1
|
Wang J, Zhang XY, Kang YH, Zhang Y, Chen XY, Zhou JL, Ma W. Modified Sijunzi Granules Exhibit Hemostatic Effect by Activating Akt and Erk Signal Pathways via Regulating 5-HT and Its Receptors Levels. Chin J Integr Med 2024; 30:1121-1127. [PMID: 38212496 DOI: 10.1007/s11655-023-3567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate the hemostatic effect of modified Sijunzi Granules (MSG) in primary immune thrombocytopenia (ITP) zebrafish model and explore the potential mechanism. METHODS AB strain wild type zebrafish were treated with simvastatin (6 µmol/L) for 24 h to establish the hemorrhage model (model control group). The zebrafish were treated with MSG at different doses (55.6, 167, and 500 µg/mL), respectively. The hemostatic effect was assessed by examining the intestinal bleeding and hemostatic rate. 5-Hydroxytryptamine (5-HT) content was determined using enzyme-linked immunosorbent assay (ELISA) assay. The expressions of 5-HT2aR, 5-HT2bR, and SERT genes were detected by quantitative real-time polymerase chain reaction(PCR). The protein expressions of protein kinase B (Akt), p-Akt, extracellular regulated protein kinases (Erk), and p-Erk were examined using Western blot analysis. RESULTS The intestinal bleeding rate was 37%, 40%, and 80% in the 55.6, 167, and 500 µg/mL dose of MSG, respectively, in which 55.6 and 167 µg/mL MSG dose groups were associated with significantly decreased intestinal bleeding rate when compared with the model control group (70%, P<0.05). Significantly higher hemostatic rates were also observed in the 55.6 (54%) and 167 (52%) µg/mL MSG dose groups (P<0.05). MSG increased the 5-HT content and mRNA expression levels of 5-HT2aR, 5-HT2bR, and SERT (P<0.05). In addition, caspase3/7 activity was inhibited (P<0.05). Significant increase in p-Akt and p-Erk was also detected after treatment with MSG (P<0.05). CONCLUSIONS MSG could reduce the incidence and severity of intestinal bleeding in zebrafish by activating MAPK/Erk and PI3K/Akt signal pathways through regulating the levels of 5-HT and its receptors, which may provide evidence for the treatment of ITP.
Collapse
Affiliation(s)
- Jun Wang
- Department of Hematology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xue-Ying Zhang
- Department of Hemato-Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan-Hong Kang
- Department of Hemato-Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yun Zhang
- Department of Hematology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xin-Yi Chen
- Department of Hemato-Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jia-Li Zhou
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Wei Ma
- Department of Hemato-Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
2
|
Scavone M, Clerici B, Femia EA, Ghali C, Fioretti A, Bossi E, Cattaneo M, Podda GM. A case of acquired transient bleeding diathesis associated with acquired platelet storage pool deficiency and defective thromboxane A2 production. Platelets 2024; 35:2358241. [PMID: 38832819 DOI: 10.1080/09537104.2024.2358241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Acquired disorders of platelet function are an underdiagnosed cause of bleeding tendency. A 14-year-old girl developed moderate mucocutaneous bleeding two weeks after a Mycoplasma pneumoniae infection successfully treated with clarithromycin. The patient was referred to us 7 months later for laboratory investigation of the persisting bleeding diathesis. The patient's personal and family histories were negative for bleeding disorders. Complete blood count, von Willebrand Factor levels and coagulation tests were normal; platelet aggregation, ATP secretion, δ-granules content and serum thromboxane B2 levels were defective. At follow-up visits, laboratory parameters and the bleeding diathesis progressively normalized within 2 years. The patient's condition is compatible with a diagnosis of acquired Storage Pool Deficiency (SPD), associated with defective thromboxane A2 production. To our knowledge, this is the first case of acquired, transient SPD with spontaneous remission. The pathogenic role of Mycoplasma pneumoniae infection or clarithromycin is possible, albeit uncertain.
Collapse
Affiliation(s)
- Mariangela Scavone
- Laboratorio di Emostasi e Trombosi - Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Bianca Clerici
- Struttura Complessa di Medicina Generale II, Ospedale San Paolo, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milano, Italy
| | - Eti Alessandra Femia
- Laboratorio di Emostasi e Trombosi - Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Claudia Ghali
- Laboratorio di Emostasi e Trombosi - Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Antonella Fioretti
- Laboratorio di Emostasi e Trombosi - Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Elena Bossi
- Laboratorio di Emostasi e Trombosi - Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | | | - Gian Marco Podda
- Struttura Complessa di Medicina Generale II, Ospedale San Paolo, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Khourssaji M, Bareille M, Alberio L, Borgel D, Fouassier M, Béné MC, Lecompte T, Mullier F. Mepacrine Flow Cytometry Assay for the Diagnosis of Platelet δ-granule Defects: Literature Review on Methods-Towards a Shared Detailed Protocol. Thromb Haemost 2024. [PMID: 39260401 DOI: 10.1055/a-2413-2870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Accurate assessment of platelet secretion is essential for the diagnosis of inherited or acquired platelet function disorders and more specifically in identifying δ-storage pool disease. Mepacrine, a fluorescent dye, specifically accumulates in platelet δ-granules. The mepacrine flow cytometry (mepacrine FCM) assay has been used for more than half a century in the clinical laboratory as a diagnostic tool for platelet δ-granule disorders. The assay requires a small volume of blood, can be performed in thrombocytopenic patients, provides rapid assessment of δ-granule content and secretion, and, thus, enables differentiation between storage and release defects. There is however a broad heterogeneity in methods, reagents, and equipment used. Lack of standardization and limited data on analytical and clinical performances have led the 2022 ISTH SSC (International Society on Thrombosis and Haemostasis Scientific and Standardization Committee) Subcommittee on Platelet Physiology expert consensus to rate this assay as simple but of uncertain value. Yet, the data used by experts to formulate the recommendations were not discussed and even not mentioned. Guidance for laboratory studies of platelet secretion assay would be very helpful for clinical laboratories and health authorities especially considering the implications of the new In Vitro Diagnostic Regulation in Europe. The purpose of the present work was to review the reported methodologies for the mepacrine FCM assay and to offer an example of detailed protocol. This would help standardization and pave the way for more rigorous comparative studies.
