1
|
Tamizhmani P, Balamurugan B, Thirunavukarasu K, Shanmugam V, Subramaniam S, Velusamy T. Delineating Notch1 and Notch2: Receptor-Specific Significance and Therapeutic Importance of Pinpoint Targeting Strategies for Hematological Malignancies. Eur J Haematol 2025; 114:213-230. [PMID: 39530322 DOI: 10.1111/ejh.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Notch1 and Notch2, transmembrane receptors belonging to the Notch family, are pivotal mediators of intercellular communication and have profound implications including cell fate determination, embryonic development, and tissue homeostasis in various cellular processes. Despite their structural homology, Notch1 and Notch2 exhibit discrete phenotypic characteristics and functional nuances that necessitate their individualized targeting in specific medical scenarios. Aberrant Notch signaling, often driven by the dysregulated activity of one receptor over the other, is implicated under various pathological conditions. Notch1 dysregulation is frequently associated with T-cell acute lymphoblastic leukemia, whereas Notch2 perturbations are linked to B-cell malignancies and solid tumors, including breast cancer. Hence, tailored therapeutic interventions that selectively inhibit the relevant Notch receptor need to be devised to disrupt the signaling pathways driving the specific disease phenotype. In this review, we emphasize the importance of distinct tissue-specific expression patterns, functional divergence, disease-specific considerations, and the necessity to minimize off-target effects that collectively underscore the significance of "individualized" targeting for Notch1 and Notch2. This comprehensive review sheds light on the receptor-specific characteristics of Notch1 and Notch2, providing insights into their roles in cellular processes and offering opportunities for developing tailored therapeutic interventions in the fields of biomedical research and clinical practice.
Collapse
Affiliation(s)
- Priyadharshini Tamizhmani
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Banumathi Balamurugan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Kishore Thirunavukarasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Velayuthaprabhu Shanmugam
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Selvakumar Subramaniam
- Department of Biochemistry, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Thirunavukkarasu Velusamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| |
Collapse
|
2
|
Kashatnikova DA, Gracheva AS, Redkin IV, Zakharchenko VE, Krylova TN, Kuzovlev AN, Salnikova LE. Red Blood Cell-Related Phenotype-Genotype Correlations in Chronic and Acute Critical Illnesses (Traumatic Brain Injury Cohort and COVID-19 Cohort). Int J Mol Sci 2025; 26:1239. [PMID: 39941007 PMCID: PMC11818277 DOI: 10.3390/ijms26031239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in red blood cell (RBC)-related parameters and anemia are common in both severe chronic and acute diseases. RBC-related phenotypes have a heritable component. However, it is unclear whether the contribution of genetic variability is pronounced when hematological parameters are affected by physiological stress. In this study, we analyzed RBC-related phenotypes and phenotype-genotype correlations in two exome-sequenced patient cohorts with or at a high risk for a critical illness: chronic TBI patients admitted for rehabilitation and patients with acute COVID-19. In the analysis of exome data, we focused on the cumulative effects of rare high-impact variants (qualifying variants, QVs) in specific gene sets, represented by Notch signaling pathway genes, based on the results of enrichment analysis in anemic TBI patients and three predefined gene sets for phenotypes of interest derived from GO, GWAS, and HPO resources. In both patient cohorts, anemia was associated with the cumulative effects of QVs in the GO (TBI: p = 0.0003, OR = 2.47 (1.54-4.88); COVID-19: p = 0.0004, OR = 2.12 (1.39-3.25)) and Notch pathway-derived (TBI: p = 0.0017, OR = 2.33 (1.35-4.02); COVID-19: p = 0.0012, OR =8.00 (1.79-35.74)) gene sets. In the multiple linear regression analysis, genetic variables contributed to RBC indices in patients with TBI. In COVID-19 patients, QVs in Notch pathway genes influenced RBC, HGB, and HCT levels, whereas genes from other sets influenced MCHC levels. Thus, in this exploratory study, exome data analysis yielded similar and different results in the two patient cohorts, supporting the view that genetic factors may contribute to RBC-related phenotypic performance in both severe chronic and acute health conditions.
Collapse
Affiliation(s)
- Darya A. Kashatnikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.A.K.); (A.S.G.)
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alesya S. Gracheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.A.K.); (A.S.G.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Ivan V. Redkin
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Vladislav E. Zakharchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Tatyana N. Krylova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Lyubov E. Salnikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.A.K.); (A.S.G.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
- National Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| |
Collapse
|
3
|
Andersen OE, Poulsen JV, Farup J, de Morree A. Regulation of adult stem cell function by ketone bodies. Front Cell Dev Biol 2023; 11:1246998. [PMID: 37745291 PMCID: PMC10513036 DOI: 10.3389/fcell.2023.1246998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Adult stem cells play key roles in tissue homeostasis and regeneration. Recent evidence suggests that dietary interventions can significantly impact adult stem cell function. Some of these effects depend on ketone bodies. Adult stem cells could therefore potentially be manipulated through dietary regimens or exogenous ketone body supplementation, a possibility with significant implications for regenerative medicine. In this review we discuss recent findings of the mechanisms by which ketone bodies could influence adult stem cells, including ketogenesis in adult stem cells, uptake and transport of circulating ketone bodies, receptor-mediated signaling, and changes to cellular metabolism. We also discuss the potential effects of ketone bodies on intracellular processes such as protein acetylation and post-transcriptional control of gene expression. The exploration of mechanisms underlying the effects of ketone bodies on stem cell function reveals potential therapeutic targets for tissue regeneration and age-related diseases and suggests future research directions in the field of ketone bodies and stem cells.
