1
|
Handa S, Schaniel C, Tripodi J, Ahire D, Mia MB, Klingborg S, Tremblay D, Marcellino BK, Hoffman R, Najfeld V. HMGA2 overexpression with specific chromosomal abnormalities predominate in CALR and ASXL1 mutated myelofibrosis. Leukemia 2025; 39:663-674. [PMID: 39715853 PMCID: PMC11879852 DOI: 10.1038/s41375-024-02496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Although multiple genetic events are thought to play a role in promoting progression of the myeloproliferative neoplasms (MPN), the individual events that are associated with the development of more aggressive disease phenotypes remain poorly defined. Here, we report that novel genomic deletions at chromosome 12q14.3, as detected by a high-resolution array comparative genomic hybridization plus single nucleotide polymorphisms platform, occur in 11% of MPN patients with myelofibrosis (MF) and MPN-accelerated/blast phase (AP/BP) but was not detected in patients with polycythemia vera or essential thrombocythemia. These 12q14.3 deletions resulted in the loss of most of the non-coding region of exon 5 and MIRLET7 binding sites in the 3'UTR of the high mobility group AT hook 2 (HMGA2), which negatively regulate HMGA2 expression. These acquired 12q14.3 deletions were predominately detected in MF patients with CALR and ASXL1 co-mutations and led to a greater degree of HMGA2 transcript overexpression, independent of the presence of an ASXL1 mutation. Patients with 12q structural abnormalities involving HMGA2 exhibited a more aggressive clinical course, with a higher frequency of MPN-AP/BP evolution. These findings indicate that HMGA2 overexpression associated with genomic deletion of its 3'UTR region is a newly recognized genetic event that contributes to MPN progression.
Collapse
Affiliation(s)
- Shivani Handa
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Christoph Schaniel
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Tripodi
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daiva Ahire
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Md Babu Mia
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophie Klingborg
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Vesna Najfeld
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Ueda K, Ikeda K. Cellular carcinogenesis in preleukemic conditions:drivers and defenses. Fukushima J Med Sci 2024; 70:11-24. [PMID: 37952978 PMCID: PMC10867434 DOI: 10.5387/fms.2023-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| |
Collapse
|
3
|
Mercier-Guery A, Millet M, Merle B, Collet C, Bagouet F, Borel O, Sornay-Rendu E, Szulc P, Vignot E, Gensburger D, Fontanges E, Croset M, Chapurlat R. Dysregulation of MicroRNAs in Adult Osteogenesis Imperfecta: The miROI Study. J Bone Miner Res 2023; 38:1665-1678. [PMID: 37715362 DOI: 10.1002/jbmr.4912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
As epigenetic regulators of gene expression, circulating micro-RiboNucleic Acids (miRNAs) have been described in several bone diseases as potential prognostic markers. The aim of our study was to identify circulating miRNAs potentially associated with the severity of osteogenesis imperfecta (OI) in three steps. We have screened by RNA sequencing for the miRNAs that were differentially expressed in sera of a small group of OI patients versus controls and then conducted a validation phase by RT-qPCR analysis of sera of a larger patient population. In the first phase of miROI, we found 79 miRNAs that were significantly differentially expressed. We therefore selected 19 of them as the most relevant. In the second phase, we were able to validate the significant overexpression of 8 miRNAs in the larger OI group. Finally, we looked for a relationship between the level of variation of the validated miRNAs and the clinical characteristics of OI. We found a significant difference in the expression of two microRNAs in those patients with dentinogenesis imperfecta. After reviewing the literature, we found 6 of the 8 miRNAs already known to have a direct action on bone homeostasis. Furthermore, the use of a miRNA-gene interaction prediction model revealed a 100% probability of interaction between 2 of the 8 confirmed miRNAs and COL1A1 and/or COL1A2. This is the first study to establish the miRNA signature in OI, showing a significant modification of miRNA expression potentially involved in the regulation of genes involved in the physiopathology of OI. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alexandre Mercier-Guery
