1
|
Ferens FG, Taber CC, Stuart S, Hubert M, Tarade D, Lee JE, Ohh M. Deficiency in PHD2-mediated hydroxylation of HIF2α underlies Pacak-Zhuang syndrome. Commun Biol 2024; 7:240. [PMID: 38418569 PMCID: PMC10902354 DOI: 10.1038/s42003-024-05904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Pacak-Zhuang syndrome is caused by mutations in the EPAS1 gene, which encodes for one of the three hypoxia-inducible factor alpha (HIFα) paralogs HIF2α and is associated with defined but varied phenotypic presentations including neuroendocrine tumors and polycythemia. However, the mechanisms underlying the complex genotype-phenotype correlations remain incompletely understood. Here, we devised a quantitative method for determining the dissociation constant (Kd) of the HIF2α peptides containing disease-associated mutations and the catalytic domain of prolyl-hydroxylase (PHD2) using microscale thermophoresis (MST) and showed that neuroendocrine-associated Class 1 HIF2α mutants have distinctly higher Kd than the exclusively polycythemia-associated Class 2 HIF2α mutants. Based on the co-crystal structure of PHD2/HIF2α peptide complex at 1.8 Å resolution, we showed that the Class 1 mutated residues are localized to the critical interface between HIF2α and PHD2, adjacent to the PHD2 active catalytic site, while Class 2 mutated residues are localized to the more flexible region of HIF2α that makes less contact with PHD2. Concordantly, Class 1 mutations were found to significantly increase HIF2α-mediated transcriptional activation in cellulo compared to Class 2 counterparts. These results reveal a structural mechanism in which the strength of the interaction between HIF2α and PHD2 is at the root of the general genotype-phenotype correlations observed in Pacak-Zhuang syndrome.
Collapse
Affiliation(s)
- Fraser G Ferens
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Cassandra C Taber
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sarah Stuart
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Mia Hubert
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
2
|
Rogel-Ayala DG, Muñoz-Medina JE, Vicente-Juárez VD, Grether-González P, Morales-Barquet DA, Martínez-García ADJ, Echaniz-Aviles MOL, Sevilla-Montoya R, Martínez-Juárez A, Artega-Vázquez J, Angeles-Martínez J, Vargas-Alarcón G, Hidalgo-Bravo A, Monroy-Muñoz IE. Association of the EPAS1 rs7557402 Polymorphism with Hemodynamically Significant Patent Ductus Arteriosus Closure Failure in Premature Newborns under Pharmacological Treatment with Ibuprofen. Diagnostics (Basel) 2023; 13:2558. [PMID: 37568921 PMCID: PMC10417126 DOI: 10.3390/diagnostics13152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Patent ductus arteriosus (PDA) is frequent in preterm newborns, and its incidence is inversely associated with the degree of prematurity. The first choice of pharmacological treatment is ibuprofen. Several genes, including EPAS1, have been proposed as probable markers associated with a genetic predisposition for the development of PDA in preterm infants. EPAS 1 NG_016000.1:g.84131C>G or rs7557402 has been reported to be probably benign and associated with familial erythrocytosis by the Illumina Clinical Services Laboratory. Other variants of EPAS1 have been previously reported to be benign for familial erythrocytosis because they decrease gene function and are positive for familial erythrocytosis because the overexpression of EPAS1 is a key factor in uncontrolled erythrocyte proliferation. However, this could be inconvenient for ductal closure, since for this process to occur, cell proliferation, migration, and differentiation should take place, and a decrease in EPAS1 gene activity would negatively affect these processes. Single-nucleotide polymorphisms (SNPs) in EPAS1 and TFAP2B genes were searched with high-resolution melting and Sanger sequencing in blood samples of preterm infants with hemodynamically significant PDA treated with ibuprofen at the National Institute of Perinatology. The variant rs7557402, present in the EPAS1 gene eighth intron, was associated with a decreased response to treatment (p = 0.007, OR = 3.53). The SNP rs7557402 was associated with an increased risk of pharmacological treatment failure. A probable mechanism involved could be the decreased activity of the product of the EPAS1 gene.
Collapse
Affiliation(s)
- Diana G. Rogel-Ayala
- Reproductive and Perinatal Health Research Department, National Institute of Perinatology, Mexico City 11000, Mexico; (D.G.R.-A.)
| | - José Esteban Muñoz-Medina
- Quality of Supplies and Specialized Laboratories Coordination, Mexican Social Security Institute, Mexico City 37320, Mexico
| | - Valeria Dejanira Vicente-Juárez
- Reproductive and Perinatal Health Research Department, National Institute of Perinatology, Mexico City 11000, Mexico; (D.G.R.-A.)
| | | | | | | | | | - Rosalba Sevilla-Montoya
- Reproductive and Perinatal Health Research Department, National Institute of Perinatology, Mexico City 11000, Mexico; (D.G.R.-A.)
| | | | - Jazmin Artega-Vázquez
- Department of Genetics, National Institute of Medical Science and Nutrition, Mexico City 14080, Mexico
| | - Javier Angeles-Martínez
- Specialized Laboratories Division, Mexican Social Security Institute, Mexico City 06700, Mexico
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, National Institute of Cardiology, Mexico City 14080, Mexico
| | - Alberto Hidalgo-Bravo
- Genomics Medicine Department, National Institute of Rehabilitation, Mexico City 14610, Mexico
| | - Irma Eloisa Monroy-Muñoz
- Reproductive and Perinatal Health Research Department, National Institute of Perinatology, Mexico City 11000, Mexico; (D.G.R.-A.)
