1
|
Yang S, Hu Q, Wang X, Qiao S, Qi C, Jin H, Zhong Y. Interferon Regulatory Factor 4: An Alternative Marker for Plasma Cells in Daratumumab-Treated Patients With Multiple Myeloma. Int J Lab Hematol 2025; 47:110-119. [PMID: 39267340 DOI: 10.1111/ijlh.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION Anti-CD38 therapeutic modalities (e.g., daratumumab) can impede classical CD38 and CD138 gating use for plasma cell (PC) detection in multiple myeloma (MM) patients with minimal residual disease (MRD). We assessed the applicability of CD229, CD269, and interferon regulatory factor (IRF-4) for PC detection in MM MRD patients. METHODS Bone marrow samples were collected from patients with MM. Through multiparameter flow cytometry, we evaluated the suitability of CD229, CD269, and IRF-4 for distinguishing PCs from other hematopoietic cells and compared their expression pattern on normal PCs (nPCs) and aberrant PCs (aPCs). We also assessed IRF-4 expression stability after sample storage under different conditions. A 10-color MRD antibody panel was used to determine whether IRF-4 is an alternative primary PC-gating marker for MM MRD assessment. RESULTS IRF-4 was expressed specifically on all PCs; its mean fluorescence intensity (MFI) was highest on PCs among all hematopoietic cells. This MFI did not decrease even after sample storage at 4°C or 25°C for 72 h. In all 42 MRD assessment samples, except for samples (n = 10) with no PCs, the use of IRF-4 enabled accurate nPC (n = 12), aPC (n = 13), and nPC + aPC (n = 7) identification. Even samples from daratumumab-treated patients had high IRF-4 MFI, with no difference between pre-treatment and post-treatment (n = 7; p = 0.610). CONCLUSIONS IRF-4 demonstrates high MFI on PCs, and it is not expressed on other leukocytes. In MM patients with MRD, daratumumab treatment does not affect IRF-4 expression. IRF-4 is a promising marker for PC identification in MRD assessment of MM patients undergoing anti-CD38 therapy.
Collapse
Affiliation(s)
- Suwen Yang
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qianwen Hu
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaofen Wang
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sai Qiao
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chao Qi
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hong Jin
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuhong Zhong
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Leivas A, Risueño RM, Guzmán A, Sánchez-Vega L, Pérez M, Megías D, Fernández L, Alonso R, Pérez-Martínez A, Rapado I, Martínez-López J. Natural killer cells efficiently target multiple myeloma clonogenic tumor cells. Cancer Immunol Immunother 2021; 70:2911-2924. [PMID: 33693963 PMCID: PMC8423695 DOI: 10.1007/s00262-021-02901-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
The multiple myeloma (MM) landscape has changed in the last few years, but most patients eventually relapse because current treatment modalities do not target clonogenic stem cells, which are drug-resistant and can self-renew. We hypothesized that side population (SP) cells represent myeloma clonogenic stem cells and, searching for new treatment strategies, analyzed the anti-myeloma activity of natural killer (NK) cells against clonogenic cells. Activated and expanded NK cells (NKAE) products were obtained by co-culturing NK cells from MM patients with K562-mb15-41BBL cell line and characterized by flow cytometry. Functional experiments against MM cells were performed by Eu-TDA release assays and methylcellulose clonogenic assays. Side population was detected by Dye Cycle Violet labeling and then characterized by flow cytometry and RNA-Seq. Self-renewal capacity was tested by clonogenic assays. Sorting of both kind of cells was performed for time-lapse microscopy experiments. SP cells exhibited self-renewal potential and overexpressed genes involved in stem cell metabolism. NK cells from MM patients exhibited dysregulation and had lower anti-tumor potential against clonogenic cells than healthy donors’ NK cells. Patients’ NK cells were activated and expanded. These cells recovered cytotoxic activity and could specifically destroy clonogenic myeloma cells. They also had a highly cytotoxic phenotype expressing NKG2D receptor. Blocking NKG2D receptor decreased NK cell activity against clonogenic myeloma cells, and activated NK cells were able to destroy SP cells, which expressed NKG2D ligands. SP cells could represent the stem cell compartment in MM. This is the first report describing NK cell activity against myeloma clonogenic cells.