Collapse
Affiliation(s)
- Mehdi Khourssaji
- Department of Laboratory Medicine, Hematology Laboratory, CHU UCL Namur, Yvoir, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC) - Pôle Mont, Université catholique de Louvain, Yvoir, Belgium
| | - Marion Bareille
- Department of Laboratory Medicine, Hematology Laboratory, CHU UCL Namur, Yvoir, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC) - Pôle Mont, Université catholique de Louvain, Yvoir, Belgium
| | - Lorenzo Alberio
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Delphine Borgel
- Service d'Hématologie Biologique, Hôpital Necker AP-HP, Paris, France
| | - Marc Fouassier
- Centre de Ressources et de Compétences - Maladies Hémorragiques Constitutionnelles, CHU de Nantes, Nantes, France
| | | | - Thomas Lecompte
- Department of Laboratory Medicine, Hematology Laboratory, CHU UCL Namur, Yvoir, Belgium
- Hematology Department and Grand East Competence Center on Inherited Platelet Disorders, CHU Nancy, Nancy, France
| | - François Mullier
- Department of Laboratory Medicine, Hematology Laboratory, CHU UCL Namur, Yvoir, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC) - Pôle Mont, Université catholique de Louvain, Yvoir, Belgium
- Université de Namur, Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Namur, Belgium
| |
Collapse
|
4
|
Deletion of Grin1 in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation. Blood 2022; 139:2673-2690. [PMID: 35245376 DOI: 10.1182/blood.2021014000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
The process of proplatelet formation (PPF) requires coordinated interaction between megakaryocytes (MKs) and the extracellular matrix (ECM), followed by a dynamic reorganization of the actin and microtubule cytoskeleton. Localized fluxes of intracellular calcium ions (Ca2+) facilitate MK-ECM interaction and PPF. Glutamate-gated N-methyl-D--aspartate receptor (NMDAR) is highly permeable to Ca2+. NMDAR antagonists inhibit MK maturation ex vivo, however there is no in vivo data. Using the Cre-loxP system, we generated a platelet lineage-specific knockout mouse model of reduced NMDAR function in MKs and platelets (Pf4-Grin1-/- mice). Effects of NMDAR deletion were examined using well-established assays of platelet function and production in vivo and ex vivo. We found that Pf4-Grin1-/- mice had defects in megakaryopoiesis, thrombopoiesis and platelet function, which manifested as reduced platelet counts, lower rates of platelet production in the immune model of thrombocytopenia, and a prolonged tail bleeding time. Platelet activation was impaired to a range of agonists associated with reduced Ca2+ responses, including metabotropic-like, and defective platelet spreading. MKs showed reduced colony and proplatelet formation. Impaired reorganization of intracellular F-actin and α-tubulin was identified as the main cause of reduced platelet function and production. Pf4-Grin1-/- MKs also had lower levels of transcripts encoding crucial ECM elements and enzymes, suggesting NMDAR signaling is involved in ECM remodeling. In summary, we provide the first genetic evidence that NMDAR plays an active role in platelet function and production. NMDARs regulate PPF through the mechanism that involves MK-ECM interaction and cytoskeletal reorganization. Our results suggest that NMDAR helps guide PPF in vivo.
Collapse
|
5
|
Balduini A, Fava C, Di Buduo CA, Abbonante V, Meneguzzi A, Soprano PM, Taus F, Castelli M, Giontella A, Dovizio M, Tacconelli S, Patrignani P, Minuz P. Expression and functional characterization of the large-conductance calcium and voltage-activated potassium channel K ca 1.1 in megakaryocytes and platelets. J Thromb Haemost 2021; 19:1558-1571. [PMID: 33590615 DOI: 10.1111/jth.15269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ion channels are transmembrane proteins that play important roles in cell function regulation modulating ionic cell permeability. In megakaryocytes and platelets, regulated ion flows have been demonstrated to modulate platelet production and function. However, a relatively limited characterization of ion channel expression and function is available in the human megakaryocyte-platelet lineage. OBJECTIVE We analyzed the expression and function of the large-conductance calcium and voltage-activated potassium channel Kca 1.1 (also known as Maxi-K, BK, slo1) in human megakaryocytes and platelets. METHODS To investigate the functionality of Kca 1.1, we exploited different agonists (BMS-191011, NS1619, NS11021, epoxyeicosatrienoic acid isoforms) and inhibitors (iberiotoxin, penitrem A) of the channel. RESULTS In megakaryocytes, Kca 1.1 agonists determined a decreased proplatelet formation and altered interaction with the extracellular matrix. Analysis of the actin cytoskeleton demonstrated a significant decrease in megakaryocyte spreading and adhesion to collagen. In platelets, the opening of the channel Kca 1.1 led to a reduced sensitivity to agonists with blunted aggregation in response to ADP, with an inhibitory capacity additive to that of aspirin. The Kca 1.1 agonists, but not the inhibitors, determined a reduction of platelet adhesion and aggregation onto immobilized collagen underflow to an extent similar to that of aspirin and ticagrelor. The opening of the Kca 1.1 resulted in cell hyperpolarization impairing free intracellular calcium in ADP-stimulated platelets and megakaryocytes. CONCLUSIONS The present study reveals new mechanisms in platelet formation and activation, suggesting that targeting Kca 1.1 channels might be of potential pharmacological interest in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Cristiano Fava
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandra Meneguzzi
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Francesco Taus
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Marco Castelli
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Alice Giontella
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST, School of Medicine, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST, School of Medicine, "G. d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST, School of Medicine, "G. d'Annunzio" University, Chieti, Italy
| | - Pietro Minuz
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Di Buduo CA, Aguilar A, Soprano PM, Bocconi A, Miguel CP, Mantica G, Balduini A. Latest culture techniques: cracking the secrets of bone marrow to mass-produce erythrocytes and platelets ex vivo. Haematologica 2021; 106:947-957. [PMID: 33472355 PMCID: PMC8017859 DOI: 10.3324/haematol.2020.262485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Since the dawn of medicine, scientists have carefully observed, modeled and interpreted the human body to improve healthcare. At the beginning there were drawings and paintings, now there is three-dimensional modeling. Moving from two-dimensional cultures and towards complex and relevant biomaterials, tissue-engineering approaches have been developed in order to create three-dimensional functional mimics of native organs. The bone marrow represents a challenging organ to reproduce because of its structure and composition that confer it unique biochemical and mechanical features to control hematopoiesis. Reproducing the human bone marrow niche is instrumental to answer the growing demand for human erythrocytes and platelets for fundamental studies and clinical applications in transfusion medicine. In this review, we discuss the latest culture techniques and technological approaches to obtain functional platelets and erythrocytes ex vivo. This is a rapidly evolving field that will define the future of targeted therapies for thrombocytopenia and anemia, but also a long-term promise for new approaches to the understanding and cure of hematologic diseases.
Collapse
Affiliation(s)
| | - Alicia Aguilar
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Alberto Bocconi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano
| | | | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
7
|
Haen P, Crescence L, Mege D, Altié A, Dubois C, Panicot-Dubois L. Oral Squamous Cell Carcinoma Is Associated with a Low Thrombosis Risk Due to Storage Pool Deficiency in Platelets. Biomedicines 2021; 9:biomedicines9030228. [PMID: 33668375 PMCID: PMC7996194 DOI: 10.3390/biomedicines9030228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
Venous thrombo-embolism (VTE) disease is the second most common cause of mortality in cancer patients, and evaluation and prevention of thrombosis risk is essential. VTE-associated risk varies according to the type of tumor disease. Oral cancer is the most frequent type of head and neck cancer, and it represents approximately 2.1% of all cancers worldwide. Most tumors are squamous cell carcinomas and are mainly due to tobacco and alcohol abuse. VTE risk associated with oral squamous cell carcinoma (OSCC) is low. However, many studies have shown that OSCC has the following biological features of cancers associated with a high thrombosis risk: modified thrombosis and fibrinolysis mechanisms; strong expression of procoagulant proteins; secretion of procoagulant microparticles; and production of procoagulant cytokines. Using an original mouse model of tongue squamous cell carcinoma, our study aimed to clarify this paradoxical situation. First, we showed that OSCC tumors have a pro-aggregatory phenotype and a high local thrombosis risk. Second, we found that tongue tumor mice do not have an elevated systemic thrombosis risk (the risk of an "at distance" thrombosis event such as lower extremity deep venous thrombosis or pulmonary embolism) and even show a reduction in risk. Third, we demonstrated that tongue tumor mice show a reduction in platelet reactivity, which explains the low systemic thrombosis risk. Finally, we found that tongue tumor mice present granule pool deficiency, thereby explaining the reduction in platelet reactivity and systemic thrombosis risk.
