1
|
Gonzalez-Gil C, Morgades M, Lopes T, Fuster-Tormo F, Montesinos P, Barba P, Diaz-Beya M, Hermosin L, Maluquer C, Gonzalez-Campos J, Bernal T, Arriaga MS, Zamora L, Pratcorona M, Martino R, Larrayoz MJ, Artola T, Torrent A, Vall-Llovera F, Tormo M, Gil C, Novo A, Martinez-Sanchez P, Ribera J, Queipo MP, Gonzalez-Martinez T, Cabrero M, Cladera A, Cervera J, Orfao A, Ribera JM, Genesca E. Contribution of copy number to improve risk stratification of adult T-cell acute lymphoblastic leukemia patients enrolled in measurable residual disease-oriented trials. Haematologica 2025; 110:206-211. [PMID: 39113657 PMCID: PMC11694107 DOI: 10.3324/haematol.2024.285416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 01/03/2025] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Celia Gonzalez-Gil
- Institut d'Investigacio contra la Leucemia Josep Carreras (IJC), Campus ICO-Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona
| | - Mireia Morgades
- Departament d'Hematologia Clinica, ICO-Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona
| | - Thaysa Lopes
- Institut d'Investigacio contra la Leucemia Josep Carreras (IJC), Campus ICO-Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona
| | - Francisco Fuster-Tormo
- Institut d'Investigacio contra la Leucemia Josep Carreras (IJC), Campus ICO-Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona
| | | | - Pere Barba
- Servei Hematologia Clinica, Hospital Universitari de la Vall d'Hebron, Barcelona
| | - Marina Diaz-Beya
- Servei Hematologia Clinica, Hospital Clinic de Barcelona, Barcelona
| | - Lourdes Hermosin
- Servicio Hematologia Clinica, Hospital de Jerez, Jerez de la Frontera
| | - Clara Maluquer
- Servei Hematologia Clinica, Hospital Duran i Reynals-ICO, Hospitalet del Llobregat
| | | | - Teresa Bernal
- Servicio Hematologia Clinica, Hospital Central de Asturias, Instituto de Investigacion Sanitario del Principado de Asturias (ISPA), Instituto Oncologico Universitario del Principado de Asturias (IUOPA), Oviedo
| | | | - Lurdes Zamora
- Departament d'Hematologia Clinica, ICO-Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona
| | - Marta Pratcorona
- Servei Hematologia, Hospital de la Santa Creu i Sant Pau, Barcelona
| | - Rodrigo Martino
- Servei Hematologia, Hospital de la Santa Creu i Sant Pau, Barcelona
| | | | - Teresa Artola
- Servicio Hematologia Clinica, Hospital Universitario de Donostia
| | - Anna Torrent
- Departament d'Hematologia Clinica, ICO-Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona
| | | | - Mar Tormo
- Hospital Clinico Universitario, Instituto de investigacion INCLIVA, Valencia
| | - Cristina Gil
- Servicio Hematologia Clinica, Hospital General de Alicante
| | - Andres Novo
- Servicio Hematologia Clinica, Hospital Son Espases, Palma de Mallorca
| | | | - Jordi Ribera
- Institut d'Investigacio contra la Leucemia Josep Carreras (IJC), Campus ICO-Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona
| | - Maria-Paz Queipo
- Servicio Hematologia Clinica, Hospital Virgen de la Victoria, Malaga
| | | | - Monica Cabrero
- Servicio Hematologia Clinica, Hospital Universitario de Salamanca
| | - Antonia Cladera
- Servicio Hematologia Clinica, Hospital Son Llatzer, Palma de Mallorca
| | - Jose Cervera
- Hospital Universitari i Politecnic La Fe, Valencia
| | - Alberto Orfao
- Centro de Investigacion del Cancer (IBMCC-CSIC/USAL) and Departamento de Medicina, Universidad de Salamanca, Instituto Biosanitario de Salamanca, CIBERONC, Salamanca
| | - Josep Maria Ribera
- Institut d'Investigacio contra la Leucemia Josep Carreras (IJC), Campus ICO-Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain; Departament d'Hematologia Clinica, ICO-Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona
| | - Eulalia Genesca
- Institut d'Investigacio contra la Leucemia Josep Carreras (IJC), Campus ICO-Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona.