Collapse
Affiliation(s)
- Alejandra Leivas
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Ruth M Risueño
- Leukemia Stem Cell Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Alma Guzmán
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Sánchez-Vega
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Manuel Pérez
- Confocal Microscopy Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Lucía Fernández
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Rafael Alonso
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Inmaculada Rapado
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, Complutense University, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,H12O-CNIO Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Center, Madrid, Spain.
| |
Collapse
|
3
|
Chen C, Lim AST, Lau LC, Lim TH, Heng EYH, Tien SL. Implementation of cytogenomic microarray with plasma cell enrichment enables better abnormality detection and risk stratification in patients with plasma cell neoplasia than conventional cytogenetics and fluorescence in situ hybridization. Cancer Genet 2020; 252-253:25-36. [PMID: 33341677 DOI: 10.1016/j.cancergen.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
The detection of chromosomal abnormalities is important in the diagnosis, prognosis and disease monitoring in plasma cell neoplasia (PCN). However, the gold standard diagnostic techniques of conventional cytogenetics (CC) and fluorescence in situ hybridization (FISH) are hampered by culture difficulties and probe availability. Cytogenomic microarray (CMA), however, is able to surmount such limitations and generate a comprehensive genomic profile with the implementation of plasma cell (PC) enrichment. In this study, we examined 89 bone marrow specimens with CC and FISH without PC enrichment, 35 of which were examined with CMA after PC enrichment. Results revealed that after PC enrichment, CMA was able to detect chromosomal abnormalities in 34 of 35 specimens tested (97.1%), compared to 21 and 32 specimens (60% and 91.4%, respectively) achieved by CC and FISH, respectively, which were similar to the abnormality detection rates among all 89 specimens (59.5% by CC and 92.1% by FISH). In addition, as the only technique capable of detecting copy neutral loss of heterozygosity (CN-LOH) and chromothripsis, CMA appears to be the most powerful tool in risk stratification as it successfully re-stratified 9 (25.7%) and 12 (34.3%) specimens from standard risk (determined by CC and FISH, respectively) to high risk. Based on the encouraging data presented by our study and others, we conclude that implementation of CMA with PC enrichment is of great value in routine clinical workup in achieving a more complete genetic profile of patients with PCN.
Collapse
Affiliation(s)
- Chuanfei Chen
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore.
| | - Alvin Soon Tiong Lim
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Lai Ching Lau
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Tse Hui Lim
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Evelyn Yee Hsieh Heng
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Sim Leng Tien
- Cytogenetics Laboratory, Department of Molecular Pathology, Singapore General Hospital, Singapore; Department of Haematology, Singapore General Hospital, Singapore
| |
Collapse
|
4
|
Yu J, Tan L, Wu Q, Rao Y, Ao J, Yang W, Zou B, Chen J. Multiple myeloma with CD138 changed from positive to negative: A case report. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:249-253. [PMID: 31967404 DOI: 10.1002/cyto.b.21869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a common malignant disease of the blood system, caused by the neoplastic proliferation of plasma cells that accumulate in bone marrow (BM). Here, we report a case of MM patient with CD138 marker changed from positive to negative. METHODS BM and peripheral blood samples from a 48-year-old patient with MM were examined and analyzed by conventional morphology, flow cytometry, and immunodetection. RESULTS Imaging examination and clinical manifestations fulfilled criteria for MM. On the first hospitalization, flow cytometry showed that the cells were CD138+ /CD38+ /CD19- /CD56+ . However, on the fifth hospitalization, flow cytometry revealed that the cells were CD138- /CD38+ /CD19- /CD56+ . CONCLUSIONS MM is diagnosed on imaging and clinical manifestations, immunophenotype of flow cytometry is also an important method of diagnosing MM. However, the discovery of atypical immunophenotypes cannot prevent the diagnosis of MM, even provide a clue of disease progression.
