1
|
Wu R, Lim MS. Updates in pathobiological aspects of anaplastic large cell lymphoma. Front Oncol 2023; 13:1241532. [PMID: 37810974 PMCID: PMC10556522 DOI: 10.3389/fonc.2023.1241532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCL) encompass several distinct subtypes of mature T-cell neoplasms that are unified by the expression of CD30 and anaplastic cytomorphology. Identification of the cytogenetic abnormality t(2;5)(p23;q35) led to the subclassification of ALCLs into ALK+ ALCL and ALK- ALCL. According to the most recent World Health Organization (WHO) Classification of Haematolymphoid Tumours as well as the International Consensus Classification (ICC) of Mature Lymphoid Neoplasms, ALCLs encompass ALK+ ALCL, ALK- ALCL, and breast implant-associated ALCL (BI-ALCL). Approximately 80% of systemic ALCLs harbor rearrangement of ALK, with NPM1 being the most common partner gene, although many other fusion partner genes have been identified to date. ALK- ALCLs represent a heterogeneous group of lymphomas with distinct clinical, immunophenotypic, and genetic features. A subset harbor recurrent rearrangement of genes, including TYK2, DUSP22, and TP63, with a proportion for which genetic aberrations have yet to be characterized. Although primary cutaneous ALCL (pc-ALCL) is currently classified as a subtype of primary cutaneous T-cell lymphoma, due to the large anaplastic and pleomorphic morphology together with CD30 expression in the malignant cells, this review also discusses the pathobiological features of this disease entity. Genomic and proteomic studies have contributed significant knowledge elucidating novel signaling pathways that are implicated in ALCL pathogenesis and represent candidate targets of therapeutic interventions. This review aims to offer perspectives on recent insights regarding the pathobiological and genetic features of ALCL.
Collapse
Affiliation(s)
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
2
|
Lai P, Liu F, Liu X, Sun J, Wang Y. Differential molecular programs of cutaneous anaplastic large cell lymphoma and CD30-positive transformed mycosis fungoides. Front Immunol 2023; 14:1270365. [PMID: 37790936 PMCID: PMC10544577 DOI: 10.3389/fimmu.2023.1270365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Background Discriminating between cutaneous anaplastic large cell lymphoma (cALCL) and CD30-positive transformed mycosis fungoides (CD30+ TMF) is challenging, particularly when they arise in the context of pre-existing mycosis fungoides. The development of molecular diagnostic tools was hampered by the rarity of both diseases and the limited understanding of their pathogenesis. Methods In this study, we established a cohort comprising 25 cALCL cases and 25 CD30+ TMF cases, with transcriptomic data obtained from 31 samples. We compared the clinicopathological information and investigated the gene expression profiling between these two entities. Furthermore, we developed an immunohistochemistry (IHC) algorithm to differentiate these two entities clinically. Results Our investigation revealed distinct clinicopathological features and unique gene expression programs associated with cALCL and CD30+ TMF. cALCL and CD30+ TMF displayed marked differences in gene expression patterns. Notably, CD30+ TMF demonstrated enrichment of T cell receptor signaling pathways and an exhausted T cell phenotype, accompanied by infiltration of B cells, dendritic cells, and neurons. In contrast, cALCL cells expressed high levels of HLA class II genes, polarized towards a Th17 phenotype, and exhibited neutrophil infiltration. An IHC algorithm with BATF3 and TCF7 staining emerged as potential diagnostic markers for identifying these two entities. Conclusions Our findings provide valuable insights into the differential molecular signatures associated with cALCL and CD30+ TMF, which contribute to their distinct clinicopathological behaviors. An appropriate IHC algorithm could be used as a potential diagnostic tool.
Collapse
Affiliation(s)
- Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangjun Liu
- Department of Dermatology, Shandong University Qilu Hospital, Jinan, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
3
|
Hara N, Sawada Y. Epigenetics of Cutaneous T-Cell Lymphomas. Int J Mol Sci 2022; 23:ijms23073538. [PMID: 35408897 PMCID: PMC8998216 DOI: 10.3390/ijms23073538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Epigenetic modifications rarely occur in isolation (as single “epigenetic modifications”). They usually appear together and form a network to control the epigenetic system. Cutaneous malignancies are usually affected by epigenetic changes. However, there is limited knowledge regarding the epigenetic changes associated with cutaneous lymphomas. In this review, we focused on cutaneous T-cell lymphomas such as mycosis fungoides, Sézary syndrome, and anaplastic large cell lymphoma. With regard to epigenetic changes, we summarize the detailed chemical modifications categorized into DNA methylation and histone acetylation and methylation. We also summarize the epigenetic modifications and characteristics of the drug for cutaneous T-cell lymphoma (CTCL). Furthermore, we discuss current research on epigenetic-targeted therapy against cutaneous T-cell lymphomas. Although the current method of treatment with histone deacetylase inhibitors does not exhibit sufficient therapeutic benefits in all cases of CTCL, epigenetic-targeted combination therapy might overcome this limitation for patients with CTCL.