| |
Collapse
|
2
|
Shi JJ, Chen RY, Liu YJ, Li CY, Yu J, Tu FY, Sheng JX, Lu JF, Zhang LL, Yang GJ, Chen J. Unraveling the role of ubiquitin-conjugating enzyme 5 (UBC5) in disease pathogenesis: A comprehensive review. Cell Signal 2024; 124:111376. [PMID: 39236836 DOI: 10.1016/j.cellsig.2024.111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
While certain members of ubiquitin-coupled enzymes (E2s) have garnered attention as potential therapeutic targets across diverse diseases, research progress on Ubiquitin-Conjugating Enzyme 5 (UBC5)-a pivotal member of the E2s family involved in crucial cellular processes such as apoptosis, DNA repair, and signal transduction-has been relatively sluggish. Previous findings suggest that UBC5 plays a vital role in the ubiquitination of various target proteins implicated in diseases and homeostasis, particularly in various cancer types. This review comprehensively introduces the structure and biological functions of UBC5, with a specific focus on its contributions to the onset and advancement of diverse diseases. It suggests that targeting UBC5 holds promise as a therapeutic approach for disease therapy. Recent discoveries highlighting the high homology between UBC5, UBC1, and UBC4 have provided insight into the mechanism of UBC5 in protein degradation and the regulation of cellular functions. As our comprehension of the structural distinctions among UBC5 and its homologues, namely UBC1 and UBC4, advances, our understanding of UBC5's functional significance also expands.
Collapse
Affiliation(s)
- Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fei-Yang Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Xiang Sheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Verma D, Kapoor S, Kumari S, Sharma D, Singh J, Benjamin M, Bakhshi S, Seth R, Nayak B, Sharma A, Pramanik R, Palanichamy JK, Sivasubbu S, Scaria V, Arora M, Kumar R, Chopra A. Decoding the genetic symphony: Profiling protein-coding and long noncoding RNA expression in T-acute lymphoblastic leukemia for clinical insights. PNAS NEXUS 2024; 3:pgae011. [PMID: 38328782 PMCID: PMC10847906 DOI: 10.1093/pnasnexus/pgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
T-acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy characterized by the abnormal proliferation of immature T-cell precursors. Despite advances in immunophenotypic classification, understanding the molecular landscape and its impact on patient prognosis remains challenging. In this study, we conducted comprehensive RNA sequencing in a cohort of 35 patients with T-ALL to unravel the intricate transcriptomic profile. Subsequently, we validated the prognostic relevance of 23 targets, encompassing (i) protein-coding genes-BAALC, HHEX, MEF2C, FAT1, LYL1, LMO2, LYN, and TAL1; (ii) epigenetic modifiers-DOT1L, EP300, EML4, RAG1, EZH2, and KDM6A; and (iii) long noncoding RNAs (lncRNAs)-XIST, PCAT18, PCAT14, LINC00202, LINC00461, LINC00648, ST20, MEF2C-AS1, and MALAT1 in an independent cohort of 99 patients with T-ALL. Principal component analysis revealed distinct clusters aligning with immunophenotypic subtypes, providing insights into the molecular heterogeneity of T-ALL. The identified signature genes exhibited associations with clinicopathologic features. Survival analysis uncovered several independent predictors of patient outcomes. Higher expression of MEF2C, BAALC, HHEX, and LYL1 genes emerged as robust indicators of poor overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS). Higher LMO2 expression was correlated with adverse EFS and RFS outcomes. Intriguingly, increased expression of lncRNA ST20 coupled with RAG1 demonstrated a favorable prognostic impact on OS, EFS, and RFS. Conclusively, several hitherto unreported associations of gene expression patterns with clinicopathologic features and prognosis were identified, which may help understand T-ALL's molecular pathogenesis and provide prognostic markers.