- Hospices Civils de Lyon, Hôpital E. Herriot, Service de Rhumatologie et Pathologie Osseuse, Lyon, France
- Université de Lyon, Université Lyon 1, INSERM UMR 1033; LYOS Pathophysiology, Diagnosis & Treatments of Musculoskeletal Disorders, Lyon, France
| | - Marjorie Millet
- Université de Lyon, Université Lyon 1, INSERM UMR 1033; LYOS Pathophysiology, Diagnosis & Treatments of Musculoskeletal Disorders, Lyon, France
| | - Blandine Merle
- Université de Lyon, Université Lyon 1, INSERM UMR 1033; LYOS Pathophysiology, Diagnosis & Treatments of Musculoskeletal Disorders, Lyon, France
| | - Corinne Collet
- CHU Robert Debré, Université de Paris Cité, Département de Génétique, CHU Lariboisière, Paris, France
- INSERM UMR1132, CHU Lariboisière, Paris, France
| | - Flora Bagouet
- Hospices Civils de Lyon, Hôpital E. Herriot, Service de Rhumatologie et Pathologie Osseuse, Lyon, France
| | - Olivier Borel
- Université de Lyon, Université Lyon 1, INSERM UMR 1033; LYOS Pathophysiology, Diagnosis & Treatments of Musculoskeletal Disorders, Lyon, France
| | - Elisabeth Sornay-Rendu
- Université de Lyon, Université Lyon 1, INSERM UMR 1033; LYOS Pathophysiology, Diagnosis & Treatments of Musculoskeletal Disorders, Lyon, France
| | - Pawel Szulc
- Université de Lyon, Université Lyon 1, INSERM UMR 1033; LYOS Pathophysiology, Diagnosis & Treatments of Musculoskeletal Disorders, Lyon, France
| | - Emmanuelle Vignot
- Hospices Civils de Lyon, Hôpital E. Herriot, Service de Rhumatologie et Pathologie Osseuse, Lyon, France
| | - Deborah Gensburger
- Hospices Civils de Lyon, Hôpital E. Herriot, Service de Rhumatologie et Pathologie Osseuse, Lyon, France
| | - Elisabeth Fontanges
- Hospices Civils de Lyon, Hôpital E. Herriot, Service de Rhumatologie et Pathologie Osseuse, Lyon, France
| | - Martine Croset
- Université de Lyon, Université Lyon 1, INSERM UMR 1033; LYOS Pathophysiology, Diagnosis & Treatments of Musculoskeletal Disorders, Lyon, France
| | - Roland Chapurlat
- Hospices Civils de Lyon, Hôpital E. Herriot, Service de Rhumatologie et Pathologie Osseuse, Lyon, France
- Université de Lyon, Université Lyon 1, INSERM UMR 1033; LYOS Pathophysiology, Diagnosis & Treatments of Musculoskeletal Disorders, Lyon, France
| |
Collapse
|
4
|
Wang YH, Chen YJ, Lai YH, Wang MC, Chen YY, Wu YY, Yang YR, Tsou HY, Li CP, Hsu CC, Huang CE, Chen CC. Mutation-Driven S100A8 Overexpression Confers Aberrant Phenotypes in Type 1 CALR-Mutated MPN. Int J Mol Sci 2023; 24:8747. [PMID: 37240094 PMCID: PMC10217897 DOI: 10.3390/ijms24108747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Numerous pathogenic CALR exon 9 mutations have been identified in myeloproliferative neoplasms (MPN), with type 1 (52bp deletion; CALRDEL) and type 2 (5bp insertion; CALRINS) being the most prevalent. Despite the universal pathobiology of MPN driven by various CALR mutants, it is unclear why different CALR mutations result in diverse clinical phenotypes. Through RNA sequencing followed by validation at the protein and mRNA levels, we found that S100A8 was specifically enriched in CALRDEL but not in CALRINS MPN-model cells. The expression of S100a8 could be regulated by STAT3 based on luciferase reporter assay complemented with inhibitor treatment. Pyrosequencing demonstrated relative hypomethylation in two CpG sites within the potential pSTAT3-targeting S100a8 promoter region in CALRDEL cells as compared to CALRINS cells, suggesting that distinct epigenetic alteration could factor into the divergent S100A8 levels in these cells. The functional analysis confirmed that S100A8 non-redundantly contributed to accelerated cellular proliferation and reduced apoptosis in CALRDEL cells. Clinical validation showed significantly enhanced S100A8 expression in CALRDEL-mutated MPN patients compared to CALRINS-mutated cases, and thrombocytosis was less prominent in those with S100A8 upregulation. This study provides indispensable insights into how different CALR mutations discrepantly drive the expression of specific genes that contributes to unique phenotypes in MPN.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yi-Hua Lai
