Mogensen PR, Grell K, Schmiegelow K, Overgaard UM, Wolthers BO, Mogensen SS, Vaag A, Frandsen TL. Dyslipidemia at diagnosis of childhood acute lymphoblastic leukemia.
PLoS One 2020;
15:e0231209. [PMID:
32251440 PMCID:
PMC7135240 DOI:
10.1371/journal.pone.0231209]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/18/2020] [Indexed: 01/19/2023] Open
Abstract
As survival of acute lymphoblastic leukemia (ALL) exceeds 90%, limiting therapy-related toxicity has become a key challenge. Cardio-metabolic dysfunction is a challenge during and after childhood ALL therapy. In a single center study, we measured triglycerides (TG), total cholesterol (TC), high (HDL) and low density lipoproteins (LDL) levels at diagnosis and assessed the association with BMI, early therapy response, on-therapy hyperlipidemia and the toxicities; thromboembolism, osteonecrosis and pancreatitis. We included 127 children (1.0-17.9 years) all treated according to the NOPHO ALL2008 protocol. Dyslipidemia was identified at ALL-diagnosis in 99% of the patients, dominated by reduced HDL levels (98%) and mild hypertriglyceridemia (61%). Hypertriglyceridemia was not associated with body mass index (P = 0.71). Five percent of patients had mild hypercholesterolemia, 14% had mild hypocholesterolemia, 13% had decreased and 1% elevated LDL-levels. Increased TG and TC levels at ALL-diagnosis were not associated with any on-therapy lipid levels. Lipid levels and BMI were not associated to MRD after induction therapy; However, BMI and hypercholesterolemia were associated with worse risk group stratification (P<0.045 for all). The cumulative incidence of thromboembolism was increased both for patients with hypo- (20.0%) and hypercholesterolemia (16.7%) compared to patients with normal TC levels (2.2%) at diagnosis (P = 0.0074). In conclusion, dyslipidemic changes were present prior to ALL-therapy in children with ALL but did not seem to affect dysmetabolic traits during therapy and were not predictive of on-therapy toxicities apart from an association between dyscholesterolemia at time of ALL-diagnosis and risk of thromboembolism. However, the latter should be interpreted with caution due to low number in the groups.
Collapse