Collapse
Affiliation(s)
- Deepak Verma
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Shruti Kapoor
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Sarita Kumari
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Disha Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Jay Singh
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mercilena Benjamin
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi-110029, India
| | - Atul Sharma
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Raja Pramanik
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | | | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Rajive Kumar
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anita Chopra
- Laboratory Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
4
|
Borin C, Pieters T, Serafin V, Ntziachristos P. Emerging Epigenetic and Posttranslational Mechanisms Controlling Resistance to Glucocorticoids in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e916. [PMID: 37359189 PMCID: PMC10289758 DOI: 10.1097/hs9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
5
|
Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Dysregulation of miRNA in Leukemia: Exploiting miRNA Expression Profiles as Biomarkers. Int J Mol Sci 2021; 22:ijms22137156. [PMID: 34281210 PMCID: PMC8269043 DOI: 10.3390/ijms22137156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Micro RNAs (miRNAs) are a class of small non-coding RNAs that have a crucial role in cellular processes such as differentiation, proliferation, migration, and apoptosis. miRNAs may act as oncogenes or tumor suppressors; therefore, they prevent or promote tumorigenesis, and abnormal expression has been reported in many malignancies. The role of miRNA in leukemia pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. In this review, the role of miRNAs most frequently involved in leukemia pathogenesis is discussed, focusing on the class of circulating miRNAs, consisting of cell-free RNA molecules detected in several body fluids. Circulating miRNAs could represent new potential non-invasive diagnostic and prognostic biomarkers of leukemia that are easy to isolate and characterize. The dysregulation of some miRNAs involved in both myeloid and lymphoid leukemia, such as miR-155, miR-29, let-7, and miR-15a/miR-16-1 clusters is discussed, showing their possible employment as therapeutic targets.
Collapse
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70100 Bari, Italy;
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
- Correspondence: ; Tel.: +39(0)-80-547-8031; Fax: +39-(0)80-559-3471
| |
Collapse
|
6
|
Bardelli V, Arniani S, Pierini V, Pierini T, Di Giacomo D, Gorello P, Moretti M, Pellanera F, Elia L, Vitale A, Storlazzi CT, Tolomeo D, Mastrodicasa E, Caniglia M, Chiaretti S, Ruggeri L, Roti G, Schwab C, Harrison CJ, Almeida A, Pieters T, Van Vlierberghe P, Mecucci C, La Starza R. MYB rearrangements and over-expression in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2021; 60:482-488. [PMID: 33611795 DOI: 10.1002/gcc.22943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated MYB rearrangements (MYB-R) and the levels of MYB expression, in 331 pediatric and adult patients with T-cell acute lymphoblastic leukemia (T-ALL). MYB-R were detected in 17 cases and consisted of MYB tandem duplication (tdup) (= 14) or T cell receptor beta locus (TRB)-MYB (= 3). As previously reported, TRB-MYB was found only in children (1.6%) while MYB tdup occurred in both age groups, although it was slightly more frequent in children (5.2% vs 2.8%). Shared features of MYB-R T-ALL were a non-early T-cell precursor (ETP) phenotype, a high incidence of NOTCH1/FBXW7 mutations (81%) and CDKN2AB deletions (70.5%). Moreover, they mainly belonged to HOXA (=8), NKX2-1/2-2/TLX1 (=4), and TLX3 (=3) homeobox-related subgroups. Overall, MYB-R cases had significantly higher levels of MYB expression than MYB wild type (MYB-wt) cases, although high levels of MYB were detected in ~ 30% of MYB-wt T-ALL. Consistent with the transcriptional regulatory networks, cases with high MYB expression were significantly enriched within the TAL/LMO subgroup (P = .017). Interestingly, analysis of paired diagnosis/remission samples demonstrated that a high MYB expression was restricted to the leukemic clone. Our study has indicated that different mechanisms underlie MYB deregulation in 30%-40% of T-ALL and highlighted that, MYB has potential as predictive/prognostic marker and/or target for tailored therapy.
Collapse
Affiliation(s)
- Valentina Bardelli
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Tiziana Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Paolo Gorello
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Martina Moretti
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Antonella Vitale
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Mastrodicasa
- Department of pediatric and gynecology, Pediatric Onco-hematology, Perugia Regional hospital, Perugia, Italy
| | - Maurizio Caniglia
- Department of pediatric and gynecology, Pediatric Onco-hematology, Perugia Regional hospital, Perugia, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Loredana Ruggeri
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Giovanni Roti
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claire Schwab
- Leukaemia Research Cytogenetic Group, Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetic Group, Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Cordo' V, van der Zwet JC, Canté-Barrett K, Pieters R, Meijerink JP. T-cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies. Blood Cancer Discov 2021; 2:19-31. [PMID: 34661151 PMCID: PMC8447273 DOI: 10.1158/2643-3230.bcd-20-0093] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy characterized by aberrant proliferation of immature thymocytes. Despite an overall survival of 80% in the pediatric setting, 20% of patients with T-ALL ultimately die from relapsed or refractory disease. Therefore, there is an urgent need for novel therapies. Molecular genetic analyses and sequencing studies have led to the identification of recurrent T-ALL genetic drivers. This review summarizes the main genetic drivers and targetable lesions of T-ALL and gives a comprehensive overview of the novel treatments for patients with T-ALL that are currently under clinical investigation or that are emerging from preclinical research. SIGNIFICANCE T-ALL is driven by oncogenic transcription factors that act along with secondary acquired mutations. These lesions, together with active signaling pathways, may be targeted by therapeutic agents. Bridging research and clinical practice can accelerate the testing of novel treatments in clinical trials, offering an opportunity for patients with poor outcome.