| |
Collapse
|
3
|
Dahl SL, Bapst AM, Khodo SN, Scholz CC, Wenger RH. Fount, fate, features, and function of renal erythropoietin-producing cells. Pflugers Arch 2022; 474:783-797. [PMID: 35750861 PMCID: PMC9338912 DOI: 10.1007/s00424-022-02714-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022]
Abstract
Renal erythropoietin (Epo)-producing (REP) cells represent a rare and incompletely understood cell type. REP cells are fibroblast-like cells located in close proximity to blood vessels and tubules of the corticomedullary border region. Epo mRNA in REP cells is produced in a pronounced "on-off" mode, showing transient transcriptional bursts upon exposure to hypoxia. In contrast to "ordinary" fibroblasts, REP cells do not proliferate ex vivo, cease to produce Epo, and lose their identity following immortalization and prolonged in vitro culture, consistent with the loss of Epo production following REP cell proliferation during tissue remodelling in chronic kidney disease. Because Epo protein is usually not detectable in kidney tissue, and Epo mRNA is only transiently induced under hypoxic conditions, transgenic mouse models have been developed to permanently label REP cell precursors, active Epo producers, and inactive descendants. Future single-cell analyses of the renal stromal compartment will identify novel characteristic markers of tagged REP cells, which will provide novel insights into the regulation of Epo expression in this unique cell type.
Collapse
Affiliation(s)
- Sophie L Dahl
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Andreas M Bapst
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Stellor Nlandu Khodo
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, D-17475, Greifswald, Germany
| | - Roland H Wenger
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
4
|
Echambadi Loganathan S, Kattaru S, Chandrasekhar C, Vengamma B, Sarma PVGK. Novel mutations in EPO-R and oxygen-dependent degradation (ODD) domain of EPAS1 genes-a causative reason for Congenital Erythrocytosis. Eur J Med Genet 2022; 65:104493. [PMID: 35395428 DOI: 10.1016/j.ejmg.2022.104493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/12/2022]
Abstract
Congenital Erythrocytosis (CE) can be primary or secondary due to the mutations in genes involved in the erythropoietin receptor and oxygen sensing pathway. In this study, 42 patients with 38 unrelated patients and one family (4 patients) who were JAK-2 mutation (both exon 12 and exon 14) negative with high haematocrit values were investigated. The Endogenous Erythroid colony (EEC) assay was performed in all patients, interestingly EEC colonies were high in EPAS1 and EPOR mutated patients compared to non-mutated patients. The sequence analysis of EPAS1 (exon 12), EPO-R (exon-8), VHL (exon-3), and EGLN1 (exon-1) genes in all these patients showed 19% of patients (8/42) had mutations, in exon12 of EPAS1 and exon 8 of EPO-R genes. Two novel missense mutations MW_600850:c.1183G>C, MW_600851:c.1028A>C in EPO-R gene were observed in the study group. One new MW_600849:c.1969C>T nonsense mutation and five MW_619914:c.1715A>G, MW_619915:c.1694G>T, MW_619916:c.1634T>C, MW_600852:c.1771C>G, MW_600848:c.1859G>A novel missense mutations were observed in the EPAS1 gene. Among them, 4 mutations p. (Gln572Arg), p. (Ser565Ile), p. (Ile545Thr), p. (Gln591Glu) in the ODD (Oxygen-dependent degradation) domain of HIF2α, all these variations contributed to the formation of non-functional HIF2α. No mutations were observed in VHL and EGLN1 genes. Using in silico analysis we observed that these mutations contributed to major conformational changes in the HIF2α protein making it non-functional. The mutations in the EPAS1 gene were heterozygous and show autosomal dominant inheritance patterns and we observed in one family. These novel mutations in the EPAS1 (75% (6/8)) and 25% (2/8) EPO-R genes correlating with EEC positivity were observed for the first time in India in CE patients.
Collapse
Affiliation(s)
| | - Surekha Kattaru
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Tirupati, Andhra Pradesh, India
| | - Chodimella Chandrasekhar
- Department of Haematology, Sri Venkateswara Institute of Medical Sciences and University, Tirupati, Andhra Pradesh, India
| | - B Vengamma
- Department of Neurology, Sri Venkateswara Institute of Medical Sciences and University, Tirupati, Andhra Pradesh, India
| | | |
Collapse
|
5
|
Kristan A, Debeljak N, Kunej T. Integration and Visualization of Regulatory Elements and Variations of the EPAS1 Gene in Human. Genes (Basel) 2021; 12:genes12111793. [PMID: 34828399 PMCID: PMC8620933 DOI: 10.3390/genes12111793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Endothelial PAS domain-containing protein 1 (EPAS1), also HIF2α, is an alpha subunit of hypoxia-inducible transcription factor (HIF), which mediates cellular and systemic response to hypoxia. EPAS1 has an important role in the transcription of many hypoxia-responsive genes, however, it has been less researched than HIF1α. The aim of this study was to integrate an increasing number of data on EPAS1 into a map of diverse OMICs elements. Publications, databases, and bioinformatics tools were examined, including Ensembl, MethPrimer, STRING, miRTarBase, COSMIC, and LOVD. The EPAS1 expression, stability, and activity are tightly regulated on several OMICs levels to maintain complex oxygen homeostasis. In the integrative EPAS1 map we included: 31 promoter-binding proteins, 13 interacting miRNAs and one lncRNA, and 16 post-translational modifications regulating EPAS1 protein abundance. EPAS1 has been associated with various cancer types and other diseases. The development of neuroendocrine tumors and erythrocytosis was shown to be associated with 11 somatic and 20 germline variants. The integrative map also includes 12 EPAS1 target genes and 27 interacting proteins. The study introduced the first integrative map of diverse genomics, transcriptomics, proteomics, regulomics, and interactomics data associated with EPAS1, to enable a better understanding of EPAS1 activity and regulation and support future research.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.K.); (N.D.)