Collapse
Affiliation(s)
- Pierre Haen
- Aix Marseille Université, INSERM 1263, INRAE, C2VN, 13885 Marseille, France; (P.H.); (L.C.); (D.M.); (A.A.); (C.D.)
- Department of Oral and Maxillofacial Surgery, Laveran Military and Academic Hospital, 13384 Marseille, France
| | - Lydie Crescence
- Aix Marseille Université, INSERM 1263, INRAE, C2VN, 13885 Marseille, France; (P.H.); (L.C.); (D.M.); (A.A.); (C.D.)
- Aix Marseille Université, PIVMI, 13885 Marseille, France
| | - Diane Mege
- Aix Marseille Université, INSERM 1263, INRAE, C2VN, 13885 Marseille, France; (P.H.); (L.C.); (D.M.); (A.A.); (C.D.)
- Department of Digestive Surgery, Aix Marseille Univ, APHM, Timone University Hospital, 13885 Marseille, France
| | - Alexandre Altié
- Aix Marseille Université, INSERM 1263, INRAE, C2VN, 13885 Marseille, France; (P.H.); (L.C.); (D.M.); (A.A.); (C.D.)
| | - Christophe Dubois
- Aix Marseille Université, INSERM 1263, INRAE, C2VN, 13885 Marseille, France; (P.H.); (L.C.); (D.M.); (A.A.); (C.D.)
- Aix Marseille Université, PIVMI, 13885 Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM 1263, INRAE, C2VN, 13885 Marseille, France; (P.H.); (L.C.); (D.M.); (A.A.); (C.D.)
- Aix Marseille Université, PIVMI, 13885 Marseille, France
- Correspondence:
| |
Collapse
|
8
|
Di Buduo CA, Soprano PM, Miguel CP, Perotti C, Del Fante C, Balduini A. A Gold Standard Protocol for Human Megakaryocyte Culture Based on the Analysis of 1,500 Umbilical Cord Blood Samples. Thromb Haemost 2020; 121:538-542. [PMID: 33160288 DOI: 10.1055/s-0040-1719028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Carolina P Miguel
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Cesare Perotti
- Immunohematology and Transfusion Service and Cell Therapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Claudia Del Fante
- Immunohematology and Transfusion Service and Cell Therapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States
| |
Collapse
|
9
|
Abbonante V, Di Buduo CA, Malara A, Laurent PA, Balduini A. Mechanisms of platelet release: in vivo studies and in vitro modeling. Platelets 2020; 31:717-723. [PMID: 32522064 DOI: 10.1080/09537104.2020.1774532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanisms related to platelet release in the context of the bone marrow niche are not completely known. In this review we discuss what has been discovered about four critical aspects of this process: 1) the bone marrow niche organization, 2) the role of the extracellular matrix components, 3) the mechanisms by which megakaryocytes release platelets and 4) the novel approaches to mimic the bone marrow environment and produce platelets ex vivo.
Collapse
Affiliation(s)
| | | | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia , Pavia, Italy
| | | | | |
Collapse
|
10
|
Jäger B, Vargas KG, Haller PM, Stojkovic S, Kaufmann CC, Freynhofer M, Quehenberger P, Wagner O, Wojta J, Huber K. Immature cell fractions after cessation of chronic P2Y 12-inhibition in patients with coronary artery diseases. Platelets 2020; 32:815-820. [PMID: 32762577 DOI: 10.1080/09537104.2020.1803252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Changes in circulating cell populations may promote ischemic events that occur soon after discontinuation of P2Y12-inhibition. The aim of the study was to track the course of thrombopoietic and erythropoietic cells in patients with coronary artery diseases (CAD) after planned and physician-driven cessation of chronic P2Y12-inhibition (clopidogrel 75 mg OD, or prasugrel 10 mg OD, or ticagrelor 90 mg BID). Cell fractions were determined in 62 patients at baseline (the last day of P2Y12-inhibitor intake), on day-10, day-30, and day-180 thereafter. Immature platelet fraction (IPF), immature reticulocyte fraction (IRF), reticulocyte hemoglobin content (Ret-Hb) and red blood cell count (RBC) significantly increased from baseline to day-180 (IPF: p = .003; IRF: p = .013; Ret-Hb: p < .001; RBC: p = .044). Platelet count, leucocyte count and immature granulocyte fraction did not change over time (p = .561, p = .869, and p = .161, respectively). Fibrinogen levels significantly declined over time (p = .011), thrombopoietin levels increased in a non-significant manner (p = .379). We did not observe any significant interaction with choice of P2Y12-inhibitor, therefore suggesting a drug class-effect. Our data shows, that discontinuation of dual antiplatelet therapy is associated with raised thrombopoietic and erythropoietic activity in the bone marrow, without significant upregulation of thrombopoietin. This provides further evidence for a direct stimulation of precursor cells by P2Y12-inhibitors.
Collapse
Affiliation(s)
- Bernhard Jäger
- Wilhelminenhospital, 3rd Medical Department with Cardiology, Vienna, AT, Austria.,Medical Faculty, Sigmund Freud University, Vienna, AT, Austria
| | - Kris G Vargas
- Wilhelminenhospital, 3rd Medical Department with Cardiology, Vienna, AT, Austria
| | - Paul M Haller
- Wilhelminenhospital, 3rd Medical Department with Cardiology, Vienna, AT, Austria
| | - Stefan Stojkovic
- Department of Cardiology Medical University of Vienna, University Clinic for Internal Medicine II, Vienna, AT, Austria
| | - Christoph C Kaufmann
- Wilhelminenhospital, 3rd Medical Department with Cardiology, Vienna, AT, Austria
| | - Matthias Freynhofer
- Wilhelminenhospital, 3rd Medical Department with Cardiology, Vienna, AT, Austria
| | - Peter Quehenberger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, AT, Austria
| | - Oswald Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, AT, Austria
| | - Johann Wojta
- Department of Cardiology Medical University of Vienna, University Clinic for Internal Medicine II, Vienna, AT, Austria
| | - Kurt Huber
- Wilhelminenhospital, 3rd Medical Department with Cardiology, Vienna, AT, Austria.,Medical Faculty, Sigmund Freud University, Vienna, AT, Austria
| |
Collapse
|
11
|
Kalev-Zylinska ML, Hearn JI, Makhro A, Bogdanova A. N-Methyl-D-Aspartate Receptors in Hematopoietic Cells: What Have We Learned? Front Physiol 2020; 11:577. [PMID: 32625106 PMCID: PMC7311790 DOI: 10.3389/fphys.2020.00577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/08/2020] [Indexed: 12/24/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) provides a pathway for glutamate-mediated inter-cellular communication, best known for its role in the brain but with multiple examples of functionality in non-neuronal cells. Data previously published by others and us provided ex vivo evidence that NMDARs regulate platelet and red blood cell (RBC) production. Here, we summarize what is known about these hematopoietic roles of the NMDAR. Types of NMDAR subunits expressed in megakaryocytes (platelet precursors) and erythroid cells are more commonly found in the developing rather than adult brain, suggesting trophic functions. Nevertheless, similar to their neuronal counterparts, hematopoietic NMDARs function as ion channels, and are permeable to calcium ions (Ca2+). Inhibitors that block open NMDAR (memantine and MK-801) interfere with megakaryocytic maturation and proplatelet formation in primary culture. The effect on proplatelet formation appears to involve Ca2+ influx-dependent regulation of the cytoskeletal remodeling. In contrast to normal megakaryocytes, NMDAR effects in leukemic Meg-01 cells are diverted away from differentiation to increase proliferation. NMDAR hypofunction triggers differentiation of Meg-01 cells with the bias toward erythropoiesis. The underlying mechanism involves changes in the intracellular Ca2+ homeostasis, cell stress pathways, and hematopoietic transcription factors that upon NMDAR inhibition shift from the predominance of megakaryocytic toward erythroid regulators. This ability of NMDAR to balance both megakaryocytic and erythroid cell fates suggests receptor involvement at the level of a bipotential megakaryocyte-erythroid progenitor. In human erythroid precursors and circulating RBCs, NMDAR regulates intracellular Ca2+ homeostasis. NMDAR activity supports survival of early proerythroblasts, and in mature RBCs NMDARs impact cellular hydration state, hemoglobin oxygen affinity, and nitric oxide synthase activity. Overexcitation of NMDAR in mature RBCs leads to Ca2+ overload, K+ loss, RBC dehydration, and oxidative stress, which may contribute to the pathogenesis of sickle cell disease. In summary, there is growing evidence that glutamate-NMDAR signaling regulates megakaryocytic and erythroid cells at different stages of maturation, with some intriguing differences emerging in NMDAR expression and function between normal and diseased cells. NMDAR signaling may provide new therapeutic opportunities in hematological disease, but in vivo applicability needs to be confirmed.