Collapse
|
8
|
Recurrent NR3C1 Aberrations at First Diagnosis Relate to Steroid Resistance in Pediatric T-Cell Acute Lymphoblastic Leukemia Patients. Hemasphere 2020; 5:e513. [PMID: 33364552 PMCID: PMC7755520 DOI: 10.1097/hs9.0000000000000513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
The glucocorticoid receptor NR3C1 is essential for steroid-induced apoptosis, and deletions of this gene have been recurrently identified at disease relapse for acute lymphoblastic leukemia (ALL) patients. Here, we demonstrate that recurrent NR3C1 inactivating aberrations—including deletions, missense, and nonsense mutations—are identified in 7% of pediatric T-cell ALL patients at diagnosis. These aberrations are frequently present in early thymic progenitor-ALL patients and relate to steroid resistance. Functional modeling of NR3C1 aberrations in pre-B ALL and T-cell ALL cell lines demonstrate that aberrations decreasing NR3C1 expression are important contributors to steroid resistance at disease diagnosis. Relative NR3C1 messenger RNA expression in primary diagnostic patient samples, however, does not correlate with steroid response.
Collapse
|
9
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
10
|
Singh J, Kumar R, Verma D, Rajput N, Palanichamy JK, Sharma G, Bakhshi S, Sharma A, Pushpam D, Seth R, Ranjan A, Tanwar P, Singh A, Arora M, Kumari S, Chopra A. MEF2C expression, but not absence of bi-allelic deletion of TCR gamma chains (ABD), is a predictor of patient outcome in Indian T-acute lymphoblastic leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:294-304. [PMID: 33224573 PMCID: PMC7675123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence suggests existence of three prognostically relevant molecular entities among immature T-ALL-early thymic precursor ALL (ETP-ALL), T-ALL with the absence of biallelic deletion of TCRγ chains (ABD) and MEF2C (Myocyte Enhancer Factor 2C) high T-ALL. However, the usefulness of ETP-ALL immunophenotype and assessment of ABD for this purpose has been questioned and, MEF2C has not been studied in much detail. In this prospective analysis of 143 T-ALL patients, we evaluated the mutual association of these three entities and also determined how immunophenotypically-defined poor prognosis immature T-ALL relates to these entities. We found that all three of them, especially ABD, nearly completely characterized the immature group. High MEF2C expression reflected ETP-ALL somewhat poorly and a few ABD and MEF2C-high patients had non-immature immunophenotype-findings, that though in accord with published literature, call for exploration per T-cell receptor (TCR) classification scheme. ETP-ALL and MEF2C high but not ABD had a higher frequency of minimal residual disease positivity and poor event-free survival. MEF2C high, not ETP-ALL immunophenotype or ABD, had poorer overall survival. The value of ETP-ALL immunophenotype and MEF2C status, as indicators of poor treatment response, needs further evaluation for possible incorporation in standard T-ALL management practice.