Collapse
Affiliation(s)
- Jianlin Yu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liming Tan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiong Wu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanfei Rao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianyun Ao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bei Zou
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
An unusual case of myeloma. Pathology 2018; 50:581-584. [PMID: 29921449 DOI: 10.1016/j.pathol.2018.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 11/21/2022]
|
6
|
Kostjukova MN, Tupitsyn NN, Karamysheva AF. Vascular endothelial growth factor receptor 3 is a novel marker differing CD138-positive and CD138-negative multiple myeloma cells. Br J Haematol 2017; 181:840-843. [PMID: 28508400 DOI: 10.1111/bjh.14706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Maria N Kostjukova
- Laboratory of Haematopoiesis Immunology, Institute of Clinical Oncology, N.N. Blokhin Russian Cancer Research Centre, Moscow, Russia
| | - Nikolai N Tupitsyn
- Laboratory of Haematopoiesis Immunology, Institute of Clinical Oncology, N.N. Blokhin Russian Cancer Research Centre, Moscow, Russia
| | - Aida F Karamysheva
- Laboratory of Tumour Cell Genetics, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Centre, Moscow, Russia
| |
Collapse
|
7
|
Johnsen HE, Bøgsted M, Schmitz A, Bødker JS, El-Galaly TC, Johansen P, Valent P, Zojer N, Van Valckenborgh E, Vanderkerken K, van Duin M, Sonneveld P, Perez-Andres M, Orfao A, Dybkær K. The myeloma stem cell concept, revisited: from phenomenology to operational terms. Haematologica 2016; 101:1451-1459. [PMID: 27903712 DOI: 10.3324/haematol.2015.138826] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 08/30/2016] [Indexed: 11/09/2022] Open
Abstract
The concept of the myeloma stem cell may have important therapeutic implications, yet its demonstration has been hampered by a lack of consistency in terms and definitions. Here, we summarize the current documentation and propose single-cell in vitro studies for future translational studies. By the classical approach, a CD19-/CD45low/-/CD38high/CD138+ malignant plasma cell, but not the CD19+/CD38low/- memory B cell compartment, is enriched for tumorigenic cells that initiate myeloma in xenografted immunodeficient mice, supporting that myeloma stem cells are present in the malignant PC compartment. Using a new approach, analysis of c-DNA libraries from CD19+/CD27+/CD38- single cells has identified clonotypic memory B cell, suggested to be the cell of origin. This is consistent with multiple myeloma being a multistep hierarchical process before or during clinical presentation. We anticipate that further characterization will require single cell geno- and phenotyping combined with clonogenic assays. To implement such technologies, we propose a revision of the concept of a myeloma stem cell by including operational in vitro assays to describe the cellular components of origin, initiation, maintenance, and evolution of multiple myeloma. These terms are in accordance with recent (2012) consensus statements on the definitions, assays, and nomenclature of cancer stem cells, which is technically precise without completely abolishing established terminology. We expect that this operational model will be useful for future reporting of parameters used to identify and characterize the multiple myeloma stem cells. We strongly recommend that these parameters include validated standard technologies, reproducible assays, and, most importantly, supervised prospective sampling of selected biomaterial which reflects clinical stages, disease spectrum, and therapeutic outcome. This framework is key to the characterization of the cellular architecture of multiple myeloma and its use in precision medicine.
Collapse
Affiliation(s)
- Hans Erik Johnsen
- Department of Haematology Aalborg University Hospital, Denmark .,Clinical Cancer Research Center, Aalborg University Hospital, Denmark.,The Department of Clinical Medicine, Aalborg University, Denmark
| | - Martin Bøgsted
- Department of Haematology Aalborg University Hospital, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Denmark.,The Department of Clinical Medicine, Aalborg University, Denmark
| | | | | | - Tarec Christoffer El-Galaly
- Department of Haematology Aalborg University Hospital, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Denmark.,The Department of Clinical Medicine, Aalborg University, Denmark
| | - Preben Johansen
- Department of Hematopathology, Aalborg University Hospital, Denmark
| | - Peter Valent
- The Department of Internal Medicine I, Division of Hematology Medical University of Vienna, Austria
| | - Niklas Zojer
- Wilhelminen Cancer Research Institute and Ludwig Boltzmann Cluster Oncology, First Department of Medicine, Center for Oncology and Hematology, Vienna, Austria
| | - Els Van Valckenborgh
- Department of Hematology and Immunology-Myeloma Center, Vrije University Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center, Vrije University Brussels, Belgium
| | - Mark van Duin
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Pieter Sonneveld
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Martin Perez-Andres
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Spain
| | - Karen Dybkær