Collapse
Affiliation(s)
- Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Pathology and Laboratory Medicine, LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| | - James I. Hearn
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
12
|
Haller PM, Stojkovic S, Piackova E, Andric T, Wisgrill L, Spittler A, Wojta J, Huber K, Jäger B. The association of P2Y 12 inhibitors with pro-coagulatory extracellular vesicles and microRNAs in stable coronary artery disease. Platelets 2019; 31:497-504. [PMID: 31389740 DOI: 10.1080/09537104.2019.1648780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EV) act as a cellular communication tool by carrying lipids, proteins and micro RNA (miR) between cells, thereby playing a pivotal role in thromboembolic processes. The effect of P2Y12 inhibitors on pro-coagulatory, phosphatidylserine (PS)-expressing EV has been investigated previously, but only in vitro or during confounding clinical conditions, such as acute coronary syndrome. Hence, we enrolled 62 consecutive patients 12 month after percutaneous coronary intervention and stent implantation and consequent treatment with dual-antiplatelet therapy consisting of low-dose aspirin and P2Y12 inhibitors. Blood for platelet function testing and EV and miR measurements was taken on the last day of P2Y12 inhibitor intake (baseline, on-treatment) and 10, 30 and 180 days thereafter (off-treatment). We did not observe any influence of P2Y12 inhibitors on the levels of PS-EV or EV sub-population from platelets, erythrocytes, monocytes or endothelial cells, respectively. There was no relationship between platelet function and EV levels in plasma. However, the association of miR-21 and miR-150 with platelet EVs was significantly different between on- and off-treatment measurements. Hence, our study suggests no influence of P2Y12 inhibition on the count of EVs in plasma, but on the potential cargo of platelet-derived EV.
Collapse
Affiliation(s)
- Paul M Haller
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna , Vienna, Austria
| | - Edita Piackova
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria
| | - Tijana Andric
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria
| | - Lukas Wisgrill
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna , Vienna, Austria
| | - Andreas Spittler
- Department of Surgery, Research Laboratories, Medical University of Vienna , Vienna, Austria.,Core Facility Flow Cytometry, Medical University of Vienna , Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria.,Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna , Vienna, Austria.,Core Facility Flow Cytometry, Medical University of Vienna , Vienna, Austria
| | - Kurt Huber
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria.,Faculty of Medicine, Sigmund Freud University , Vienna, Austria
| | - Bernhard Jäger
- 3 Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital , Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research , Vienna, Austria.,Faculty of Medicine, Sigmund Freud University , Vienna, Austria
| |
Collapse
|
13
|
Cattaneo M. Inherited Disorders of Platelet Function. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Megakaryocyte Contribution to Bone Marrow Fibrosis: many Arrows in the Quiver. Mediterr J Hematol Infect Dis 2018; 10:e2018068. [PMID: 30416700 PMCID: PMC6223581 DOI: 10.4084/mjhid.2018.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
In Primary Myelofibrosis (PMF), megakaryocyte dysplasia/hyperplasia determines the release of inflammatory cytokines that, in turn, stimulate stromal cells and induce bone marrow fibrosis. The pathogenic mechanism and the cells responsible for progression to bone marrow fibrosis in PMF are not completely understood. This review article aims to provide an overview of the crucial role of megakaryocytes in myelofibrosis by discussing the role and the altered secretion of megakaryocyte-derived soluble factors, enzymes and extracellular matrices that are known to induce bone marrow fibrosis.
Collapse
|
15
|
Kamal T, Green TN, Hearn JI, Josefsson EC, Morel-Kopp MC, Ward CM, During MJ, Kalev-Zylinska ML. N-methyl-d-aspartate receptor mediated calcium influx supports in vitro differentiation of normal mouse megakaryocytes but proliferation of leukemic cell lines. Res Pract Thromb Haemost 2017; 2:125-138. [PMID: 30046713 PMCID: PMC5974914 DOI: 10.1002/rth2.12068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Background N-methyl-d-aspartate receptors (NMDARs) contribute calcium influx in megakaryocytic cells but their roles remain unclear; both pro- and anti-differentiating effects have been shown in different contexts. Objectives The aim of this study was to clarify NMDAR contribution to megakaryocytic differentiation in both normal and leukemic cells. Methods Meg-01, Set-2, and K-562 leukemic cell lines were differentiated using phorbol-12-myristate-13-acetate (PMA, 10 nmol L-1) or valproic acid (VPA, 500 μmol L-1). Normal megakaryocytes were grown from mouse marrow-derived hematopoietic progenitors (lineage-negative and CD41a-enriched) in the presence of thrombopoietin (30-40 nmol L-1). Marrow explants were used to monitor proplatelet formation in the native bone marrow milieu. In all culture systems, NMDARs were inhibited using memantine and MK-801 (100 μmol L-1); their effects compared against appropriate controls. Results The most striking observation from our studies was that NMDAR antagonists markedly inhibited proplatelet formation in all primary cultures employed. Proplatelets were either absent (in the presence of memantine) or short, broad and intertwined (with MK-801). Earlier steps of megakaryocytic differentiation (acquisition of CD41a and nuclear ploidy) were maintained, albeit reduced. In contrast, in leukemic Meg-01 cells, NMDAR antagonists inhibited differentiation in the presence of PMA and VPA but induced differentiation when applied by themselves. Conclusions NMDAR-mediated calcium influx is required for normal megakaryocytic differentiation, in particular proplatelet formation. However, in leukemic cells, the main NMDAR role is to inhibit differentiation, suggesting diversion of NMDAR activity to support leukemia growth. Further elucidation of the NMDAR and calcium pathways in megakaryocytic cells may suggest novel ways to modulate abnormal megakaryopoiesis.