Collapse
Affiliation(s)
- Jay Singh
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMSNew Delhi, India
| | | | - Deepak Verma
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMSNew Delhi, India
| | - Nishi Rajput
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMSNew Delhi, India
| | | | | | | | - Atul Sharma
- Department of Medical Oncology, AIIMSNew Delhi, India
| | | | - Rachna Seth
- Department of Paediatrics, AIIMSNew Delhi, India
| | - Amar Ranjan
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMSNew Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMSNew Delhi, India
| | - Archna Singh
- Department of Biochemistry, AIIMSNew Delhi, India
| | - Mohit Arora
- Department of Biochemistry, AIIMSNew Delhi, India
| | - Sarita Kumari
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMSNew Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRAIRCH, AIIMSNew Delhi, India
| |
Collapse
|
11
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
12
|
Marchesini M, Gherli A, Montanaro A, Patrizi L, Sorrentino C, Pagliaro L, Rompietti C, Kitara S, Heit S, Olesen CE, Møller JV, Savi M, Bocchi L, Vilella R, Rizzi F, Baglione M, Rastelli G, Loiacono C, La Starza R, Mecucci C, Stegmaier K, Aversa F, Stilli D, Lund Winther AM, Sportoletti P, Bublitz M, Dalby-Brown W, Roti G. Blockade of Oncogenic NOTCH1 with the SERCA Inhibitor CAD204520 in T Cell Acute Lymphoblastic Leukemia. Cell Chem Biol 2020; 27:678-697.e13. [PMID: 32386594 PMCID: PMC7305996 DOI: 10.1016/j.chembiol.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The identification of SERCA (sarco/endoplasmic reticulum calcium ATPase) as a target for modulating gain-of-function NOTCH1 mutations in Notch-dependent cancers has spurred the development of this compound class for cancer therapeutics. Despite the innate toxicity challenge associated with SERCA inhibition, we identified CAD204520, a small molecule with better drug-like properties and reduced off-target Ca2+ toxicity compared with the SERCA inhibitor thapsigargin. In this work, we describe the properties and complex structure of CAD204520 and show that CAD204520 preferentially targets mutated over wild-type NOTCH1 proteins in T cell acute lymphoblastic leukemia (T-ALL) and mantle cell lymphoma (MCL). Uniquely among SERCA inhibitors, CAD204520 suppresses NOTCH1-mutated leukemic cells in a T-ALL xenografted model without causing cardiac toxicity. This study supports the development of SERCA inhibitors for Notch-dependent cancers and extends their application to cases with isolated mutations in the PEST degradation domain of NOTCH1, such as MCL or chronic lymphocytic leukemia (CLL).
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Enzyme Inhibitors/chemical synthesis
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, SCID
- Molecular Structure
- Mutation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Matteo Marchesini
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Andrea Gherli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Anna Montanaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Laura Patrizi
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Claudia Sorrentino
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Luca Pagliaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Chiara Rompietti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Samuel Kitara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Sabine Heit
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | - Claus E Olesen
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Jesper V Møller
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Monia Savi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Leonardo Bocchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Rocchina Vilella
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Federica Rizzi
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy; INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Marilena Baglione
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Giorgia Rastelli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Caterina Loiacono
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Roberta La Starza
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Cristina Mecucci
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute, Cambridge, MA 02142, USA
| | - Franco Aversa
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Donatella Stilli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | | | - Paolo Sportoletti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Maike Bublitz
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | | | - Giovanni Roti
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy.
| |
Collapse
|
13
|
La Starza R, Pierini V, Pierini T, Nofrini V, Matteucci C, Arniani S, Moretti M, Lema Fernandez AG, Pellanera F, Di Giacomo D, Storlazzi TC, Vitale A, Gorello P, Sammarelli G, Roti G, Basso G, Chiaretti S, Foà R, Schwab C, Harrison CJ, Van Vlierberghe P, Mecucci C. Design of a Comprehensive Fluorescence in Situ Hybridization Assay for Genetic Classification of T-Cell Acute Lymphoblastic Leukemia. J Mol Diagn 2020; 22:629-639. [DOI: 10.1016/j.jmoldx.2020.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
|
14
|