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ming-Chung Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yao-Ren Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Hsing-Yi Tsou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chian-Pei Li
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Control of focal adhesion kinase activation by RUNX1-regulated miRNAs in high-risk AML. Leukemia 2023; 37:776-787. [PMID: 36788336 DOI: 10.1038/s41375-023-01841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
We recently described a 16-gene expression signature for improved risk stratification of acute myeloid leukemia (AML) patients called the AML Prognostic Score (APS). A subset of APS-high-risk AML patients showed increased levels of focal adhesion kinase (FAK), encoded by the Protein Tyrosine Kinase 2 (PTK2) gene, which was correlated with RUNX1 mutations. RUNX1 mutant cells are more sensitive to PTK2 inhibitors. As we were not able to detect RUNX1-binding sites in the PTK2 promoter, we hypothesized that RUNX1 might regulate micro(mi)RNAs that repress PTK2, such that loss-of-function RUNX1 mutations would result in reduced miRNA expression and derepression of PTK2. Examination of paired RNA-seq and miRNA-seq data from 301 AML cases revealed two miRNAs that positively correlated with RUNX1 expression, contained RUNX1-binding sites in their promoters and were predicted to target PTK2. We show that the hsa-let7a-2-3p and hsa-miR-135a-5p promoters are regulated by RUNX1, and that PTK2 is a direct target of both miRNAs. Even in the absence of RUNX1 mutations, hsa-let7a-2-3p and hsa-miR-135a-5p regulate PTK2 expression, and reduced expression of these two miRNAs sensitizes AML cells to PTK2 inhibition. These data explain how RUNX1 regulates PTK2, and identify potential miRNA biomarkers for targeting AML with PTK2 inhibitors.
Collapse
|
6
|
Hsu CC, Wang YH, Chen YY, Chen YJ, Lu CH, Wu YY, Yang YR, Tsou HY, Li CP, Huang CE, Chen CC. The Genomic Landscape in Philadelphia-Negative Myeloproliferative Neoplasm Patients with Second Cancers. Cancers (Basel) 2022; 14:cancers14143435. [PMID: 35884495 PMCID: PMC9316742 DOI: 10.3390/cancers14143435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with myeloproliferative neoplasms (MPNs) are characterized by systemic inflammation. With the indolent nature of the diseases, second cancers (SCs) have emerged as a challenging issue in afflicted patients. Epidemiological studies have confirmed the excessive risk of SCs in MPNs, but little is known about their molecular basis. To explore further, we used whole exome sequencing to explore the genetic changes in the granulocytes of 26 paired MPN patients with or without SC. We noticed that MPN−SC patients harbor genomic variants of distinct genes, among which a unique pattern of co-occurrence or mutual exclusiveness could be identified. We also found that mutated genes in MPN−SC samples were enriched in immune-related pathways and inflammatory networks, an observation further supported by their increased plasma levels of TGF-β and IL-23. Noteworthily, variants of KRT6A, a gene capable of mediating tumor-associate macrophage activity, were more commonly detected in MPN−SC patients. Analysis through OncodriveCLUST disclosed that KRT6A replaces JAK2V617F as the more prominent disease driver in MPN−SC, whereas a major mutation in this gene (KRT6A c.745T>C) in our patients is linked to human carcinoma and predicted to be pathogenic in COSMIC database. Overall, we demonstrate that inflammation could be indispensable in MPN−SC pathogenesis.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Ying-Hsuan Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Chang-Hsien Lu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Yao-Ren Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Hsing-Yi Tsou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Chian-Pei Li
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: (C.-E.H.); (C.-C.C.)