Collapse
Affiliation(s)
- Tania Kamal
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand
| | - Taryn N Green
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand
| | - James I Hearn
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand
| | - Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research Parkville Vic. Australia.,Department of Medical Biology University of Melbourne Melbourne Vic. Australia
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine Royal North Shore Hospital Sydney NSW Australia.,Northern Blood Research Centre Kolling Institute University of Sydney Sydney NSW Australia
| | - Christopher M Ward
- Department of Haematology and Transfusion Medicine Royal North Shore Hospital Sydney NSW Australia.,Northern Blood Research Centre Kolling Institute University of Sydney Sydney NSW Australia
| | - Matthew J During
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand.,Departments of Molecular Virology, Immunology and Medical Genetics Neuroscience and Neurological Surgery Ohio State University Columbus OH USA
| | - Maggie L Kalev-Zylinska
- Department of Molecular Medicine & Pathology University of Auckland Auckland New Zealand.,LabPlus Haematology Auckland City Hospital Auckland New Zealand
| |
Collapse
|
16
|
Di Buduo CA, Soprano PM, Tozzi L, Marconi S, Auricchio F, Kaplan DL, Balduini A. Modular flow chamber for engineering bone marrow architecture and function. Biomaterials 2017; 146:60-71. [PMID: 28898758 PMCID: PMC6056889 DOI: 10.1016/j.biomaterials.2017.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
Abstract
The bone marrow is a soft, spongy, gelatinous tissue found in the hollow cavities of flat and long bones that support hematopoiesis in order to maintain the physiologic turnover of all blood cells. Silk fibroin, derived from Bombyx mori silkworm cocoons, is a promising biomaterial for bone marrow engineering, because of its tunable architecture and mechanical properties, the capacity of incorporating labile compounds without loss of bioactivity and demonstrated ability to support blood cell formation. In this study, we developed a bone marrow scaffold consisting of a modular flow chamber made of polydimethylsiloxane, holding a silk sponge, prepared with salt leaching methods and functionalized with extracellular matrix components. The silk sponge was able to support efficient platelet formation when megakaryocytes were seeded in the system. Perfusion of the chamber allowed the recovery of functional platelets based on multiple activation tests. Further, inhibition of AKT signaling molecule, which has been shown to be crucial in regulating physiologic platelet formation, significantly reduced the number of collected platelets, suggesting the applicability of this tissue model for evaluation of the effects of bone marrow exposure to compounds that may affect platelet formation. In conclusion, we have bioengineered a novel modular system that, along with multi-porous silk sponges, can provide a useful technology for reproducing a simplified bone marrow scaffold for blood cell production ex vivo.
Collapse
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Stefania Marconi
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
17
|
Pathophysiological Significance of Store-Operated Calcium Entry in Megakaryocyte Function: Opening New Paths for Understanding the Role of Calcium in Thrombopoiesis. Int J Mol Sci 2016; 17:ijms17122055. [PMID: 27941645 PMCID: PMC5187855 DOI: 10.3390/ijms17122055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Store-Operated Calcium Entry (SOCE) is a universal calcium (Ca2+) influx mechanism expressed by several different cell types. It is now known that Stromal Interaction Molecule (STIM), the Ca2+ sensor of the intracellular compartments, together with Orai and Transient Receptor Potential Canonical (TRPC), the subunits of Ca2+ permeable channels on the plasma membrane, cooperate in regulating multiple cellular functions as diverse as proliferation, differentiation, migration, gene expression, and many others, depending on the cell type. In particular, a growing body of evidences suggests that a tight control of SOCE expression and function is achieved by megakaryocytes along their route from hematopoietic stem cells to platelet production. This review attempts to provide an overview about the SOCE dynamics in megakaryocyte development, with a focus on most recent findings related to its involvement in physiological and pathological thrombopoiesis.
Collapse
|
18
|
Melazzini F, Palombo F, Balduini A, De Rocco D, Marconi C, Noris P, Gnan C, Pippucci T, Bozzi V, Faleschini M, Barozzi S, Doubek M, Di Buduo CA, Kozubik KS, Radova L, Loffredo G, Pospisilova S, Alfano C, Seri M, Balduini CL, Pecci A, Savoia A. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica 2016; 101:1333-1342. [PMID: 27365488 PMCID: PMC5394865 DOI: 10.3324/haematol.2016.147496] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/29/2016] [Indexed: 11/09/2022] Open
Abstract
ETV6-related thrombocytopenia is an autosomal dominant thrombocytopenia that has been recently identified in a few families and has been suspected to predispose to hematologic malignancies. To gain further information on this disorder, we searched for ETV6 mutations in the 130 families with inherited thrombocytopenia of unknown origin from our cohort of 274 consecutive pedigrees with familial thrombocytopenia. We identified 20 patients with ETV6-related thrombocytopenia from seven pedigrees. They have five different ETV6 variants, including three novel mutations affecting the highly conserved E26 transformation-specific domain. The relative frequency of ETV6-related thrombocytopenia was 2.6% in the whole case series and 4.6% among the families with known forms of inherited thrombocytopenia. The degree of thrombocytopenia and bleeding tendency of the patients with ETV6-related thrombocytopenia were mild, but four subjects developed B-cell acute lymphoblastic leukemia during childhood, resulting in a significantly higher incidence of this condition compared to that in the general population. Clinical and laboratory findings did not identify any particular defects that could lead to the suspicion of this disorder from the routine diagnostic workup. However, at variance with most inherited thrombocytopenias, platelets were not enlarged. In vitro studies revealed that the maturation of the patients' megakaryocytes was defective and that the patients have impaired proplatelet formation. Moreover, platelets from patients with ETV6-related thrombocytopenia have reduced ability to spread on fibrinogen. Since the dominant thrombocytopenias due to mutations in RUNX1 and ANKRD26 are also characterized by normal platelet size and predispose to hematologic malignancies, we suggest that screening for ETV6, RUNX1 and ANKRD26 mutations should be performed in all subjects with autosomal dominant thrombocytopenia and normal platelet size.
