confocal microscopy indicating mitochondrial transfer via tunneling nanotubes. CD34+ cells expanded with hWJSCs and hWJSC-CM showed significantly reduced oxidative phosphorylation (ATP6VIH and NDUFA10) and increased glycolytic (HIF-1a and HK-1) pathway-related gene expression. CD34+ cells expanded with hWJSCs for 7 days showed significant greater CD45+ cell chimerism in the bone marrow of primary and secondary irradiated mice when transplanted intravenously. Conclusions In this report, we confirmed that allogeneic hWJSCs provide an attractive platform for the ex vivo expansion of high fold numbers of UCB CD34+ cells while keeping them primitive. Allogeneic hWJSCs are readily available in abundance from discarded UCs, can be easily frozen in cord blood banks, thawed, and then used as a platform for UCB-HSC expansion if numbers are inadequate.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore.
| |
Collapse
|
43
|
Branco A, Bucar S, Moura-Sampaio J, Lilaia C, Cabral JMS, Fernandes-Platzgummer A, Lobato da Silva C. Tailored Cytokine Optimization for ex vivo Culture Platforms Targeting the Expansion of Human Hematopoietic Stem/Progenitor Cells. Front Bioeng Biotechnol 2020; 8:573282. [PMID: 33330414 PMCID: PMC7729524 DOI: 10.3389/fbioe.2020.573282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 01/18/2023] Open
Abstract
Umbilical cord blood (UCB) has been established as an alternative source for hematopoietic stem/progenitor cells (HSPC) for cell and gene therapies. Limited cell yields of UCB units have been tackled with the development of cytokine-based ex vivo expansion platforms. To improve the effectiveness of these platforms, namely targeting clinical approval, in this study, we optimized the cytokine cocktails in two clinically relevant expansion platforms for HSPC, a liquid suspension culture system (CS_HSPC) and a co-culture system with bone marrow derived mesenchymal stromal cells (BM MSC) (CS_HSPC/MSC). Using a methodology based on experimental design, three different cytokines [stem cell factor (SCF), fms-like tyrosine kinase 3 ligand (Flt-3L), and thrombopoietin (TPO)] were studied in both systems during a 7-day culture under serum-free conditions. Proliferation and colony-forming unit assays, as well as immunophenotypic analysis were performed. Five experimental outputs [fold increase (FI) of total nucleated cells (FI TNC), FI of CD34+ cells, FI of erythroid burst-forming unit (BFU-E), FI of colony-forming unit granulocyte-monocyte (CFU-GM), and FI of multilineage colony-forming unit (CFU-Mix)] were followed as target outputs of the optimization model. The novel optimized cocktails determined herein comprised concentrations of 64, 61, and 80 ng/mL (CS_HSPC) and 90, 82, and 77 ng/mL (CS_HSPC/MSC) for SCF, Flt-3L, and TPO, respectively. After cytokine optimization, CS_HSPC and CS_HSPC/MSC were directly compared as platforms. CS_HSPC/MSC outperformed the feeder-free system in 6 of 8 tested experimental measures, displaying superior capability toward increasing the number of hematopoietic cells while maintaining the expression of HSPC markers (i.e., CD34+ and CD34+CD90+) and multilineage differentiation potential. A tailored approach toward optimization has made it possible to individually maximize cytokine contribution in both studied platforms. Consequently, cocktail optimization has successfully led to an increase in the expansion platform performance, while allowing a rational side-by-side comparison among different platforms and enhancing our knowledge on the impact of cytokine supplementation on the HSPC expansion process.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Moura-Sampaio
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Lilaia
- Hospital São Francisco Xavier, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
44
|
|
45
|
Clara-Trujillo S, Gallego Ferrer G, Gómez Ribelles JL. In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go? Int J Mol Sci 2020; 21:E5747. [PMID: 32796596 PMCID: PMC7460836 DOI: 10.3390/ijms21165747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
In hematological malignancies, leukemias or myelomas, malignant cells present bone marrow (BM) homing, in which the niche contributes to tumor development and drug resistance. BM architecture, cellular and molecular composition and interactions define differential microenvironments that govern cell fate under physiological and pathological conditions and serve as a reference for the native biological landscape to be replicated in engineered platforms attempting to reproduce blood cancer behavior. This review summarizes the different models used to efficiently reproduce certain aspects of BM in vitro; however, they still lack the complexity of this tissue, which is relevant for fundamental aspects such as drug resistance development in multiple myeloma. Extracellular matrix composition, material topography, vascularization, cellular composition or stemness vs. differentiation balance are discussed as variables that could be rationally defined in tissue engineering approaches for achieving more relevant in vitro models. Fully humanized platforms closely resembling natural interactions still remain challenging and the question of to what extent accurate tissue complexity reproduction is essential to reliably predict drug responses is controversial. However, the contributions of these approaches to the fundamental knowledge of non-solid tumor biology, its regulation by niches, and the advance of personalized medicine are unquestionable.