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.H.); (Y.-H.W.); (Y.-Y.C.); (Y.-J.C.); (C.-H.L.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: (C.-E.H.); (C.-C.C.)
| |
Collapse
|
7
|
Comprehensive Analysis of hsa-miR-654-5p's Tumor-Suppressing Functions. Int J Mol Sci 2022; 23:ijms23126411. [PMID: 35742854 PMCID: PMC9224266 DOI: 10.3390/ijms23126411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
The pivotal roles of miRNAs in carcinogenesis, metastasis, and prognosis have been demonstrated recently in various cancers. This study intended to investigate the specific roles of hsa-miR-654-5p in lung cancer, which is, in general, rarely discussed. A series of closed-loop bioinformatic functional analyses were integrated with in vitro experimental validation to explore the overall biological functions and pan-cancer regulation pattern of miR-654-5p. We found that miR-654-5p abundance was significantly elevated in LUAD tissues and correlated with patients’ survival. A total of 275 potential targets of miR-654-5p were then identified and the miR-654-5p-RNF8 regulation axis was validated in vitro as a proof of concept. Furthermore, we revealed the tumor-suppressing roles of miR-654-5p and demonstrated that miR-654-5p inhibited the lung cancer cell epithelial-mesenchymal transition (EMT) process, cell proliferation, and migration using target-based, abundance-based, and ssGSEA-based bioinformatic methods and in vitro validation. Following the construction of a protein–protein interaction network, 11 highly interconnected hub genes were identified and a five-genes risk scoring model was developed to assess their potential prognostic ability. Our study does not only provide a basic miRNA-mRNA-phenotypes reference map for understanding the function of miR-654-5p in different cancers but also reveals the tumor-suppressing roles and prognostic values of miR-654-5p.
Collapse
|
8
|
Huldani H, Jasim SA, Sergeenva KN, Bokov DO, Abdelbasset WK, Turakulov R, Al-Gazally ME, Ahmadzadeh B, Jawhar ZH, Siahmansouri H. Mechanisms of cancer stem cells drug resistance and the pivotal role of HMGA2. Pathol Res Pract 2022; 234:153906. [PMID: 35468338 DOI: 10.1016/j.prp.2022.153906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, the focus of researchers is on perceiving the heterogeneity observed in a tumor. The researchers studied the role of a specific subset of cancer cells with high resistance to traditional treatments, recurrence, and unregulated metastasis. This small population of tumor cells that have stem-cell-like specifications was named Cancer Stem Cells (CSCs). The unique features that distinguish this type of cancer cell are self-renewing, generating clones of the tumor, plasticity, recurrence, and resistance to therapies. There are various mechanisms that contribute to the drug resistance of CSCs, such as CSCs markers, Epithelial mesenchymal transition, hypoxia, other cells, inflammation, and signaling pathways. Recent investigations have revealed the primary role of HMGA2 in the development and invasion of cancer cells. Importantly, HMGA2 also plays a key role in resistance to treatment through their function in the drug resistance mechanisms of CSCs and challenge it. Therefore, a deep understanding of this issue can provide a clearer perspective for researchers in the face of this problem.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Klunko Nataliya Sergeenva
- Department of post-graduate and doctoral programs, Russian New University, Building 5, Radio Street, Moscow City, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Rustam Turakulov
- Department of Internal diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | | | - Behnam Ahmadzadeh
- Doctoral School of the University of Szczecin, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Gou P, Zhang W, Giraudier S. Insights into the Potential Mechanisms of JAK2V617F Somatic Mutation Contributing Distinct Phenotypes in Myeloproliferative Neoplasms. Int J Mol Sci 2022; 23:ijms23031013. [PMID: 35162937 PMCID: PMC8835324 DOI: 10.3390/ijms23031013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a group of blood cancers in which the bone marrow (BM) produces an overabundance of erythrocyte, white blood cells, or platelets. Philadelphia chromosome-negative MPN has three subtypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The over proliferation of blood cells is often associated with somatic mutations, such as JAK2, CALR, and MPL. JAK2V617F is present in 95% of PV and 50–60% of ET and PMF. Based on current molecular dynamics simulations of full JAK2 and the crystal structure of individual domains, it suggests that JAK2 maintains basal activity through self-inhibition, whereas other domains and linkers directly/indirectly enhance this self-inhibited state. Nevertheless, the JAK2V617F mutation is not the only determinant of MPN phenotype, as many normal individuals carry the JAK2V617F mutation without a disease phenotype. Here we review the major MPN phenotypes, JAK-STAT pathways, and mechanisms of development based on structural biology, while also describing the impact of other contributing factors such as gene mutation allele burden, JAK-STAT-related signaling pathways, epigenetic modifications, immune responses, and lifestyle on different MPN phenotypes. The cross-linking of these elements constitutes a complex network of interactions and generates differences in individual and cellular contexts that determine the phenotypic development of MPN.