Collapse
Affiliation(s)
- Federica Melazzini
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - Flavia Palombo
- Department of Medical and Surgical Science, Policlinico Sant'Orsola Malpighi and University of Bologna, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Daniela De Rocco
- Department of Medical, Surgical and Health Sciences, IRCCS Burlo Garofolo and University of Trieste, Italy
| | - Caterina Marconi
- Department of Medical and Surgical Science, Policlinico Sant'Orsola Malpighi and University of Bologna, Italy
| | - Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - Chiara Gnan
- Department of Medical, Surgical and Health Sciences, IRCCS Burlo Garofolo and University of Trieste, Italy
| | - Tommaso Pippucci
- Department of Medical and Surgical Science, Policlinico Sant'Orsola Malpighi and University of Bologna, Italy
| | - Valeria Bozzi
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - Michela Faleschini
- Department of Medical, Surgical and Health Sciences, IRCCS Burlo Garofolo and University of Trieste, Italy
| | - Serena Barozzi
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - Michael Doubek
- University Hospital and Masaryk University, Brno, Czech Republic
| | | | - Katerina Stano Kozubik
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Giuseppe Loffredo
- Department of Oncology, Azienda "Santobono-Pausilipon", Pausilipon Hospital, Napoli, Italy
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Marco Seri
- Department of Medical and Surgical Science, Policlinico Sant'Orsola Malpighi and University of Bologna, Italy
| | - Carlo L Balduini
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - Anna Savoia
- Department of Medical, Surgical and Health Sciences, IRCCS Burlo Garofolo and University of Trieste, Italy
| |
Collapse
|
19
|
Björquist A, Di Buduo CA, Femia EA, Storey RF, Becker RC, Balduini A, Nylander S, Cattaneo M. Studies of the interaction of ticagrelor with the P2Y 13 receptor and with P2Y 13-dependent pro-platelet formation by human megakaryocytes. Thromb Haemost 2016; 116:1079-1088. [PMID: 27605392 DOI: 10.1160/th15-10-0829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/15/2016] [Indexed: 11/05/2022]
Abstract
Ticagrelor is an antagonist of the platelet P2Y12 receptor for ADP, approved for the prevention of thromboembolic events in patients with acute coronary syndrome. Previous studies showed that ticagrelor has no significant activity versus P1 receptors for adenosine and other known P2Y receptors, with the exception of P2Y13, which was not tested. The P2Y12 antagonist cangrelor has been shown to also inhibit P2Y13 and to decrease the P2Y13-regulated capacity of megakaryocytes to produce pro-platelets. We tested whether or not ticagrelor inhibits P2Y13 signalling and function. The in vitro effects of ticagrelor, its active (TAM) and inactive (TIM) metabolites, cangrelor and the P2Y13 antagonist MRS2211 were tested in two experimental models: 1) a label-free cellular response assay in P2Y13-transfected HEK293 T-REx cells; and 2) pro-platelet formation by human megakaryocytes in culture. Ticagrelor, TAM, cangrelor and MRS2211, but not TIM, inhibited the cellular responses in P2Y13-transfected cells. In contrast, only MRS2211 and cangrelor, confirming previous results, inhibited pro-platelet formation by megakaryocytes in vitro. The platelet count of patients randomised to treatment with ticagrelor in the PLATO trial did not change during treatment and was comparable to those of patients randomised to clopidogrel. In conclusion, ticagrelor and TAM act as P2Y13 antagonists in a transfected cell system in vitro but this does not translate into any impact on pro-platelet formation in vitro or altered platelet count in patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sven Nylander
- Sven Nylander, AstraZeneca R&D Mölndal, 431 83 Mölndal, Sweden, Tel.: +46 31 7762149, Fax: +46 31 7763761, E-mail:
| | - Marco Cattaneo
- Marco Cattaneo, Medicina 3, Ospedale San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano. Milan, Italy, Tel.: +39 0250323095, Fax: +39 0250323089, E-mail:
| |
Collapse
|
20
|
Di Buduo CA, Currao M, Pecci A, Kaplan DL, Balduini CL, Balduini A. Revealing eltrombopag's promotion of human megakaryopoiesis through AKT/ERK-dependent pathway activation. Haematologica 2016; 101:1479-1488. [PMID: 27515246 DOI: 10.3324/haematol.2016.146746] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Eltrombopag is a small, non-peptide thrombopoietin mimetic that has been approved for increasing platelet count not only in immune thrombocytopenia and Hepatitis C virus-related thrombocytopenia, but also in aplastic anemia. Moreover, this drug is under investigation for increasing platelet counts in myelodysplastic syndromes. Despite current clinical practice, the mechanisms governing eltrombopag's impact on human hematopoiesis are largely unknown, in part due to the impossibility of using traditional in vivo models. To investigate eltrombopag's impact on megakaryocyte functions, we employed our established in vitro model for studying hematopoietic stem cell differentiation combined with our latest 3-dimensional silk-based bone marrow tissue model. Results demonstrated that eltrombopag favors human megakaryocyte differentiation and platelet production in a dose-dependent manner. These effects are accompanied by increased phosphorylation of AKT and ERK1/2 signaling molecules, which have been proven to be crucial in regulating physiologic thrombopoiesis. These data further clarify the different mechanisms of action of eltrombopag when compared to romiplostim, which, as we have shown, induces the proliferation of immature megakaryocytes rather than platelet production, due to the unbalanced activation of AKT and ERK1/2 signaling molecules. In conclusion, our research clarifies the underlying mechanisms that govern the action of eltrombopag on megakaryocyte functions and its relevance in clinical practice.
Collapse
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Italy.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Italy.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Carlo L Balduini
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Italy .,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
21
|
Guarracino JF, Cinalli AR, Fernández V, Roquel LI, Losavio AS. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction. Neuroscience 2016; 326:31-44. [PMID: 27058149 DOI: 10.1016/j.neuroscience.2016.03.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/28/2023]
Abstract
It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12-13 receptors, 2-methylthioadenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12-13 antagonists AR-C69931MX or 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5'-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y13. This study provides new insights into the types of purinergic receptors that contribute to the fine-tuning of cholinergic transmission at mammalian neuromuscular junction.
Collapse
Affiliation(s)
- Juan F Guarracino
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina
| | - Alejandro R Cinalli
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina
| | - Verónica Fernández
- Departamento de Biología, Universidad Argentina John F Kennedy, Sarmiento 4564 (CP 1197), Buenos Aires, Argentina
| | - Liliana I Roquel
- Departamento de Biología, Universidad Argentina John F Kennedy, Sarmiento 4564 (CP 1197), Buenos Aires, Argentina
| | - Adriana S Losavio
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina.
| |
Collapse
|
22
|
Santos-Gallego CG. Legacy of blood: does prasugrel inhibit megakaryocytes and do juvenile platelets inherit this inhibition? Haematologica 2016; 100:1103-5. [PMID: 26341522 DOI: 10.3324/haematol.2015.132134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Carlos G Santos-Gallego
- AtheroThrombosis Research Unit, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
23
|
Di Buduo CA, Alberelli MA, Glembostky AC, Podda G, Lev PR, Cattaneo M, Landolfi R, Heller PG, Balduini A, De Candia E. Abnormal proplatelet formation and emperipolesis in cultured human megakaryocytes from gray platelet syndrome patients. Sci Rep 2016; 6:23213. [PMID: 26987485 PMCID: PMC4796794 DOI: 10.1038/srep23213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/02/2016] [Indexed: 12/19/2022] Open
Abstract
The Gray Platelet Syndrome (GPS) is a rare inherited bleeding disorder characterized by deficiency of platelet α-granules, macrothrombocytopenia and marrow fibrosis. The autosomal recessive form of GPS is linked to loss of function mutations in NBEAL2, which is predicted to regulate granule trafficking in megakaryocytes, the platelet progenitors. We report the first analysis of cultured megakaryocytes from GPS patients with NBEAL2 mutations. Megakaryocytes cultured from peripheral blood or bone marrow hematopoietic progenitor cells from four patients were used to investigate megakaryopoiesis, megakaryocyte morphology and platelet formation. In vitro differentiation of megakaryocytes was normal, whereas we observed deficiency of megakaryocyte α-granule proteins and emperipolesis. Importantly, we first demonstrated that platelet formation by GPS megakaryocytes was severely affected, a defect which might be the major cause of thrombocytopenia in patients. These results demonstrate that cultured megakaryocytes from GPS patients provide a valuable model to understand the pathogenesis of GPS in humans.