Collapse
Affiliation(s)
- Sandra Clara-Trujillo
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Gloria Gallego Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - José Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| |
Collapse
|
46
|
An Overview of Different Strategies to Recreate the Physiological Environment in Experimental Erythropoiesis. Int J Mol Sci 2020; 21:ijms21155263. [PMID: 32722249 PMCID: PMC7432157 DOI: 10.3390/ijms21155263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Human erythropoiesis is a complex process leading to the production of mature, enucleated erythrocytes (RBCs). It occurs mainly at bone marrow (BM), where hematopoietic stem cells (HSCs) are engaged in the early erythroid differentiation to commit into erythroid progenitor cells (burst-forming unit erythroid (BFU-E) and colony-forming unit erythroid (CFU-E)). Then, during the terminal differentiation, several erythropoietin-induced signaling pathways trigger the differentiation of CFU-E on successive stages from pro-erythroblast to reticulocytes. The latter are released into the circulation, finalizing their maturation into functional RBCs. This process is finely regulated by the physiological environment including the erythroblast-macrophage interaction in the erythroblastic island (EBI). Several human diseases have been associated with ineffective erythropoiesis, either by a defective or an excessive production of RBCs, as well as an increase or a hemoglobinization defect. Fully understanding the production of mature red blood cells is crucial for the comprehension of erythroid pathologies as well as to the field of transfusion. Many experimental approaches have been carried out to achieve a complete differentiation in vitro to produce functional biconcave mature RBCs. However, the various protocols usually fail to achieve enough quantities of completely mature RBCs. In this review, we focus on the evolution of erythropoiesis studies over the years, taking special interest in efforts that were made to include the microenvironment and erythroblastic islands paradigm. These more physiological approaches will contribute to a deeper comprehension of erythropoiesis, improve the treatment of dyserythropoietic disorders, and break through the barriers in massive RBCs production for transfusion.
Collapse
|
47
|
Andreeva E, Andrianova I, Bobyleva P, Gornostaeva A, Ezdakova M, Golikova E, Buravkova L. Adipose tissue-derived stromal cells retain immunosuppressive and angiogenic activity after coculture with cord blood hematopoietic precursors. Eur J Cell Biol 2020; 99:151069. [PMID: 31982141 DOI: 10.1016/j.ejcb.2020.151069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose-tissue derived stromal cells (ASCs) are currently considered as a full value alternative source of bone marrow MSCs for prevention of graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation due to their immunosuppressive potential. Besides, ASCs are known to support ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs). Ex vivo expansion enables to amplify significantly the number of HSPCs of different commitment. Mononuclear cells (MNCs) from cord blood (cb) contain HSPCs and are easily assessed. The rarity of those HSPCs is a serious limitation of its application in cell therapy. Here we expanded cbMNCs in stroma-dependent setting to generate heterocellular associates consisting of ASCs and undifferentiated and low committed hematopoietic cbHSPCs. A part of cbHSPCs in associates demonstrated a primitive phenotype confirmed by formation of "cobblestone areas". ASCs associated with cbHSPCs demonstrated up-regulation of immunosuppressive indoleamine 2,3-dioxygenase (IDO), leukemia inhibitory factor (LIF), cyclooxygenase-2 (PTGS2) genes. ASC-cbHSPCs as well as ASCs provoked the suppression of HLA-DR activation and apoptosis of mitogen-stimulated T cells. VEGF transcription and secretion were elevated providing stimulation of blood vessel formation in ovo. Thus, ASCs retain immunosuppressive and proangiogenic capacities evidencing "third party" potential along with the effective support of ex vivo expansion of cbHSPCs. Above functions expand the relevance of ASCs for needs of regenerative medicine.
Collapse
Affiliation(s)
- Elena Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia.
| | - Irina Andrianova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Polina Bobyleva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; Faculty of Basic Medicine, Moscow State University, Lomonosovsky Prospekt, 31-5, 117192, Moscow, Russia
| | - Aleksandra Gornostaeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Maria Ezdakova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ekaterina Golikova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ludmila Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; Faculty of Basic Medicine, Moscow State University, Lomonosovsky Prospekt, 31-5, 117192, Moscow, Russia
| |
Collapse
|
48
|
Costa MHG, Monteiro TS, Cardoso S, Cabral JMS, Ferreira FC, da Silva CL. Three-Dimensional Co-culture of Human Hematopoietic Stem/Progenitor Cells and Mesenchymal Stem/Stromal Cells in a Biomimetic Hematopoietic Niche Microenvironment. Methods Mol Biol 2020; 2002:101-119. [PMID: 30367359 DOI: 10.1007/7651_2018_181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The development of cellular therapies to treat hematological malignancies has motivated researchers to investigate ex vivo culture systems capable of expanding the number of hematopoietic stem/progenitor cells (HSPC) before transplantation. The strategies exploited to achieve relevant cell numbers have relied on culture systems that lack biomimetic niche cues thought to be essential to promote HSPC maintenance and proliferation. Although stromal cells adhered to 2-D surfaces can be used to support the expansion of HSPC ex vivo, culture systems aiming to incorporate cell-cell interactions in a more intricate 3-D environment can better contribute to recapitulate the bone marrow (BM) hematopoietic niche in vitro.Herein, we describe the development of a 3-D co-culture system of human umbilical cord blood (UCB)-derived CD34+ cells and BM mesenchymal stem/stromal cell (MSC) spheroids in a microwell-based platform that allows to attain large numbers of spheroids with uniform sizes. Further comparison with a traditional 2-D co-culture system exploiting the supportive features of feeder layers of MSC is provided, while functional in vitro assays to assess the features of HSPC expanded in the 2-D vs. 3-D MSC co-culture systems are suggested.