Collapse
Affiliation(s)
- Panhong Gou
- Laboratoire UMRS-1131, Ecole doctorale 561, Université de Paris, 75010 Paris, France
- INSERM UMR-S1131, Hôpital Saint-Louis, 75010 Paris, France
- Correspondence: (P.G.); (S.G.)
| | - Wenchao Zhang
- BFA, UMR 8251, CNRS, Université de Paris, 75013 Paris, France;
| | - Stephane Giraudier
- Laboratoire UMRS-1131, Ecole doctorale 561, Université de Paris, 75010 Paris, France
- INSERM UMR-S1131, Hôpital Saint-Louis, 75010 Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
- Correspondence: (P.G.); (S.G.)
| |
Collapse
|
10
|
Wang C, Liu S, Li J, Cheng Y, Wang Z, Feng T, Lu G, Wang S, Song J, Xia P, Hao L. Biological Functions of Let-7e-5p in Promoting the Differentiation of MC3T3-E1 Cells. Front Cell Dev Biol 2021; 9:671170. [PMID: 34568312 PMCID: PMC8455882 DOI: 10.3389/fcell.2021.671170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs let-7c and let-7f, two members of the let-7 family, were involved in regulating osteoblast differentiation and have an important role in bone formation. Let-7e-5p, which also belonged to the let-7 family, presented in the differentiation of adipose-derived stem cells and mouse embryonic stem cells. However, the role of let-7e-5p in osteoblast differentiation was unclear. Thus, this study aimed to elucidate the function of let-7e-5p in osteoblast differentiation and its mechanism. Firstly, we found that the let-7e-5p mimic promoted osteoblast differentiation but not the proliferation of MC3T3-E1 cells by positively regulating the expression levels of osteogenic-associated genes (RUNX2, OCN, OPN, and OSX), the activity of ALP, and formation of mineralized nodules. Moreover, we ascertained that the let-7e-5p mimic downregulated the post-transcriptional expression of SOCS1 by specifically binding to the 3′ untranslated region of SOCS1 mRNA. Also, let-7e-5p-induced SOCS1 downregulation increased the protein levels of p-STAT5 and IGF-1, which were both modulated by SOCS1 molecules. Furthermore, let-7e-5p abrogated the inhibition of osteogenic differentiation mediated by SOCS1 overexpression. Therefore, these results suggested that let-7e-5p regulated the differentiation of MC3T3-E1 cells through the JAK2/STAT5 pathway to upregulate IGF-1 gene expression by inhibiting SOCS1. These findings may provide a new insight into the regulatory role of let-7e-5p in osteogenic differentiation and imply the existence of a novel mechanism underlying let-7e-5p-mediated osteogenic differentiation.
Collapse
Affiliation(s)
- Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Jiaxin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Yunyun Cheng
- College of Public Health, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, Changchun, China
| | - Guanhong Lu
- College of Animal Science, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Peijun Xia
- College of Animal Science, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
11
|
Real-world experience with Ropeginterferon-alpha 2b (Besremi) in Philadelphia-negative myeloproliferative neoplasms. J Formos Med Assoc 2020; 120:863-873. [PMID: 32873465 DOI: 10.1016/j.jfma.2020.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND/PURPOSE Ropeginterferon alpha-2b (Ropeg) is a novel pegylated interferon-alpha recently approved for the treatment of polycythemia vera (PV) in Europe. However, other than data from clinical trials, little is known about this agent in real world practice. METHODS A compassionate use program employing Ropeg for treating patients with unmet medical need was initiated in Taiwan in 2017. Herein, we collected clinical data and assessed the safety as well as efficacy of Ropeg in nine patients treated in this program. RESULTS Collectively, among evaluable patients, both the molecular response and complete blood count remission rates were 62.5%. Most therapy-related side effects were mild, and there was no treatment discontinuation attributable to intolerable adverse events. The agent also showed efficacy in symptom amelioration and spleen size reduction. Although no specific patterns of cytokine level alteration could be identified, significantly attenuated plasma levels of inflammation markers were observed in one particular patient who happened to have normalized spleen size and most remarkable reduction in JAK2 mutant allele burden, indicating all-around improvement in every aspect of this case. Furthermore, plasma hepcidin levels increased in two-thirds of PV patients, illustrating the potential of Ropeg to restore normal regulation of erythropoiesis. Using RNA sequencing on pre- and post-treatment samples from one patient, we demonstrated altered expression of genes participating in IFN response, inflammation, apoptosis, and cellular differentiation. CONCLUSION Conclusively, observed signs of efficacy and safety in our real-world experience prove Ropeg as a promising option for the treatment of MPN.