- Department of Haematology Aalborg University Hospital, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Denmark.,The Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
8
|
Karadimitris A, Chaidos A, Caputo V, Goudevenou K, Ponnusamy K, Xiao X. Myeloma Propagating Cells, Drug Resistance and Relapse. Stem Cells 2015; 33:3205-11. [DOI: 10.1002/stem.2199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/16/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Anastasios Karadimitris
- Centre for Haematology, Department of Medicine; Imperial College London; London United Kingdom
- Department of Haematology; Hammersmith Hospital, Imperial College Healthcare NHS Trust; London United Kingdom
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Medicine; Imperial College London; London United Kingdom
- Department of Haematology; Hammersmith Hospital, Imperial College Healthcare NHS Trust; London United Kingdom
| | - Valentina Caputo
- Centre for Haematology, Department of Medicine; Imperial College London; London United Kingdom
| | - Katerina Goudevenou
- Centre for Haematology, Department of Medicine; Imperial College London; London United Kingdom
| | - Kanagaraju Ponnusamy
- Centre for Haematology, Department of Medicine; Imperial College London; London United Kingdom
| | - Xiaolin Xiao
- Centre for Haematology, Department of Medicine; Imperial College London; London United Kingdom
| |
Collapse
|
9
|
Oldaker TA, Wallace PK, Barnett D. Flow cytometry quality requirements for monitoring of minimal disease in plasma cell myeloma. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015. [PMID: 26201282 DOI: 10.1002/cyto.b.21276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Current therapeutic approaches for plasma cell myeloma (PCM) attain an overall survival of more than 6 years for the majority of newly diagnosed patients. However, PFS and OS are the only accepted FDA clinical endpoints for demonstrating drug efficacy before they can be become frontline therapeutic options. There is, however, recognition that the increasing gap between drug development and approval for mainstream therapeutic use needs to be shortened. As such regulatory bodies such as the FDA are now considering whether biomarker response evaluation, as in measurement of minimal residual disease (MRD) as assessed by flow cytometry (FC), can provide an early, robust prediction of survival and therefore improve the drug approval process. Recently, FC MRD using a standardized eight-color antibody methodology has been shown to have a minimum sensitivity of 0.01% and an upper sensitivity of 0.001%. To ensure that all laboratories using this approach achieve the same levels of sensitivity it is crucially important to have standardized quality management procedures in place. This manuscript accompanies those published in this special issue and describes the minimum that is required for validating and quality monitoring of this highly specific test to ensure any laboratory, irrespective of location, will achieve the expected quality standards required.
Collapse
Affiliation(s)
- Teri A Oldaker
- Department of Flow Cytometry, Genoptix Medical Laboratory (A Novartis Company), Carlsbad, California
| | - Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York
| | - David Barnett
- Department of Haematology, UK NEQAS For Leucocyte Immunophenotyping, Royal Hallamshire Hospital, Sheffield, S10 2JF, United Kingdom
| |
Collapse
|
10
|
Pojero F, Flores-Montero J, Sanoja L, Pérez JJ, Puig N, Paiva B, Bottcher S, van Dongen JJM, Orfao A. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:91-100. [PMID: 26130131 DOI: 10.1002/cyto.b.21269] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/22/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Multiparameter flow cytometry (MFC) identification and characterization of plasma cells (PCs) is a useful tool to support diagnosis, prognostication, and monitoring of PC diseases (PCD). Currently, the number of MFC markers suited for the identification of PC remains limited. Moreover, antibody therapies against PC-associated markers further compromise the utility of the most widely used reagents (e.g., CD38). Despite markers other than CD38 and CD138 are recognized as potentially useful PC-identification markers, no study has comparatively evaluated their performance in combination with CD38 and CD138. Here we compared the utility of CD229, CD54, and CD319 for the identification of normal and aberrant PCs. METHODS Bone marrow (BM) samples from 5 healthy controls, two noninfiltrated nonHodgkin lymphoma cases and 46 PCD patients plus 3 extraosseous plasmocytomas, and normal peripheral blood (PB) specimens, were studied. RESULTS Our results showed adequate performance of all three markers once combined with CD38. In contrast, when combined with CD138 for the identification of PC, only CD229 provided a good discrimination between PCs and all other cells for all BM and PB samples analyzed; in contrast, CD54 and CD319 showed limited utility for the identification of PCs, mainly because of significant overlap of the staining for these two markers on PCs and other myeloid cells in the sample. CONCLUSIONS From the three markers evaluated, CD229 may be considered as the most reliable marker to replace CD38 or CD138 for the identification of PCs in patients undergoing anti-CD38 or anti-CD138 therapy, until a better alternative is available.