Collapse
|
4
|
Yuan G, Yao M, Lv H, Jia X, Chen J, Xue J. Novel Targeted Photosensitizer as an Immunomodulator for Highly Efficient Therapy of T-Cell Acute Lymphoblastic Leukemia. J Med Chem 2020; 63:15655-15667. [PMID: 33300796 DOI: 10.1021/acs.jmedchem.0c01072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dasatinib is a kinase-targeted drug used in the treatment of leukemia. Regrettably, it remains far from optimal medicine due to insurmountable drug resistance and side effects. Photodynamic therapy (PDT) has proven that it can induce systemic immune responses. However, conventional photosensitizers as immunomodulators produce anticancer immunities, which are inadequate to eliminate residual cancer cells. Herein, a novel compound 4 was synthesized and investigated, which introduces dasatinib and zinc(II) phthalocyanine as the targeting and photodynamic moiety, respectively. Compound 4 exhibits a high affinity to CCRF-CEM cells/tumor tissues, which overexpress lymphocyte-specific protein tyrosine kinase (LCK), and preferential elimination from the body. Meanwhile, compound 4 shows excellent photocytotoxicity and tumor regression. Significantly, compound 4-induced PDT can obviously enhance immune responses, resulting in the production of more immune cells. We believe that the proposed manner is a potential strategy for the treatment of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Gankun Yuan
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Mengyu Yao
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Huihui Lv
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Xiao Jia
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Juanjuan Chen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Jinping Xue
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| |
Collapse
|
5
|
Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood 2020; 135:360-370. [PMID: 31774495 DOI: 10.1182/blood.2019001904] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The oncogenic events involved in breast implant-associated anaplastic large cell lymphoma (BI-ALCL) remain elusive. To clarify this point, we have characterized the genomic landscape of 34 BI-ALCLs (15 tumor and 19 in situ subtypes) collected from 54 BI-ALCL patients diagnosed through the French Lymphopath network. Whole-exome sequencing (n = 22, with paired tumor/germline DNA) and/or targeted deep sequencing (n = 24) showed recurrent mutations of epigenetic modifiers in 74% of cases, involving notably KMT2C (26%), KMT2D (9%), CHD2 (15%), and CREBBP (15%). KMT2D and KMT2C mutations correlated with a loss of H3K4 mono- and trimethylation by immunohistochemistry. Twenty cases (59%) showed mutations in ≥1 member of the JAK/STAT pathway, including STAT3 (38%), JAK1 (18%), and STAT5B (3%), and in negative regulators, including SOCS3 (6%), SOCS1 (3%), and PTPN1 (3%). These mutations were more frequent in tumor-type samples than in situ samples (P = .038). All BI-ALCLs expressed pSTAT3, regardless of the mutational status of genes in the JAK/STAT pathway. Mutations in the EOMES gene (12%) involved in lymphocyte development, PI3K-AKT/mTOR (6%), and loss-of-function mutations in TP53 (12%) were also identified. Copy-number aberration (CNA) analysis identified recurrent alterations, including gains on chromosomes 2, 9p, 12p, and 21 and losses on 4q, 8p, 15, 16, and 20. Regions of CNA encompassed genes involved in the JAK/STAT pathway and epigenetic regulators. Our results show that the BI-ALCL genomic landscape is characterized by not only JAK/STAT activating mutations but also loss-of-function alterations of epigenetic modifiers.