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.K.); (N.D.)
| | - Tanja Kunej
- Department for Animal Science, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia
- Correspondence:
| |
Collapse
|
6
|
Kristan A, Pajič T, Maver A, Režen T, Kunej T, Količ R, Vuga A, Fink M, Žula Š, Podgornik H, Anžej Doma S, Preložnik Zupan I, Rozman D, Debeljak N. Identification of Variants Associated With Rare Hematological Disorder Erythrocytosis Using Targeted Next-Generation Sequencing Analysis. Front Genet 2021; 12:689868. [PMID: 34349782 PMCID: PMC8327209 DOI: 10.3389/fgene.2021.689868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
An erythrocytosis is present when the red blood cell mass is increased, demonstrated as elevated hemoglobin and hematocrit in the laboratory evaluation. Congenital predispositions for erythrocytosis are rare, with germline variants in several genes involved in oxygen sensing (VHL, EGLN1, and EPAS1), signaling for hematopoietic cell maturation (EPOR and EPO), and oxygen transfer (HBB, HBA1, HBA2, and BPGM) that were already associated with the eight congenital types (ECYT1–8). Screening for variants in known congenital erythrocytosis genes with classical sequencing approach gives a correct diagnosis for only up to one-third of the patients. The genetic background of erythrocytosis is more heterogeneous, and additional genes involved in erythropoiesis and iron metabolism could have a putative effect on the development of erythrocytosis. This study aimed to detect variants in patients with yet unexplained erythrocytosis using the next-generation sequencing (NGS) approach, targeting genes associated with erythrocytosis and increased iron uptake and implementing the diagnostics of congenital erythrocytosis in Slovenia. Selected 25 patients with high hemoglobin, high hematocrit, and no acquired causes were screened for variants in the 39 candidate genes. We identified one pathogenic variant in EPAS1 gene and three novel variants with yet unknown significance in genes EPAS1, JAK2, and SH2B3. Interestingly, a high proportion of patients were heterozygous carriers for two variants in HFE gene, otherwise pathogenic for the condition of iron overload. The association between the HFE variants and the development of erythrocytosis is not clearly understood. With a targeted NGS approach, we determined an actual genetic cause for the erythrocytosis in one patient and contributed to better management of the disease for the patient and his family. The effect of variants of unknown significance on the enhanced production of red blood cells needs to be further explored with functional analysis. This study is of great significance for the improvement of diagnosis of Slovenian patients with unexplained erythrocytosis and future research on the etiology of this rare hematological disorder.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Pajič
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Količ
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Andrej Vuga
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Martina Fink
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Špela Žula
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Helena Podgornik
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Saša Anžej Doma
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Preložnik Zupan
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
8
|
Novel mutations in the EPO-R, VHL and EPAS1 genes in the Congenital Erythrocytosis patients. Blood Cells Mol Dis 2020; 85:102479. [DOI: 10.1016/j.bcmd.2020.102479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
|
9
|
Juvenile erythrocytosis in children after liver transplantation: prevalence, risk factors and outcome. Sci Rep 2020; 10:9683. [PMID: 32546701 PMCID: PMC7298026 DOI: 10.1038/s41598-020-66586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/25/2020] [Indexed: 11/20/2022] Open
Abstract
Most reports of post-transplant erythrocytosis have involved kidney recipients and, so far, there have been no large studies of onset of erythrocytosis after orthotopic liver transplantation (OLT) in children. We present a long-term survey of pediatric liver recipients, evaluating prevalence, outcome and the main potential causes of erythrocytosis, including a comprehensive mutational analysis of commonly related genes (mutations of HBB and HBA, JAK2, EPOR, VHL, EPAS1 and EGLN1). Between 2000 and 2015, 90 pediatric OLT recipients were observed for a median period of 8.7 years (range 1–20.4 [IQR 4.9–13.6] years). Five percent of the study population (4 males and 1 female) developed erythrocytosis at 8.5 years post OLT (range 4.1–14.9 [IQR 4.7–14.7]) at a median age of 16.6 years (range 8.2–18.8 [IQR 11.7–17.7]). Erythrocytosis-free survival after OLT was 98.6% at 5 years, 95% at 10 years, and 85% at 15 years, with an incidence rate of 6/1000 person-years. No cardiovascular events or thrombosis were reported. No germinal mutation could be clearly related to the development of erythrocytosis. One patient, with high erythropoietin levels and acquired multiple bilateral renal cysts, developed clinical hyper-viscosity symptoms, and was treated with serial phlebotomies. In conclusion, this prospective longitudinal study showed that erythrocytosis is a rare complication occurring several years after OLT, typically during adolescence. Erythrocytosis was non-progressive and manageable. Its pathogenesis is still not completely understood, although male gender, pubertal age, and renal cysts probably play a role.