Collapse
Affiliation(s)
- Fanny Pojero
- Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría y Departamento De Medicina (NUCLEUS), Universidad de Salamanca (Salamanca), Spain.,Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Universita' degli Studi di Palermo, Palermo, Italy
| | - Juan Flores-Montero
- Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría y Departamento De Medicina (NUCLEUS), Universidad de Salamanca (Salamanca), Spain
| | - Luzalba Sanoja
- Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría y Departamento De Medicina (NUCLEUS), Universidad de Salamanca (Salamanca), Spain
| | - José Juan Pérez
- Departmento de Hematología, Hospital Universitario de Salamanca, IBSAL; IBMCC (USAL-CSIC), Salamanca, Spain
| | - Noemí Puig
- Departmento de Hematología, Hospital Universitario de Salamanca, IBSAL; IBMCC (USAL-CSIC), Salamanca, Spain
| | - Bruno Paiva
- Clínica Universidad de Navarra; Centro de Investigaciones Médicas Aplicadas (CIMA), Pamplona, Spain
| | - Sebastian Bottcher
- Second Department of Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam (Erasmus MC), Rotterdamthe, Netherlands
| | - Alberto Orfao
- Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría y Departamento De Medicina (NUCLEUS), Universidad de Salamanca (Salamanca), Spain
| | | |
Collapse
|
11
|
[Emergence of cancer stem cells or tumor-initiating/propagating cells and relapse in multiple myeloma]. Bull Cancer 2014; 101:1074-9. [PMID: 25467977 DOI: 10.1684/bdc.2014.2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Paíno T, Sarasquete ME, Paiva B, Krzeminski P, San-Segundo L, Corchete LA, Redondo A, Garayoa M, García-Sanz R, Gutiérrez NC, Ocio EM, San-Miguel JF. Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines. PLoS One 2014; 9:e92378. [PMID: 24658332 PMCID: PMC3962421 DOI: 10.1371/journal.pone.0092378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/19/2014] [Indexed: 12/17/2022] Open
Abstract
Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described three decades ago, the phenotype of MM-CSC is still controversial, especially with respect to the expression of syndecan-1 (CD138). Here, we demonstrate the presence of two subpopulations--CD138++ (95-99%) and CD138low (1-5%)--in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in CB17-SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are phenotypically interconvertible. Overall, our results differ from previously published data in MM cell lines which attribute a B-cell phenotype to MM-CSC. Future characterization of clonal plasma cell subpopulations in MM patients' samples will guarantee the discovery of more reliable markers able to discriminate true clonogenic myeloma cells.
Collapse
Affiliation(s)
- Teresa Paíno
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María E. Sarasquete
- Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Bruno Paiva
- Clínica Universidad de Navarra; Centro de Investigaciones Médicas Aplicadas (CIMA), Pamplona, Spain
| | - Patryk Krzeminski
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Laura San-Segundo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | | - Alba Redondo
- Hospital Universitario de Salamanca, Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Ramón García-Sanz
- Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Norma C. Gutiérrez
- Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Enrique M. Ocio
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer/Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Jesús F. San-Miguel
- Clínica Universidad de Navarra; Centro de Investigaciones Médicas Aplicadas (CIMA), Pamplona, Spain
| |
Collapse
|
13
|
Brioli A, Melchor L, Cavo M, Morgan GJ. The impact of intra-clonal heterogeneity on the treatment of multiple myeloma. Br J Haematol 2014; 165:441-54. [DOI: 10.1111/bjh.12805] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Annamaria Brioli
- Centre for Myeloma Research; Division of Molecular Pathology; The Institute of Cancer Research; London UK
- Istituto di Ematologia Seràgnoli; Università degli Studi di Bologna; Policlinico S. Orsola-Malpighi; Bologna Italy
| | - Lorenzo Melchor
- Centre for Myeloma Research; Division of Molecular Pathology; The Institute of Cancer Research; London UK
| | - Michele Cavo
- Istituto di Ematologia Seràgnoli; Università degli Studi di Bologna; Policlinico S. Orsola-Malpighi; Bologna Italy
| | - Gareth J. Morgan
- Centre for Myeloma Research; Division of Molecular Pathology; The Institute of Cancer Research; London UK
| |
Collapse
|
14
|
Johnsen HE, Bergkvist KS, Schmitz A, Kjeldsen MK, Hansen SM, Gaihede M, Nørgaard MA, Bæch J, Grønholdt ML, Jensen FS, Johansen P, Bødker JS, Bøgsted M, Dybkær K. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy. Leuk Lymphoma 2013; 55:1251-60. [DOI: 10.3109/10428194.2013.839785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 2013; 122:3591-8. [PMID: 24072855 DOI: 10.1182/blood-2013-06-510453] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Circulating myeloma tumor cells (CTCs) as defined by the presence of peripheral blood (PB) clonal plasma cells (PCs) are a powerful prognostic marker in multiple myeloma (MM). However, the biological features of CTCs and their pathophysiological role in MM remains unexplored. Here, we investigate the phenotypic, cytogenetic, and functional characteristics as well as the circadian distribution of CTCs vs paired bone marrow (BM) clonal PCs from MM patients. Our results show that CTCs typically represent a unique subpopulation of all BM clonal PCs, characterized by downregulation (P < .05) of integrins (CD11a/CD11c/CD29/CD49d/CD49e), adhesion (CD33/CD56/CD117/CD138), and activation molecules (CD28/CD38/CD81). Fluorescence in situ hybridization analysis of fluorescence-activated cell sorter-sorted CTCs also unraveled different cytogenetic profiles vs paired BM clonal PCs. Moreover, CTCs were mostly quiescent and associated with higher clonogenic potential when cocultured with BM stromal cells. Most interestingly, CTCs showed a circadian distribution which fluctuates in a similar pattern to that of CD34(+) cells, and opposite to stromal cell-derived factor 1 plasma levels and corresponding surface expression of CXC chemokine receptor 4 on clonal PCs, suggesting that in MM, CTCs may egress to PB to colonize/metastasize other sites in the BM during the patients' resting period.