Gutierrez-Camino A, Garcia-Obregon S, Lopez-Lopez E, Astigarraga I, Garcia-Orad A. miRNA deregulation in childhood acute lymphoblastic leukemia: a systematic review. Epigenomics 2019; 12:69-80. [PMID: 31833405 DOI: 10.2217/epi-2019-0154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite remarkable improvements in survival of childhood acute lymphoblastic leukemia (ALL), nonresponding or relapsing patients still represent one of the most frequent causes of death by disease in children. Accurate patient risk stratification based on genetic markers could increases survival rates. miRNAs can represent novel candidates with diagnostic, predictive and prognostic potential; however, many groups investigated their involvement with contradictory results. Aim: To clarify the role of miRNAs as biomarkers through a systematic review. Results: From a revision of 45 manuscripts, we found that miR-128 and miR-181 overexpression could represent markers for ALL diagnosis and underexpression of miR-708 and miR-99a could be markers for bad prognosis. Conclusion: These signatures could refine classification and risk stratification of patients and improve ALL outcome.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.,BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain.,Division of Hematology-Oncology, Research Center, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
| | - Susana Garcia-Obregon
- BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.,BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain
| | - Itziar Astigarraga
- BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain.,Department of Pediatrics, University Hospital Cruces, Barakaldo, 48903, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.,BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain
| |
Collapse
|
15
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
16
|
De Smedt R, Morscio J, Goossens S, Van Vlierberghe P. Targeting steroid resistance in T-cell acute lymphoblastic leukemia. Blood Rev 2019; 38:100591. [PMID: 31353059 DOI: 10.1016/j.blre.2019.100591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is characterized by a variable response to steroids during induction and/or consolidation therapy. Notably, recent work suggested that these differences in glucocorticoid sensitivity might, at least in part, be mediated by hyperactivation of specific oncogenic pathways such as RAS/MEK/ERK, PI3K/AKT and IL7R/JAK/STAT. In this review, we elaborate on putative associations between aberrant signaling, therapy resistance, incidence of relapse and clinical outcome in human T-ALL. Furthermore, we emphasize that this potential association with clinical parameters might also be mediated by the tumor microenvironment as a result of increased sensitivity of leukemic T-cells towards cytokine induced signaling pathway activation. With this in mind, we provide an overview of small molecule inhibitors that might have clinical potential for the treatment of human T-ALL in the near future as a result of their ability to overcome steroid resistance thereby potentially increasing survival rates in this aggressive hematological neoplasm.
Collapse
Affiliation(s)
- Renate De Smedt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
17
|
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: Consequences of anchor loss. Int J Biochem Cell Biol 2019; 111:52-62. [PMID: 31009764 DOI: 10.1016/j.biocel.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Markéta Šašinková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| |
Collapse
|
18
|
Vicente C, Stirparo R, Demeyer S, de Bock CE, Gielen O, Atkins M, Yan J, Halder G, Hassan BA, Cools J. The CCR4-NOT complex is a tumor suppressor in Drosophila melanogaster eye cancer models. J Hematol Oncol 2018; 11:108. [PMID: 30144809 PMCID: PMC6109294 DOI: 10.1186/s13045-018-0650-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CNOT3 protein is a subunit of the CCR4-NOT complex, which is involved in mRNA degradation. We recently identified CNOT3 loss-of-function mutations in patients with T-cell acute lymphoblastic leukemia (T-ALL). METHODS Here, we use different Drosophila melanogaster eye cancer models to study the potential tumor suppressor function of Not3, the CNOT3 orthologue, and other members of the CCR4-NOT complex. RESULTS Our data show that knockdown of Not3, the structural components Not1/Not2, and the deadenylases twin/Pop2 all result in increased tumor formation. In addition, overexpression of Not3 could reduce tumor formation. Not3 downregulation has a mild but broad effect on gene expression and leads to increased levels of genes involved in DNA replication and ribosome biogenesis. CycB upregulation also contributes to the Not3 tumor phenotype. Similar findings were obtained in human T-ALL cell lines, pointing out the conserved function of Not3. CONCLUSIONS Together, our data establish a critical role for Not3 and the entire CCR4-NOT complex as tumor suppressor.
Collapse
Affiliation(s)
- Carmen Vicente
- Center for Cancer Biology, VIB, Leuven, Belgium. .,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium. .,Centro de Investigación Médica Aplicada, Av. de Pío XII, 55, 31008, Pamplona, Spain.
| | - Rocco Stirparo
- Center for Cancer Biology, VIB, Leuven, Belgium.,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium
| | - Sofie Demeyer
- Center for Cancer Biology, VIB, Leuven, Belgium.,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium
| | - Charles E de Bock
- Center for Cancer Biology, VIB, Leuven, Belgium.,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium
| | - Olga Gielen
- Center for Cancer Biology, VIB, Leuven, Belgium.,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium
| | - Mardelle Atkins
- Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jiekun Yan
- Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Georg Halder
- Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Bassem A Hassan
- Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium.,Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, UPMC, Sorbonne Universités, Inserm, CNRS, Paris, France
| | - Jan Cools
- Center for Cancer Biology, VIB, Leuven, Belgium. .,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium.
| |
Collapse
|