Collapse
|
10
|
Kristan A, Debeljak N, Kunej T. Genetic variability of hypoxia-inducible factor alpha (HIFA) genes in familial erythrocytosis: Analysis of the literature and genome databases. Eur J Haematol 2019; 103:287-299. [PMID: 31376207 DOI: 10.1111/ejh.13304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
Familial erythrocytosis (FE) is a congenital disorder, defined by elevated red blood cell number, hemoglobin, and hematocrit. Among eight types of FE, type 4 is caused by variants in the EPAS1 gene. Two other hypoxia-inducible factor alpha (HIFA) subunits, HIF1A and HIF3A, have not yet been associated with medical history of FE, but have potential role in the development of erythrocytosis. To improve diagnosis, it is crucial to identify new variants in genes involved in erythrocyte production. Published literature and data from genome browsers were used to obtain HIFA sequence variants associated with erythrocytosis and to locate them on protein sequence and regulatory sites. We retrieved 24 variants from the literature: 2 in HIF1A, 20 in EPAS1 and 2 in HIF3A gene. Sixteen out of 20 variants in the EPAS1 gene are positioned in a conserved region of 13 amino acids within exon 12, next to regulatory post-translational modification and binding sites, suggesting that EPAS1 has an important role in erythropoiesis. The role of HIF1A and HIF3A in the development of erythrocytosis should be further investigated.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
11
|
Lappin TR, Lee FS. Update on mutations in the HIF: EPO pathway and their role in erythrocytosis. Blood Rev 2019; 37:100590. [PMID: 31350093 DOI: 10.1016/j.blre.2019.100590] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Identification of the underlying defects in congenital erythrocytosis has provided mechanistic insights into the regulation of erythropoiesis and oxygen homeostasis. The Hypoxia Inducible Factor (HIF) pathway plays a key role in this regard. In this pathway, an enzyme, Prolyl Hydroxylase Domain protein 2 (PHD2), constitutively prolyl hydroxylates HIF-2α, thereby targeting HIF-2α for degradation by the von Hippel Lindau (VHL) tumor suppressor protein. Under hypoxia, this modification is attenuated, resulting in the stabilization of HIF-2α and transcriptional activation of the erythropoietin (EPO) gene. Circulating EPO then binds to the EPO receptor (EPOR) on red cell progenitors in the bone marrow, leading to expansion of red cell mass. Loss of function mutations in PHD2 and VHL, as well as gain of function mutations in HIF-2α and EPOR, are well established causes of erythrocytosis. Here, we highlight recent developments that show that the study of this condition is still evolving. Specifically, novel mutations have been identified that either change amino acids in the zinc finger domain of PHD2 or alter splicing of the VHL gene. In addition, continued study of HIF-2α mutations has revealed a distinctive genotype-phenotype correlation. Finally, novel mutations have recently been identified in the EPO gene itself. Thus, the cascade of genes that at a molecular level leads to EPO action, namely PHD2 - > HIF2A - > VHL - > EPO - > EPOR, are all mutational targets in congenital erythrocytosis.
Collapse
Affiliation(s)
- Terence R Lappin
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK.
| | - Frank S Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Mutations in EPAS1 in congenital heart disease in Tibetans. Biosci Rep 2018; 38:BSR20181389. [PMID: 30487161 PMCID: PMC6435565 DOI: 10.1042/bsr20181389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022] Open
Abstract
EPAS1 encodes HIF2 and is closely related to high altitude chronic hypoxia. Mutations in the EPAS1 coding sequence are associated with several kinds of human diseases, including syndromic congenital heart disease (CHD). However, whether there are rare EPAS1 coding variants related to Tibetan non-syndromic CHD have not been fully investigated. A group of 286 Tibetan patients with non-syndromic CHD and 250 unrelated Tibetan healthy controls were recruited from Qinghai, China. Sanger sequencing was performed to identify variations in the EPAS1 coding sequence. The novelty of identified variants was confirmed by the examination of 1000G and ExAC databases. Control samples were screened to establish that the rare candidate variants were specific to the Tibetan patients with non-syndromic CHD. Bioinformatics software was used to assess the conservation of the mutations and to predict their effects. The effect of EPAS1 mutations on the transcription of its target gene, VEGF, was assessed by dual-luciferase reporter assay. The mammalian two-hybrid assay was used to study the protein interactions between HIF2 and PHD2 or pVHL. We identified two novel EPAS1 mutations (NM_001430: c.607A>C, p.N203H; c.2170G>T, p.G724W) in two patients. The N203H mutation significantly affected the transcription activity of the VEGF promoter, especially in conditions of hypoxia. The N203H mutation also showed enhanced protein–protein interactions between HIF2 and PHD2, and HIF2 and pVHL, especially in conditions of hypoxia. However, the G724W mutation did not demonstrate the same effects. Our results indicate that EPAS1 mutations might have a potential causative effect on the development of Tibetan non-syndromic CHD.