Collapse
|
16
|
Hajek R, Okubote SA, Svachova H. Myeloma stem cell concepts, heterogeneity and plasticity of multiple myeloma. Br J Haematol 2013; 163:551-64. [PMID: 24111932 DOI: 10.1111/bjh.12563] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/11/2013] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a haematological malignancy characterized by the accumulation of clonal plasma cells (PCs) in the bone marrow (BM). Although novel therapeutic strategies have prolonged survival of patients, the disease remains difficult to treat with a high risk of relapse. The failure of therapy is thought to be associated with a persistent population of the so-called MM stem cells or myeloma initiating cells (MIC) that exhibit tumour-initiating potential, self-renewal and resistance to chemotherapy. However, the population responsible for the origin and sustainability of tumour mass has not been clearly characterized so far. This review summarizes current myeloma stem cell concepts and suggests that high phenotypic and intra-clonal heterogeneity, together with plasticity potential of MM might be other contributing factors explaining discrepancies among particular concepts and contributing to the treatment failure.
Collapse
Affiliation(s)
- Roman Hajek
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic; Department of Clinical Haematology, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | | |
Collapse
|
17
|
Kassambara A, Schoenhals M, Moreaux J, Veyrune JL, Rème T, Goldschmidt H, Hose D, Klein B. Inhibition of DEPDC1A, a bad prognostic marker in multiple myeloma, delays growth and induces mature plasma cell markers in malignant plasma cells. PLoS One 2013; 8:e62752. [PMID: 23646139 PMCID: PMC3640027 DOI: 10.1371/journal.pone.0062752] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
High throughput DNA microarray has made it possible to outline genes whose expression in malignant plasma cells is associated with short overall survival of patients with Multiple Myeloma (MM). A further step is to elucidate the mechanisms encoded by these genes yielding to drug resistance and/or patients' short survival. We focus here on the biological role of the DEP (for Disheveled, EGL-10, Pleckstrin) domain contained protein 1A (DEPDC1A), a poorly known protein encoded by DEPDC1A gene, whose high expression in malignant plasma cells is associated with short survival of patients. Using conditional lentiviral vector delivery of DEPDC1A shRNA, we report that DEPDC1A knockdown delayed the growth of human myeloma cell lines (HMCLs), with a block in G2 phase of the cell cycle, p53 phosphorylation and stabilization, and p21(Cip1) accumulation. DEPDC1A knockdown also resulted in increased expression of mature plasma cell markers, including CXCR4, IL6-R and CD38. Thus DEPDC1A could contribute to the plasmablast features of MMCs found in some patients with adverse prognosis, blocking the differentiation of malignant plasma cells and promoting cell cycle.
Collapse
Affiliation(s)
| | | | - Jérôme Moreaux
- CHU Montpellier, Institute of Research in Biotherapy, Montpellier, France
| | - Jean-Luc Veyrune
- CHU Montpellier, Institute of Research in Biotherapy, Montpellier, France
| | | | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg and Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Dirk Hose
- Medizinische Klinik V, Universitätsklinikum Heidelberg and Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Bernard Klein
- INSERM, U1040, Montpellier, France
- CHU Montpellier, Institute of Research in Biotherapy, Montpellier, France
- Université MONTPELLIER1, UFR Médecine, Montpellier, France
- * E-mail:
| |
Collapse
|
18
|
Sørrig R, Hermansen NEU, Hother C, Gimsing P. CD138+ cell separation affects cancer gene expression in human myeloma cell lines. Eur J Haematol 2013; 91:187-8. [PMID: 23581887 DOI: 10.1111/ejh.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|