Collapse
|
6
|
Zaidan N, Ottersbach K. The multi-faceted role of Gata3 in developmental haematopoiesis. Open Biol 2018; 8:rsob.180152. [PMID: 30463912 PMCID: PMC6282070 DOI: 10.1098/rsob.180152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Gata3 is crucial for the development of several tissues and cell lineages both during development as well as postnatally. This importance is apparent from the early embryonic lethality following germline Gata3 deletion, with embryos displaying a number of phenotypes, and from the fact that Gata3 has been implicated in several cancer types. It often acts at the level of stem and progenitor cells in which it controls the expression of key lineage-determining factors as well as cell cycle genes, thus being one of the main drivers of cell fate choice and tissue morphogenesis. Gata3 is involved at various stages of haematopoiesis both in the adult as well as during development. This review summarizes the various contributions of Gata3 to haematopoiesis with a particular focus on the emergence of the first haematopoietic stem cells in the embryo—a process that appears to be influenced by Gata3 at various levels, thus highlighting the complex nature of Gata3 action.
Collapse
Affiliation(s)
- Nada Zaidan
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.,King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
7
|
Egger G, Turner SD. New avenues for targeted therapies and biomarkers in anaplastic large cell lymphoma. Epigenomics 2017; 9:97-100. [PMID: 28097892 DOI: 10.2217/epi-2016-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Suzanne D Turner
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Lab Block Level 3, Addenbrooke's Hospital, Cambridge CB20QQ, UK
| |
Collapse
|
8
|
Joosten M, Ginzel S, Blex C, Schmidt D, Gombert M, Chen C, Linka RM, Gräbner O, Hain A, Hirsch B, Sommerfeld A, Seegebarth A, Gruber U, Maneck C, Zhang L, Stenin K, Dieks H, Sefkow M, Münk C, Baldus CD, Thiele R, Borkhardt A, Hummel M, Köster H, Fischer U, Dreger M, Seitz V. A novel approach to detect resistance mechanisms reveals FGR as a factor mediating HDAC inhibitor SAHA resistance in B-cell lymphoma. Mol Oncol 2016; 10:1232-44. [PMID: 27324824 DOI: 10.1016/j.molonc.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/15/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are not commonly used in clinical practice for treatment of B-cell lymphomas, although a subset of patients with refractory or relapsed B-cell lymphoma achieved partial or complete remissions. Therefore, the purpose of this study was to identify molecular features that predict the response of B-cell lymphomas to SAHA treatment. We designed an integrative approach combining drug efficacy testing with exome and captured target analysis (DETECT). In this study, we tested SAHA sensitivity in 26 B-cell lymphoma cell lines and determined SAHA-interacting proteins in SAHA resistant and sensitive cell lines employing a SAHA capture compound (CC) and mass spectrometry (CCMS). In addition, we performed exome mutation analysis. Candidate validation was done by expression analysis and knock-out experiments. An integrated network analysis revealed that the Src tyrosine kinase Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR) is associated with SAHA resistance. FGR was specifically captured by the SAHA-CC in resistant cells. In line with this observation, we found that FGR expression was significantly higher in SAHA resistant cell lines. As functional proof, CRISPR/Cas9 mediated FGR knock-out in resistant cells increased SAHA sensitivity. In silico analysis of B-cell lymphoma samples (n = 1200) showed a wide range of FGR expression indicating that FGR expression might help to stratify patients, which clinically benefit from SAHA therapy. In conclusion, our comprehensive analysis of SAHA-interacting proteins highlights FGR as a factor involved in SAHA resistance in B-cell lymphoma.
Collapse
Affiliation(s)
- Maria Joosten
- Institute of Pathology, Charité University Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Sebastian Ginzel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center of Child and Adolescent Health, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany; Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Christian Blex
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Dmitri Schmidt
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Michael Gombert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center of Child and Adolescent Health, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Cai Chen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center of Child and Adolescent Health, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - René Martin Linka
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center of Child and Adolescent Health, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Olivia Gräbner
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Anika Hain
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Burkhard Hirsch
- Institute of Pathology, Charité University Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Anke Sommerfeld
- Institute of Pathology, Charité University Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Anke Seegebarth
- Institute of Pathology, Charité University Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Uschi Gruber
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Corinna Maneck
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Langhui Zhang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center of Child and Adolescent Health, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany; Department of Hematology, Union Hospital, Fujian Medical University, NO.29,Xinquan Road, Fuzhou City, Fujian Province, China
| | - Katharina Stenin
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Henrik Dieks
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Michael Sefkow
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claudia D Baldus
- Department of Hematology and Oncology, Charité University Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Ralf Thiele
- Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center of Child and Adolescent Health, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Michael Hummel
- Institute of Pathology, Charité University Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Hubert Köster
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center of Child and Adolescent Health, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Mathias Dreger
- caprotec bioanalytics GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Volkhard Seitz
- Institute of Pathology, Charité University Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| |
Collapse
|
9
|
Abstract
The GATA family of transcription factors consists of six proteins (GATA1-6) which are
involved in a variety of physiological and pathological processes. GATA1/2/3 are required
for differentiation of mesoderm and ectoderm-derived tissues, including the haematopoietic
and central nervous system. GATA4/5/6 are implicated in development and differentiation of
endoderm- and mesoderm-derived tissues such as induction of differentiation of embryonic
stem cells, cardiovascular embryogenesis and guidance of epithelial cell differentiation
in the adult.