Collapse
|
13
|
Tarade D, Robinson CM, Lee JE, Ohh M. HIF-2α-pVHL complex reveals broad genotype-phenotype correlations in HIF-2α-driven disease. Nat Commun 2018; 9:3359. [PMID: 30135421 PMCID: PMC6105673 DOI: 10.1038/s41467-018-05554-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022] Open
Abstract
It is definitively established that mutations in transcription factor HIF-2α are causative of both neuroendocrine tumors (class 1 disease) and polycythemia (class 2 disease). However, the molecular mechanism that underlies this emergent genotype–phenotype relationship has remained unclear. Here, we report the structure of HIF-2α peptide bound to pVHL-elongin B-elongin C (VBC) heterotrimeric complex, which shows topographical demarcation of class 1 and 2 mutations affecting residues predicted, and demonstrated via biophysical analyses, to differentially impact HIF-2α-pVHL interaction interface stability. Concordantly, biochemical experiments showed that class 1 mutations disrupt pVHL affinity to HIF-2α more adversely than class 2 mutations directly or indirectly via impeding PHD2-mediated hydroxylation. These findings suggest that neuroendocrine tumor pathogenesis requires a higher HIF-2α dose than polycythemia, which requires only a mild increase in HIF-2α activity. These biophysical data reveal a structural basis that underlies, and can be used to predict de novo, broad genotype-phenotype correlations in HIF-2α-driven disease. Hypoxia inducible factor (HIF)-2α transcription factor is mutated in polycythemia and various neuroendocrine tumors. Here the authors present the crystal structure of a HIF-2α peptide bound to the pVHL-elongin B-elongin C (VBC) heterotrimeric complex and propose a classification scheme for HIF-2α mutations that helps to predict disease phenotype outcome.
Collapse
Affiliation(s)
- Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Claire M Robinson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
14
|
Borriello A, Caldarelli I, Bencivenga D, Stampone E, Perrotta S, Oliva A, Della Ragione F. Tyrosine kinase inhibitors and mesenchymal stromal cells: effects on self-renewal, commitment and functions. Oncotarget 2018; 8:5540-5565. [PMID: 27750212 PMCID: PMC5354929 DOI: 10.18632/oncotarget.12649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
The hope of selectively targeting cancer cells by therapy and eradicating definitively malignancies is based on the identification of pathways or metabolisms that clearly distinguish “normal” from “transformed” phenotypes. Some tyrosine kinase activities, specifically unregulated and potently activated in malignant cells, might represent important targets of therapy. Consequently, tyrosine kinase inhibitors (TKIs) might be thought as the “vanguard” of molecularly targeted therapy for human neoplasias. Imatinib and the successive generations of inhibitors of Bcr-Abl1 kinase, represent the major successful examples of TKI use in cancer treatment. Other tyrosine kinases have been selected as targets of therapy, but the efficacy of their inhibition, although evident, is less definite. Two major negative effects exist in this therapeutic strategy and are linked to the specificity of the drugs and to the role of the targeted kinase in non-malignant cells. In this review, we will discuss the data available on the TKIs effects on the metabolism and functions of mesenchymal stromal cells (MSCs). MSCs are widely distributed in human tissues and play key physiological roles; nevertheless, they might be responsible for important pathologies. At present, bone marrow (BM) MSCs have been studied in greater detail, for both embryological origins and functions. The available data are evocative of an unexpected degree of complexity and heterogeneity of BM-MSCs. It is conceivable that this grade of intricacy occurs also in MSCs of other organs. Therefore, in perspective, the negative effects of TKIs on MSCs might represent a critical problem in long-term cancer therapies based on such inhibitors.
Collapse
Affiliation(s)
- Adriana Borriello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Ilaria Caldarelli
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Debora Bencivenga
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Emanuela Stampone
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Silverio Perrotta
- Department of Woman, Child and of General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Adriana Oliva
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Fulvio Della Ragione
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
15
|
Seeley TW, Sternlicht MD, Klaus SJ, Neff TB, Liu DY. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer. HYPOXIA 2017; 5:1-9. [PMID: 28331872 PMCID: PMC5354531 DOI: 10.2147/hp.s130526] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of pharmacological hypoxia-inducible factor (HIF) stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD) mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF), using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs), FG-4497 or roxadustat (FG-4592). In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors.