Collapse
|
12
|
Minervini A, Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. HMGA Proteins in Hematological Malignancies. Cancers (Basel) 2020; 12:E1456. [PMID: 32503270 PMCID: PMC7353061 DOI: 10.3390/cancers12061456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mobility group AT-Hook (HMGA) proteins are a family of nonhistone chromatin remodeling proteins known as "architectural transcriptional factors". By binding the minor groove of AT-rich DNA sequences, they interact with the transcription apparatus, altering the chromatin modeling and regulating gene expression by either enhancing or suppressing the binding of the more usual transcriptional activators and repressors, although they do not themselves have any transcriptional activity. Their involvement in both benign and malignant neoplasias is well-known and supported by a large volume of studies. In this review, we focus on the role of the HMGA proteins in hematological malignancies, exploring the mechanisms through which they enhance neoplastic transformation and how this knowledge could be exploited to devise tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (A.M.); (N.C.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
13
|
Liu Y, Zhang Y, Chi Q, Wang Z, Sun B. Methyltransferase-like 1 (METTL1) served as a tumor suppressor in colon cancer by activating 7-methyguanosine (m7G) regulated let-7e miRNA/HMGA2 axis. Life Sci 2020; 249:117480. [DOI: 10.1016/j.lfs.2020.117480] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
|
14
|
Hsu CC, Chen YJ, Huang CE, Wu YY, Wang MC, Pei SN, Liao CK, Lu CH, Chen PT, Tsou HY, Li CP, Chuang WH, Chuang CK, Yang CY, Lai YH, Lin YH, Chen CC. Molecular heterogeneity unravelled by single-cell transcriptomics in patients with essential thrombocythaemia. Br J Haematol 2019; 188:707-722. [PMID: 31610612 DOI: 10.1111/bjh.16225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Significant phenotypic heterogeneity exists in patients with all subtypes of myeloproliferative neoplasms (MPN), including essential thrombocythaemia (ET). Single-cell RNA sequencing (scRNA-Seq) holds the promise of unravelling the biology of MPN at an unprecedented level of resolution. Herein we employed this approach to dissect the transcriptomes in the CD34+ cells from the peripheral blood of seven previously untreated ET patients and one healthy adult. The mutational profiles in these patients were as follows: JAK2 V617F in two, CALR in three (one type I and two type II) and triple-negative (TN) in two. Our results reveal substantial heterogeneity within this enrolled cohort of patients. Activation of JAK/STAT signalling was recognized in discrepant progenitor lineages among different samples. Significantly disparate molecular profiling was identified in the comparison between ET patients and the control, between patients with different driver mutations (JAK2 V617F and CALR exon 9 indel), and even between patients harbouring the same driver. Intra-individual clonal diversity was also found in the CD34+ progenitor population of a patient, possibly indicating the presence of multiple clones in this case. Estimation of subpopulation size based on cellular immunophenotyping suggested differentiation bias in all analysed samples. Furthermore, combining the transcriptomic information with data from targeted sequencing enabled us to unravel key somatic mutations that are molecularly relevant. To conclude, we demonstrated that scRNA-Seq extended our knowledge of clonal diversity and inter-individual heterogeneity in patients with ET. The obtained information could potentially leapfrog our efforts in the elucidation of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Ju Chen
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cih-En Huang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Ying Wu
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Chung Wang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sung-Nan Pei
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Kai Liao
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chang-Hsien Lu
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ping-Tsung Chen
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsing-Yi Tsou
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chian-Pei Li
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wei-Hsuan Chuang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | - Cheng-Yu Yang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Hua Lai