Collapse
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, Pavia, Italy
| | - Maria Adele Alberelli
- Department of Internal Medicine, Policlinico Agostino Gemelli, Catholic University, Rome, Italy
| | - Ana C Glembostky
- Hematology Research, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Gianmarco Podda
- Medicina III, Azienda Ospedaliera San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Paola R Lev
- Hematology Research, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Marco Cattaneo
- Medicina III, Azienda Ospedaliera San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Raffaele Landolfi
- Department of Internal Medicine, Policlinico Agostino Gemelli, Catholic University, Rome, Italy
| | - Paula G Heller
- Hematology Research, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Erica De Candia
- Department of Internal Medicine, Policlinico Agostino Gemelli, Catholic University, Rome, Italy
| |
Collapse
|
24
|
Abbonante V, Di Buduo CA, Gruppi C, Malara A, Gianelli U, Celesti G, Anselmo A, Laghi L, Vercellino M, Visai L, Iurlo A, Moratti R, Barosi G, Rosti V, Balduini A. Thrombopoietin/TGF-β1 Loop Regulates Megakaryocyte Extracellular Matrix Component Synthesis. Stem Cells 2016; 34:1123-33. [PMID: 26748484 DOI: 10.1002/stem.2285] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022]
Abstract
Extracellular matrix (ECM) components initiate crucial biochemical and biomechanical cues that are required for bone marrow homeostasis. In our research, we prove that a peri-cellular matrix composed primarily of type III and type IV collagens, and fibronectin surrounds human megakaryocytes in the bone marrow. The data we collected support the hypothesis that bone marrow megakaryocytes possess a complete mechanism to synthesize the ECM components, and that thrombopoietin is a pivotal regulator of this new function inducing transforming growth factor-β1 (TGF-β1) release and consequent activation of the downstream pathways, both in vitro and in vivo. This activation results in a dose dependent increase of ECM component synthesis by megakaryocytes, which is reverted upon incubation with JAK and TGF-β1 receptor specific inhibitors. These data are pivotal for understanding the central role of megakaryocytes in creating their own regulatory niche within the bone marrow environment.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Umberto Gianelli
- Hematopathology Service, Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Celesti
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Achille Anselmo
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Vercellino
- Center for Tissue Engineering (CIT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Ergonomics and Disability, Salvatore Maugeri Foundation (FSM), Laboratory of Nanotechnology, Pavia, Italy
| | - Livia Visai
- Center for Tissue Engineering (CIT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Ergonomics and Disability, Salvatore Maugeri Foundation (FSM), Laboratory of Nanotechnology, Pavia, Italy
| | - Alessandra Iurlo
- Oncohematology of the Elderly Unit, Oncohematology Division, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Remigio Moratti
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Giovanni Barosi
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Rosti
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
25
|
Burnstock G. Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal 2015; 11:411-34. [PMID: 26260710 PMCID: PMC4648797 DOI: 10.1007/s11302-015-9462-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
The involvement of purinergic signalling in the physiology of erythrocytes, platelets and leukocytes was recognised early. The release of ATP and the expression of purinoceptors and ectonucleotidases on erythrocytes in health and disease are reviewed. The release of ATP and ADP from platelets and the expression and roles of P1, P2Y(1), P2Y(12) and P2X1 receptors on platelets are described. P2Y(1) and P2X(1) receptors mediate changes in platelet shape, while P2Y(12) receptors mediate platelet aggregation. The changes in the role of purinergic signalling in a variety of disease conditions are considered. The successful use of P2Y(12) receptor antagonists, such as clopidogrel and ticagrelor, for the treatment of thrombosis, myocardial infarction and stroke is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
26
|
Hyaluronan based hydrogels provide an improved model to study megakaryocyte-matrix interactions. Exp Cell Res 2015; 346:1-8. [PMID: 26027944 DOI: 10.1016/j.yexcr.2015.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/30/2015] [Accepted: 05/16/2015] [Indexed: 01/09/2023]
Abstract
Hyaluronan (HA) is a glycosamminoglican involved in cell biology as well as a relevant polymer for tissue engineering and regenerative medicine. Megakaryocytes (Mks) are immersed in a mesh of extracellular matrix (ECM) components that regulate their maturation in the bone marrow (BM) and the release of platelets into the bloodstream. While fibrous ECMs such as collagens and fibronectin have been demonstrated to differently regulate Mk function and platelet release, the role of HA, that fills the majority of the BM extracellular interstitial space, has not been investigated so far. Here we demonstrated that, although human Mks express HA receptors, they are not affected by HA in terms of in vitro differentiation, maturation and platelet formation. Importantly, chemical properties of HA were exploited to generate hydrogels with entrapped ECMs that represent a useful model to more closely mimic the tridimensional characteristics of the BM environment for studying Mk function. In conclusion, in this work we demonstrated that HA is an ideal candidate for a 3D ex vivo model of human BM ECM component environment.
Collapse
|
27
|
Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 2015; 72:1517-36. [PMID: 25572292 PMCID: PMC4369169 DOI: 10.1007/s00018-014-1813-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Megakaryocytes are rare cells found in the bone marrow, responsible for the everyday production and release of millions of platelets into the bloodstream. Since the discovery and cloning, in 1994, of their principal humoral factor, thrombopoietin, and its receptor c-Mpl, many efforts have been directed to define the mechanisms underlying an efficient platelet production. However, more recently different studies have pointed out new roles for megakaryocytes as regulators of bone marrow homeostasis and physiology. In this review we discuss the interaction and the reciprocal regulation of megakaryocytes with the different cellular and extracellular components of the bone marrow environment. Finally, we provide evidence that these processes may concur to the reconstitution of the bone marrow environment after injury and their deregulation may lead to the development of a series of inherited or acquired pathologies.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A. Di Buduo
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
28
|
Liverani E, Kilpatrick LE, Tsygankov AY, Kunapuli SP. The role of P2Y₁₂ receptor and activated platelets during inflammation. Curr Drug Targets 2015; 15:720-8. [PMID: 24845219 DOI: 10.2174/1389450115666140519162133] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 03/07/2014] [Accepted: 05/16/2014] [Indexed: 01/05/2023]
Abstract
Platelets play an important role not only during thrombosis, but also in modulating immune responses through their interaction with immune cells and by releasing inflammatory mediators upon activation. The P2Y12 receptor is a Gi-coupled receptor that not only regulates ADP-induced aggregation but can also dramatically potentiate secretion, when platelets are activated by other stimuli. Considering the importance of P2Y12 receptor in platelet function, a class of antiplatelet drugs, thienopyridines, have been designed and successfully used to prevent thrombosis. This review will focus on the role of activated platelets in inflammation and the effects that P2Y12 antagonism exerts on the inflammatory process. A change in platelet functions was noted in patients treated with thienopyridines during inflammatory conditions, suggesting that platelets may modulate the inflammatory response. Further experiments in a variety of animal models of diseases, such as sepsis, rheumatoid arthritis, myocardial infarction, pancreatitis and pulmonary inflammation have also demonstrated that activated platelets influence the inflammatory state. Platelets can secrete inflammatory modulators in a P2Y12-dependent manner, and, as a result, directly alter the inflammatory response. P2Y12 receptor may also be expressed in other cells of the immune system, indicating that thienopyridines could directly influence the immune system rather than only through platelets. Overall the results obtained to date strongly support the notion that activated platelets significantly contribute to the inflammatory process and that antagonizing P2Y12 receptor can influence the immune response.