Collapse
Affiliation(s)
- Todd W Seeley
- Therapeutics R&D, FibroGen, Inc., San Francisco, CA, USA
| | | | | | - Thomas B Neff
- Therapeutics R&D, FibroGen, Inc., San Francisco, CA, USA
| | - David Y Liu
- Therapeutics R&D, FibroGen, Inc., San Francisco, CA, USA
| |
Collapse
|
16
|
Liu Q, Wang Y, Tong D, Liu G, Yuan W, Zhang J, Ye J, Zhang Y, Yuan G, Feng Q, Zhang D, Jiang J. A Somatic HIF2α Mutation-Induced Multiple and Recurrent Pheochromocytoma/Paraganglioma with Polycythemia: Clinical Study with Literature Review. Endocr Pathol 2017; 28:75-82. [PMID: 28116635 DOI: 10.1007/s12022-017-9469-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A syndrome known as pheochromocytomas (PCC)/paragangliomas (PGL) and polycythemia resulted from gain-of-function mutation of hypoxia-inducible factor 2α (HIF2α) has been reported recently. However, clinical features of this syndrome vary from patient to patient. In our study, we described the clinical features of the patient within 15-year follow-up with a literature review. The patient presented with "red face" since childhood and was diagnosed with polycythemia and pheochromocytoma in 2000, and then, tumor was removed at his age of 27 (year 2000). However, 13 years later (2013), he was diagnosed with multiple paragangliomas. Moreover, 2 years later (2015), another two paragangaliomas were also confirmed. Genetic analysis of hereditary PCC/PGL-related genes was conducted. A somatic heterozygous missense mutation of HIF2α (c.1589C>T) was identified at exon 12, which is responsible for the elevated levels of HIF2α and erythropoietin (EPO) and subsequent development of paragangaliomas. However, this mutation was only found in the tumors from three different areas, not in the blood. So far, 13 cases of PCC/PGL with polycythemia have been reported. Among them, somatic mutations of HIF2α at exon 12 are responsible for 12 cases, and only 1 case was caused by germline mutation of HIF2α at exon 9. The HIF2α mutation-induced polycythemia with PCC/PGL is a rare syndrome with no treatment for cure. Comprehensive therapies for this disease include removal of the tumors and intermittent phlebotomies; administration of medications to control blood pressure and to prevent complications or death resulted from high concentration of red blood cell (RBC). Genetic test is strongly recommended for patients with early onset of polycythemia and multiple/recurrent PCC/PGL.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yan Wang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Wenqiang Yuan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jun Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jin Ye
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yao Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Gang Yuan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qingxing Feng
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Ave., Philadelphia, PA, 19131, USA
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, No. 10 Changjiangzhilu, Yuzhong District, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
17
|
Därr R, Nambuba J, Del Rivero J, Janssen I, Merino M, Todorovic M, Balint B, Jochmanova I, Prchal JT, Lechan RM, Tischler AS, Popovic V, Miljic D, Adams KT, Prall FR, Ling A, Golomb MR, Ferguson M, Nilubol N, Chen CC, Chew E, Taïeb D, Stratakis CA, Fojo T, Yang C, Kebebew E, Zhuang Z, Pacak K. Novel insights into the polycythemia-paraganglioma-somatostatinoma syndrome. Endocr Relat Cancer 2016; 23:899-908. [PMID: 27679736 PMCID: PMC5096964 DOI: 10.1530/erc-16-0231] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
Worldwide, the syndromes of paraganglioma (PGL), somatostatinoma (SOM) and early childhood polycythemia are described in only a few patients with somatic mutations in the hypoxia-inducible factor 2 alpha (HIF2A). This study provides detailed information about the clinical aspects and course of 7 patients with this syndrome and brings into perspective these experiences with the pertinent literature. Six females and one male presented at a median age of 28 years (range 11-46). Two were found to have HIF2A somatic mosaicism. No relatives were affected. All patients were diagnosed with polycythemia before age 8 and before PGL/SOM developed. PGLs were found at a median age of 17 years (range 8-38) and SOMs at 29 years (range 22-38). PGLs were multiple, recurrent and metastatic in 100, 100 and 29% of all cases, and SOMs in 40, 40 and 60%, respectively. All PGLs were primarily norepinephrine-producing. All patients had abnormal ophthalmologic findings and those with SOMs had gallbladder disease. Computed tomography (CT) and magnetic resonance imaging revealed cystic lesions at multiple sites and hemangiomas in 4 patients (57%), previously thought to be pathognomonic for von Hippel-Lindau disease. The most accurate radiopharmaceutical to detect PGL appeared to be [18F]-fluorodihydroxyphenylalanine ([18F]-FDOPA). Therefore, [18F]-FDOPA PET/CT, not [68Ga]-(DOTA)-[Tyr3]-octreotate ([68Ga]-DOTATATE) PET/CT is recommended for tumor localization and aftercare in this syndrome. The long-term prognosis of the syndrome is unknown. However, to date no deaths occurred after 6 years follow-up. Physicians should be aware of this unique syndrome and its diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Roland Därr
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Joan Nambuba
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaydira Del Rivero
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ingo Janssen
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Merino
- Laboratory of PathologyNational Institutes of Health, Bethesda, Maryland, USA
| | - Milena Todorovic
- Institute of HematologyClinical Center of Serbia and Medical Faculty University of Belgrade, Belgrade, Serbia
| | - Bela Balint
- Institute of Transfusiology and Hemobiology of Military Medical Academy and Institute for Medical ResearchUniversity of Belgrade, Belgrade, Serbia
| | - Ivana Jochmanova
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- 1st Department of Internal MedicineFaculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, Slovakia
| | - Josef T Prchal
- Division of HematologyUniversity of Utah, Salt Lake City, Utah, USA
| | - Ronald M Lechan
- Tupper Research Institute and Department of MedicineDivision of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA
| | - Arthur S Tischler
- Department of Pathology and Laboratory MedicineTufts Medical Center, Boston, Massachusetts, USA
| | - Vera Popovic
- Institute of EndocrinologyClinical Center of Serbia, Medical Faculty, University Belgrade, Belgrade, Serbia
| | - Dragana Miljic
- Institute of EndocrinologyClinical Center of Serbia, Medical Faculty, University Belgrade, Belgrade, Serbia
| | - Karen T Adams
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - F Ryan Prall