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Hsuan Lin
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Cheng Chen
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
15
|
Miao JT, Gao JH, Chen YQ, Chen H, Meng HY, Lou G. LncRNA ANRIL affects the sensitivity of ovarian cancer to cisplatin via regulation of let-7a/HMGA2 axis. Biosci Rep 2019; 39:BSR20182101. [PMID: 31189742 PMCID: PMC6609561 DOI: 10.1042/bsr20182101] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/18/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022] Open
Abstract
This paper tried to explore ANRIL expression in ovarian cancer and how it affects cisplatin-sensitivity of ovarian cancer cells via regulation of let-7a/high-mobility group protein A2 (HMGA2) axis. qRT-PCR was used to detect ANRIL and let-7a levels in ovarian cancer tissues and cell lines (SKOV3 and SKOV3/DDP). Then cells were randomly assigned into Blank, negative control siRNA, ANRIL siRNA, let-7a inhibitor, and ANRIL siRNA+let-7a-inhibitor groups. CCK-8 assay was applied for assessing cell viability of cells treated with different concentrations of cisplatin. Flow cytometry was employed to test cell apoptosis rate. qRT-PCR and Western blot were performed for related molecules detection. Nude mice transplanted with SKOV3/DDP cells were used to confirm the effects of ANRIL siRNA on the cisplatin-sensitivity. Ovarian cancer tissues and cisplatin-resistant cells had increased ANRIL expression and decreased let-7a expression, and those patients with higher clinical stage and pathological grade showed higher ANRIL and lower let-7a. Dual-luciferase reporter-gene assay confirmed the targeting relationship between ANRIL and let-7a, and between let-7a and HMGA2. The cell viability and cisplatin IC50 were decreased in ANRIL siRNA group exposed to different concentrations of cisplatin, with enhanced apoptosis, as well as elevated let-7a and declined HMGA2, which would be reversed by let-7a inhibitor. Meanwhile, ANRIL down-regulation enhanced the inhibitory effect of cisplatin on tumor growth of nude mice and reduced tumor weight. Silencing ANRIL expression reduced HMGA2 expression to promote the apoptosis and improve cisplatin-sensitivity of ovarian cancer cells via up-regulating let-7a expression.
Collapse
Affiliation(s)
- Jin-Tian Miao
- Department of Gynecology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian-Hua Gao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yong-Qian Chen
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Hong Chen
- Department of Gynecology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao-Yi Meng
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Ge Lou
- Department of Gynecology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
Barrasso AP, Tong X, Poché RA. The mito::mKate2 mouse: A far-red fluorescent reporter mouse line for tracking mitochondrial dynamics in vivo. Genesis 2018; 56:10.1002/dvg.23087. [PMID: 29243279 PMCID: PMC5818295 DOI: 10.1002/dvg.23087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
Abstract
Mitochondria are incredibly dynamic organelles that undergo continuous fission and fusion events to control morphology, which profoundly impacts cell physiology including cell cycle progression. This is highlighted by the fact that most major human neurodegenerative diseases are due to specific disruptions in mitochondrial fission or fusion machinery and null alleles of these genes result in embryonic lethality. To gain a better understanding of the pathophysiology of such disorders, tools for the in vivo assessment of mitochondrial dynamics are required. It would be particularly advantageous to simultaneously image mitochondrial fission-fusion coincident with cell cycle progression. To that end, we have generated a new transgenic reporter mouse, called mito::mKate2 that ubiquitously expresses a mitochondria localized far-red mKate2 fluorescent protein. Here we show that mito::mKate2 mice are viable and fertile and that mKate2 fluorescence can be spectrally separated from the previously developed Fucci cell cycle reporters. By crossing mito::mKate2 mice to the ROSA26R-mTmG dual fluorescent Cre reporter line, we also demonstrate the potential utility of mito::mKate2 for genetic mosaic analysis of mitochondrial phenotypes.
Collapse
Affiliation(s)
- Anthony P. Barrasso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A. Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|