Collapse
|
10
|
Sun XJ, Man N, Tan Y, Nimer SD, Wang L. The Role of Histone Acetyltransferases in Normal and Malignant Hematopoiesis. Front Oncol 2015; 5:108. [PMID: 26075180 PMCID: PMC4443728 DOI: 10.3389/fonc.2015.00108] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/25/2015] [Indexed: 12/15/2022] Open
Abstract
Histone, and non-histone, protein acetylation plays an important role in a variety of cellular events, including the normal and abnormal development of blood cells, by changing the epigenetic status of chromatin and regulating non-histone protein function. Histone acetyltransferases (HATs), which are the enzymes responsible for histone and non-histone protein acetylation, contain p300/CBP, MYST, and GNAT family members. HATs are not only protein modifiers and epigenetic factors but also critical regulators of cell development and carcinogenesis. Here, we will review the function of HATs such as p300/CBP, Tip60, MOZ/MORF, and GCN5/PCAF in normal hematopoiesis and the pathogenesis of hematological malignancies. The inhibitors that have been developed to target HATs will also be reviewed here. Understanding the roles of HATs in normal/malignant hematopoiesis will provide the potential therapeutic targets for the hematological malignancies.
Collapse
Affiliation(s)
- Xiao-Jian Sun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Cell Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Yurong Tan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Medicine, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
11
|
Liang M, Zhang F, Jin G, Zhu J. FastGCN: a GPU accelerated tool for fast gene co-expression networks. PLoS One 2015; 10:e0116776. [PMID: 25602758 PMCID: PMC4300192 DOI: 10.1371/journal.pone.0116776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/08/2014] [Indexed: 01/31/2023] Open
Abstract
Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.
Collapse
Affiliation(s)
- Meimei Liang
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, RP China, 310058
| | - Futao Zhang
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, RP China, 310058
| | - Gulei Jin
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, RP China, 310058
| | - Jun Zhu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, RP China, 310058
- * E-mail:
| |
Collapse
|
12
|
Dieltjens M, Braem MJ, Van de Heyning PH, Wouters K, Vanderveken OM. Prevalence and clinical significance of supine-dependent obstructive sleep apnea in patients using oral appliance therapy. J Clin Sleep Med 2014; 10:959-64. [PMID: 25142766 DOI: 10.5664/jcsm.4024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
STUDY OBJECTIVE The prevalence of supine-dependent obstructive sleep apnea (sdOSA) in a general population ranges from 20% to 60%, depending on the criteria used. Currently, the prevalence and evolution of sdOSA once oral appliance therapy with a mandibular advancement device (OAm) has started is unknown. In addition, literature on the correlation between sdOSA and treatment success with OAm is not unequivocal. The first purpose of this study was to assess the prevalence of sdOSA before and under OAm therapy. Second, the conversion rate from non-sdOSA to sdOSA during OAm therapy was evaluated. The third and final goal was to analyze the correlation between sdOSA and treatment success with OAm therapy in the patient population. METHODS Two hundred thirty-seven consecutive patients (age 48 ± 9 years; male/female ratio 173/64; AHI 20.1 ± 14.7 events/h; BMI 27.2 ± 4.3 kg/m(2)) starting OAm therapy were included. RESULTS The prevalence of sdOSA before the start of OAm therapy, ranged from 27.0% to 67.5%. The prevalence of residual sdOSA under OAm therapy in this study ranged from 17.5% to 33.9%. Second, the conversion rate from non-sdOSA to sdOSA ranged from 23.0% to 37.5%. Third, the presence of sdOSA at baseline was not a significant factor for treatment success with OAm therapy. CONCLUSIONS The results of this study indicate that the prevalence of sdOSA before and under OAm therapy is relatively high. One-third of patients shift from non-sdOSA to sdOSA. Finally, treatment success for OAm therapy was not significantly correlated with the presence of sdOSA at baseline.
Collapse
|