- Department of OphthalmologyEugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexander Ling
- Department of Radiology and Imaging SciencesClinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Meredith R Golomb
- Division of Child NeurologyDepartment of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael Ferguson
- Riley Hospital for Children at Indiana University HealthIndianapolis, Indiana, USA
| | - Naris Nilubol
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Clara C Chen
- Division of Nuclear MedicineDepartment of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Chew
- Division of Epidemiology and Clinical ApplicationsNational Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David Taïeb
- Department of Nuclear MedicineLa Timone University Hospital & CERIMED & Inserm UMR1068 Marseille Cancerology Research Center, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Constantine A Stratakis
- Division of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Tito Fojo
- Medical Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology BranchCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Electron Kebebew
- Endocrine Oncology BranchNational Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhengping Zhuang
- Neuro-Oncology BranchCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Slingo M, Cole M, Carr C, Curtis MK, Dodd M, Giles L, Heather LC, Tyler D, Clarke K, Robbins PA. The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high-energy phosphate metabolism. Am J Physiol Heart Circ Physiol 2016; 311:H759-67. [PMID: 27422990 PMCID: PMC5142182 DOI: 10.1152/ajpheart.00912.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
This is the first integrative metabolic and functional study of the effects of modest hypoxia-inducible factor manipulation within the heart. Of particular note, the combination (and correlation) of perfused heart metabolic flux measurements with the new technique of real-time in vivo magnetic resonance spectroscopy using hyperpolarized pyruvate is a novel development. Hypoxia-inducible factor (HIF) appears to function as a global master regulator of cellular and systemic responses to hypoxia. HIF pathway manipulation is of therapeutic interest; however, global systemic upregulation of HIF may have as yet unknown effects on multiple processes. We used a mouse model of Chuvash polycythemia (CP), a rare genetic disorder that modestly increases expression of HIF target genes in normoxia, to understand what these effects might be within the heart. An integrated in and ex vivo approach was employed. Compared with wild-type controls, CP mice had evidence (using in vivo magnetic resonance imaging) of pulmonary hypertension, right ventricular hypertrophy, and increased left ventricular ejection fraction. Glycolytic flux (measured using [3H]glucose) in the isolated contracting perfused CP heart was 1.8-fold higher. Net lactate efflux was 1.5-fold higher. Furthermore, in vivo 13C-magnetic resonance spectroscopy (MRS) of hyperpolarized [13C1]pyruvate revealed a twofold increase in real-time flux through lactate dehydrogenase in the CP hearts and a 1.6-fold increase through pyruvate dehydrogenase. 31P-MRS of perfused CP hearts under increased workload (isoproterenol infusion) demonstrated increased depletion of phosphocreatine relative to ATP. Intriguingly, no changes in cardiac gene expression were detected. In summary, a modest systemic dysregulation of the HIF pathway resulted in clear alterations in cardiac metabolism and energetics. However, in contrast to studies generating high HIF levels within the heart, the CP mice showed neither the predicted changes in gene expression nor any degree of LV impairment. We conclude that the effects of manipulating HIF on the heart are dose dependent.
Collapse
Affiliation(s)
- Mary Slingo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark Cole
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carolyn Carr
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary K Curtis
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael Dodd
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lucia Giles
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Damian Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Alaikov T, Ivanova M, Shivarov V. EPAS1 p.M535T mutation in a Bulgarian family with congenital erythrocytosis. ACTA ACUST UNITED AC 2016; 21:619-622. [PMID: 27292716 DOI: 10.1080/10245332.2016.1192394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES In the last decade the identification of germline mutations in several genes such as EPOR, VHL, EGLN1, and EPAS1, helped the definition of several different subtypes of familial (congenital) erythrocytosis. Being rare disorders these entities often remain unrecognized or misdiagnosed, which necessitates the extensive reporting of newly identified cases. METHODS We applied a genetic approach including whole exome sequencing and Sanger sequencing for the identification of the causative germline mutation in a Bulgarian family with congential erythrocytosis. RESULTS We identified EPAS1 (HIF2A) p. M535T heterozygous mutation carried by four members of the family over three generations. We provide also an extensive description of the clinical features of the affected family members. DISCUSSION EPAS1 p.M535T appears to be found in different populations as a causative variation in familial erythrocytosis. Our findings support the notion that the affected patients present with variable clinical features and disease course. Furthermore, close clinical follow-up with phlebotomies on demand and regular intake of low doses of anticoagulants seem to prevent from serious complications such as thrombembolic events and pulmonary hypertension. CONCLUSION This is the first description of an entire family with EPAS1 p. M535T mutation expanding our knowledge about the clinical features of the disease.
Collapse
Affiliation(s)
- Tzvetan Alaikov
- a Department of Clinical Hematology , Sofiamed University Hospital , Sofia , Bulgaria
| | - Milena Ivanova
- b Laboratory of Clinical Immunology , Alexandrovska University Hospital, Medical University , Sofia , Bulgaria
| | - Velizar Shivarov
- a Department of Clinical Hematology , Sofiamed University Hospital , Sofia , Bulgaria.,c Laboratory of Clinical Immunology , Sofiamed University Hospital , Sofia , Bulgaria
| |
Collapse
|
20
|
Basmanav FB, Forstner AJ, Fier H, Herms S, Meier S, Degenhardt F, Hoffmann P, Barth S, Fricker N, Strohmaier J, Witt SH, Ludwig M, Schmael C, Moebus S, Maier W, Mössner R, Rujescu D, Rietschel M, Lange C, Nöthen MM, Cichon S. Investigation of the role of TCF4 rare sequence variants in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:354-62. [PMID: 26010163 DOI: 10.1002/ajmg.b.32318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations.