Collapse
Affiliation(s)
| | | | | | - Satya P Kunapuli
- Sol Scherry Thrombosis Research Center 3420 N. Brad Street, Philadelphia 19140, USA.
| |
Collapse
|
29
|
Kubica J, Kozinski M, Navarese EP, Tantry U, Kubica A, Siller-Matula JM, Jeong YH, Fabiszak T, Andruszkiewicz A, Gurbel PA. Cangrelor: an emerging therapeutic option for patients with coronary artery disease. Curr Med Res Opin 2014; 30:813-28. [PMID: 24393016 DOI: 10.1185/03007995.2014.880050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To perform a systematic up-to-date review and critical discussion of potential clinical applications of cangrelor based on its pharmacologic properties and the main findings from randomized clinical studies. METHODS A database search (PubMed, CENTRAL and Google Scholar) by two independent investigators, including proceedings from scientific sessions of ACC, AHA, ESC, TCT and EuroPCR, from January 1998 through December 2013. RESULTS Cangrelor is a potent, intravenous, direct-acting P2Y12 antagonist with rapid onset and quickly reversible action. In contrast to ticagrelor, cangrelor's interaction with thienopiridines requires termination of cangrelor infusion before switching to clopidogrel or prasugrel. According to randomized trials, a cangrelor-clopidogrel combination is relatively safe and more effective than the standard clopidogrel regimen in both urgent and elective percutaneous coronary intervention (PCI) settings, with the advantage of this drug combination fully evident when the universal definition of myocardial infarction is applied. In contrast to available antiplatelet drugs with delayed onset and offset of action, its favorable properties make cangrelor a desirable agent for ad hoc elective PCI, high risk acute coronary syndromes treated with immediate coronary stenting and for bridging those surgery patients who require periprocedural P2Y12 inhibition. Current evidence on cangrelor therapy is limited by the lack of adequately powered studies assessing cangrelor co-administration either with prasugrel or ticagrelor, suboptimal design of some of the trials favoring cangrelor, potentially attenuated benefits with modern stent design, and finally, by the lack of survival advantage. CONCLUSIONS With its pharmacokinetic and pharmacodynamic advantages, allowing consistent and strong P2Y12 inhibition, and with its rapid onset and swift reversal of action devoid of need for an antidote, cangrelor might improve clinical outcomes in clopidogrel-treated patients by reducing ischemic events, while maintaining a favorable safety profile. However, further studies, addressing the safety and efficacy of cangrelor on top of novel oral P2Y12 inhibitors, are warranted.
Collapse
Affiliation(s)
- Jacek Kubica
- Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Avanzi MP, Mitchell WB. Ex Vivoproduction of platelets from stem cells. Br J Haematol 2014; 165:237-47. [DOI: 10.1111/bjh.12764] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Mauro P. Avanzi
- Platelet Biology Laboratory; New York Blood Center; Lindsley F. Kimball Research Institute; New York NY USA
| | - William Beau Mitchell
- Platelet Biology Laboratory; New York Blood Center; Lindsley F. Kimball Research Institute; New York NY USA
| |
Collapse
|
31
|
Di Buduo CA, Moccia F, Battiston M, De Marco L, Mazzucato M, Moratti R, Tanzi F, Balduini A. The importance of calcium in the regulation of megakaryocyte function. Haematologica 2014; 99:769-78. [PMID: 24463213 DOI: 10.3324/haematol.2013.096859] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Platelet release by megakaryocytes is regulated by a concert of environmental and autocrine factors. We previously showed that constitutively released adenosine diphosphate by human megakaryocytes leads to platelet production. Here we show that adenosine diphosphate elicits, in human megakaryocytes, an increase in cytosolic calcium concentration, followed by a plateau, which is lowered in the absence of extracellular calcium, suggesting the involvement of Store-Operated Calcium Entry. Indeed, we demonstrate that megakaryocytes express the major candidates to mediate Store-Operated Calcium Entry, stromal interaction molecule 1, Orai1 and canonical transient receptor potential 1, which are activated upon either pharmacological or physiological depletion of the intracellular calcium pool. This mechanism is inhibited by phospholipase C or inositol-3-phosphate receptor inhibitors and by a specific calcium entry blocker. Studies on megakaryocyte behavior, on extracellular matrix proteins that support proplatelet extension, show that calcium mobilization from intracellular stores activates signaling cascades that trigger megakaryocyte adhesion and proplatelet formation, and promotes extracellular calcium entry which is primarily involved in the regulation of the contractile force responsible for megakaryocyte motility. These findings provide the first evidence that both calcium mobilization from intracellular stores and extracellular calcium entry specifically regulate human megakaryocyte functions.
Collapse
|
32
|
Badalucco S, Di Buduo CA, Campanelli R, Pallotta I, Catarsi P, Rosti V, Kaplan DL, Barosi G, Massa M, Balduini A. Involvement of TGFβ1 in autocrine regulation of proplatelet formation in healthy subjects and patients with primary myelofibrosis. Haematologica 2013; 98:514-7. [PMID: 23403314 DOI: 10.3324/haematol.2012.076752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Megakaryocytes release platelets into the bloodstream by elongating proplatelets. In this study, we showed that human megakaryocytes constitutively release Transforming Growth Factor β1 and express its receptors. Importantly, Transforming Growth Factor β1 downstream signaling, through SMAD2/3 phosphorylation, was shown to be active in megakaryocytes extending proplatelets, indicating a type of autocrine stimulation on megakaryocyte development. Furthermore, inactivation of Transforming Growth Factor β1 signaling, by the receptor inhibitors SB431542 and Stemolecule ALK5 inhibitor, determined a significant decrease in proplatelet formation. Recent studies indicated a crucial role of Transforming Growth Factor β1 in the pathogenesis of primary myelofibrosis. We demonstrated that primary myelofibrosis-derived megakaryocytes expressed increased levels of bioactive Transforming Growth Factor β1; however, higher levels of released Transforming Growth Factor β1 did not lead to enhanced activation of downstream pathways. Overall, these data propose Transforming Growth Factor β1 as a new element in the autocrine regulation of proplatelet formation in vitro. Despite the increase in Transforming Growth Factor β1 this mechanism seems to be preserved in primary myelofibrosis.
Collapse
Affiliation(s)
- Stefania Badalucco
- Biotechnology Laboratories, Department of Molecular Medicine, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
High doses of romiplostim induce proliferation and reduce proplatelet formation by human megakaryocytes. PLoS One 2013; 8:e54723. [PMID: 23359807 PMCID: PMC3554640 DOI: 10.1371/journal.pone.0054723] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
Background Romiplostim (AMG531) is a Thrombopoietin (TPO) receptor agonist with no homology with the endogenous TPO that has been used to treat patients affected by immune thrombocytopenia (ITP). Despite the use of TPO mimetics in the clinical practice, the mechanisms underlying their impact on megakaryocyte function is still unknown. Methodology/Principal Findings In this project we took advantage of an in vitro human model, that we have established in our laboratory for long time to study megakaryocyte development from human cord blood-derived progenitor cells, and we demonstrated that increasing doses of AMG531 (100 to 2000 ng/mL) determine a progressive increase of megakaryocyte proliferation with a parallel decrease in megakaryocyte ploidy and capacity of extending proplatelets. Most importantly, these differences in megakaryocyte function seemed to be correlated to modulation of AKT phosphorylation. Conclusions/Significance Overall our results shed new light on the mechanisms and on the relevance of dosage related to AMG531 impact on megakaryocyte function.
Collapse
|