Collapse
Affiliation(s)
- Marta H G Costa
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago S Monteiro
- Instituto de Engenharia de Sistemas de Computadores - Microsystems and Nanotechnology (INESC-MN), Lisboa, Portugal
| | - Susana Cardoso
- Instituto de Engenharia de Sistemas de Computadores - Microsystems and Nanotechnology (INESC-MN), Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
49
|
Lia G, Di Vito C, Cerrano M, Brunello L, Calcaterra F, Tapparo M, Giaccone L, Mavilio D, Bruno B. Extracellular Vesicles After Allogeneic Hematopoietic Cell Transplantation: Emerging Role in Post-Transplant Complications. Front Immunol 2020; 11:422. [PMID: 32265915 PMCID: PMC7100658 DOI: 10.3389/fimmu.2020.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in the cellular crosstalk by transferring bioactive molecules through biological barriers from a cell to another, thus influencing recipient cell functions and phenotype. Therefore, EVs are increasingly being explored as biomarkers of disease progression or response to therapy and as potential therapeutic agents in different contexts including in hematological malignancies. Recently, an EV role has emerged in allogeneic hematopoietic cell transplantation (allo-HCT) as well. Allogeneic hematopoietic cell transplantation often represents the only curative option in several hematological disorders, but it is associated with potentially life-threatening complications that can have a significant impact on clinical outcomes. The most common complications have been well-established and include graft-versus-host disease and infections. Furthermore, relapse remains an important cause of treatment failure. The aim of this review is to summarize the current knowledge, the potential applications, and clinical relevance of EVs in allo-HCT. Herein, we will mainly focus on the immune-modulating properties of EVs, in particular those derived from mesenchymal stromal cells, as potential therapeutic strategy to improve allo-HCT outcome. Moreover, we will briefly describe the main findings on EVs as biomarkers to monitor graft-versus-host disease onset and tumor relapse.
Collapse
Affiliation(s)
- Giuseppe Lia
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Marco Cerrano
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lucia Brunello
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Marta Tapparo
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Luisa Giaccone
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Benedetto Bruno
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
50
|
Majidi F, Bamehr H, Shalchian Z, Kouchakian MR, Mohammadzadeh N, Khalili A. Differentiation of human umbilical cord mesenchymal stem cell into germ-like cell under effect of co-culture with testicular cell tissue. Anat Histol Embryol 2020; 49:359-364. [PMID: 32034794 DOI: 10.1111/ahe.12537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/26/2019] [Accepted: 01/12/2020] [Indexed: 01/13/2023]
Abstract
Supplements produced by mouse testicular cells (mTCs) and the interaction between cells can increase the differentiation rate of human umbilical cord mesenchymal stem cells (hUCMSCs) into the germ-like cells. We studied the differentiation rate of hUCMSCs into the germ-like cells under effect of mTCs co-culturing. Isolated hUCMSCs from postpartum human umbilical cords were cultured. Then, the expression of mesenchymal (CD73, CD90 and CD105) and haematopoietic (CD34 and CD45) markers of hUCMSCs were confirmed by flow cytometry. Then, the hUCMSCs were cultured in four distinct groups: (a) control, (b) co-culture until D0, (c) co-culture until D5 and (d) co-culture until D10, in order to differentiate into the germ-like cells. After 10 days, the expression of OCT4, VASA, Fragilis and SYCP3 genes were examined by Real-Time qPCR. The flow cytometry indicated a high expression of mesenchymal markers and a low expression of haematopoietic markers (CD73:98.6%, CD90: 99.1%, CD105: 99.5%, CD34: 4.22% and CD45: 2.54%). The expression of OCT4 decreased during the time while the expression of VASA, Fragilis and SYCP3 markers increased in the co-culture with testicular cells (p value <.05). Co-culture with mTCs may be used as an effective method to differentiate hUCMSCs into germ-like cells.
Collapse
Affiliation(s)
- Fatemeh Majidi
- Department of Animal Physiology, Shahid Beheshti University, Tehran, Iran
| | - Hadi Bamehr
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Shalchian
- Department of Food Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Kouchakian
- Department of Anatomical Science, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Nima Mohammadzadeh
- Department of Molecular Medicine, Cancer Biomedical Center, Tehran, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Khalili
- Department of Molecular Medicine, Cancer Biomedical Center, Tehran, Iran.,Department of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|