Collapse
Affiliation(s)
- F Buket Basmanav
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Heide Fier
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Department of Genomic Mathematics, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sandra Meier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,National Center for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| | - Sandra Barth
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Nadine Fricker
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Christine Schmael
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Susanne Moebus
- Centre of Urban Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Essen, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Rainald Mössner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,Department of Psychiatry, University of Tübingen
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Christoph Lange
- Department of Genomic Mathematics, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| |
Collapse
|
21
|
Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes. Mol Cell Biol 2015; 35:2658-72. [PMID: 26012551 DOI: 10.1128/mcb.00161-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/22/2015] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (Epo) is produced in the kidney and liver in a hypoxia-inducible manner via the activation of hypoxia-inducible transcription factors (HIFs) to maintain oxygen homeostasis. Accelerating Epo production in hepatocytes is one plausible therapeutic strategy for treating anemia caused by kidney diseases. To elucidate the regulatory mechanisms of hepatic Epo production, we analyzed mouse lines harboring liver-specific deletions of genes encoding HIF-prolyl-hydroxylase isoforms (PHD1, PHD2, and PHD3) that mediate the inactivation of HIF1α and HIF2α under normal oxygen conditions. The loss of all PHD isoforms results in both polycythemia, which is caused by Epo overproduction, and fatty livers. We found that deleting any combination of two PHD isoforms induces polycythemia without steatosis complications, whereas the deletion of a single isoform induces no apparent phenotype. Polycythemia is prevented by the loss of either HIF2α or the hepatocyte-specific Epo gene enhancer (EpoHE). Chromatin analyses show that the histones around EpoHE dissociate from the nucleosome structure after HIF2α activation. HIF2α also induces the expression of HIF3α, which is involved in the attenuation of Epo production. These results demonstrate that the total amount of PHD activity is more important than the specific function of each isoform for hepatic Epo expression regulated by a PHD-HIF2α-EpoHE cascade in vivo.
Collapse
|
22
|
Duan LJ, Takeda K, Fong GH. Hematological, hepatic, and retinal phenotypes in mice deficient for prolyl hydroxylase domain proteins in the liver. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1240-1250. [PMID: 24508125 DOI: 10.1016/j.ajpath.2013.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 12/24/2013] [Accepted: 12/30/2013] [Indexed: 12/14/2022]
Abstract
Prolyl hydroxylase domain (PHD) proteins catalyze oxygen-dependent prolyl hydroxylation of hypoxia-inducible factor 1α and 2α, tagging them for pVHL-dependent polyubiquitination and proteasomal degradation. In this study, albumin Cre (Alb(Cre))-mediated, hepatocyte-specific triple disruption of Phd1, Phd2, and Phd3 (Phd(1/2/3)hKO) promoted liver erythropoietin (EPO) expression 1246-fold, whereas renal EPO was down-regulated to 6.7% of normal levels. In Phd(1/2/3)hKO mice, hematocrit levels reached 82.4%, accompanied by severe vascular malformation and steatosis in the liver. In mice double-deficient for hepatic PHD2 and PHD3 (Phd(2/3)hKO), liver EPO increase and renal EPO loss both occurred but were much less dramatic than in Phd(1/2/3)hKO mice. Hematocrit levels, vascular organization, and liver lipid contents all appeared normal in Phd(2/3)hKO mice. In a chronic renal failure model, Phd(2/3)hKO mice maintained normal hematocrit levels throughout the 8-week time course, whereas floxed controls developed severe anemia. Maintenance of normal hematocrit levels in Phd(2/3)hKO mice was accomplished by sensitized induction of liver EPO expression. Consistent with such a mechanism, liver HIF-2α accumulated to higher levels in Phd(2/3)hKO mice in response to conditions causing modest systemic hypoxia. Besides promoting erythropoiesis, EPO is also known to modulate retinal vascular integrity and neovascularization. In Phd(1/2/3)hKO mice, however, neonatal retinas remained sensitive to oxygen-induced retinopathy, suggesting that local EPO may be more important than hepatic and/or renal EPO in mediating protective effects in the retina.
Collapse
Affiliation(s)
- Li-Juan Duan
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Kotaro Takeda
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Guo-Hua Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut.
| |
Collapse
|
23
|
Bento C, Percy MJ, Gardie B, Maia TM, van Wijk R, Perrotta S, Della Ragione F, Almeida H, Rossi C, Girodon F, Aström M, Neumann D, Schnittger S, Landin B, Minkov M, Randi ML, Richard S, Casadevall N, Vainchenker W, Rives S, Hermouet S, Ribeiro ML, McMullin MF, Cario H, Chauveau A, Gimenez-Roqueplo AP, Bressac-de-Paillerets B, Altindirek D, Lorenzo F, Lambert F, Dan H, Gad-Lapiteau S, Catarina Oliveira A, Rossi C, Fraga C, Taradin G, Martin-Nuñez G, Vitória H, Diaz Aguado H, Palmblad J, Vidán J, Relvas L, Ribeiro ML, Luigi Larocca M, Luigia Randi M, Pedro Silveira M, Percy M, Gross M, Marques da Costa R, Beshara S, Ben-Ami T, Ugo V. Genetic basis of congenital erythrocytosis: mutation update and online databases. Hum Mutat 2013; 35:15-26. [PMID: 24115288 DOI: 10.1002/humu.22448] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/13/2013] [Indexed: 12/15/2022]
Abstract
Congenital erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary CE arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3-bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1, and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr-Euronet developed a comprehensive Internet-based database focusing on the registration of clinical history, hematological, biochemical, and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database.
Collapse
Affiliation(s)
- Celeste Bento
- Department of Hematology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|