Collapse
Affiliation(s)
- Ole Emil Andersen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Steno Diabetes Center Aarhus, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
4
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Chang HH, Liou YS, Sun DS. Hematopoietic stem cell mobilization. Tzu Chi Med J 2022; 34:270-275. [PMID: 35912054 PMCID: PMC9333105 DOI: 10.4103/tcmj.tcmj_98_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation has been used to treat hematopoietic diseases for over 50 years. HSCs can be isolated from bone marrow (BM), umbilical cord blood, or peripheral blood. Because of lower costs, shorter hospitalization, and faster engraftment, peripheral blood has become the predominant source of HSCs for transplantation. The major factors determining the rate of successful HSC transplantation include the degree of human leukocyte antigen matching between the donor and recipient and the number of HSCs for transplantation. Administration of granulocyte colony-stimulating factor (G-CSF) alone or combined with plerixafor (AMD3100) are clinical used methods to promote HSC mobilization from BM to the peripheral blood for HSC transplantations. However, a significant portion of healthy donors or patients may be poor mobilizers of G-CSF, resulting in an insufficient number of HSCs for the transplantation and necessitating alternative strategies to increase the apheresis yield. The detailed mechanisms underlying G-CSF-mediated HSC mobilization remain to be elucidated. This review summarizes the current research on deciphering the mechanism of HSC mobilization.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
6
|
Notch2 Blockade Mitigates Methotrexate Chemotherapy-Induced Bone Loss and Marrow Adiposity. Cells 2022; 11:cells11091521. [PMID: 35563828 PMCID: PMC9103078 DOI: 10.3390/cells11091521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Childhood cancer methotrexate (MTX) chemotherapy often causes bone growth impairments, bone loss, and increased risks of fractures during or after treatment, for which the pathobiology is unclear and there is a lack of specific treatment. Our time course analyses of long bones from rats receiving intensive MTX treatment (mimicking a clinical protocol) found decreased trabecular bone volume, increased osteoclast formation and activity, increased adipogenesis in the expense of osteogenesis from the bone marrow stromal cells at days 6 and 9 following the first of five daily MTX doses. For exploring potential mechanisms, PCR array expression of 91 key factors regulating bone homeostasis was screened with the bone samples, which revealed MTX treatment-induced upregulation of Notch receptor NOTCH2, activation of which is known to be critical in skeletal development and bone homeostasis. Consistently, increased Notch2 activation in bones of MTX-treated rats was confirmed, accompanied by increased expression of Notch2 intracellular domain protein and Notch target genes HEY1, HES1 and HEYL. To confirm the roles of Notch2 signalling, a neutralising anti-Notch2 antibody or a control IgG was administered to rats during MTX treatment. Microcomputed tomography analyses demonstrated that trabecular bone volume was preserved by MTX+anti-Notch2 antibody treatment. Anti-Notch2 antibody treatment ameliorated MTX treatment-induced increases in osteoclast density and NFATc1 and RANKL expression, and attenuated MTX-induced bone marrow adiposity via regulating Wnt/β-catenin signalling and PPARγ expression. Thus, Notch2 signalling plays an important role in mediating MTX treatment-induced bone loss and bone marrow adiposity, and targeting Notch2 could be a potential therapeutic option.
Collapse
|
7
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Yu S, Wang W, Albakri M, Yu X, Majihail G, Lim S, Lopilato RK, Ito A, Letterio J, Haltiwanger RS, Zhou L. O-Fucose and Fringe-modified NOTCH1 extracellular domain fragments as decoys to release niche-lodged hematopoietic progenitor cells. Glycobiology 2021; 31:582-592. [PMID: 33351914 PMCID: PMC8176772 DOI: 10.1093/glycob/cwaa113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Successful hematopoietic progenitor cell (HPC) transplant therapy is improved by mobilizing HPCs from the bone marrow niche in donors. Notch receptor-ligand interactions are known to retain HPCs in the bone marrow, and neutralizing antibodies against Notch ligands, Jagged-1 or Delta-like ligand (DLL4), or NOTCH2 receptor potentiates HPC mobilization. Notch-ligand interactions are dependent on posttranslational modification of Notch receptors with O-fucose and are modulated by Fringe-mediated extension of O-fucose moieties. We previously reported that O-fucosylglycans on Notch are required for Notch receptor-ligand engagement controlling hematopoietic stem cell quiescence and retention in the marrow niche. Here, we generated recombinant fragments of NOTCH1 or NOTCH2 extracellular domain carrying the core ligand-binding regions (EGF11-13) either as unmodified forms or as O-fucosylglycan-modified forms. We found that the addition of O-fucose monosaccharide or the Fringe-extended forms of O-fucose to EGF11-13 showed substantial increases in binding to DLL4. Furthermore, the O-fucose and Fringe-extended NOTCH1 EGF11-13 protein displayed much stronger binding to DLL4 than the NOTCH2 counterpart. When assessed in an in vitro 3D osteoblastic niche model, we showed that the Fringe-extended NOTCH1 EGF11-13 fragment effectively released lodged HPC cells with a higher potency than the NOTCH2 blocking antibody. We concluded that O-fucose and Fringe-modified NOTCH1 EGF11-13 protein can be utilized as effective decoys for stem cell niche localized ligands to potentiate HPC egress and improve HPC collection for hematopoietic cell therapy.
Collapse
Affiliation(s)
- Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaoxing Yu
- Beachwood High School, Beachwood, OH 44122, USA
| | | | - Seunghwan Lim
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel K Lopilato
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - John Letterio
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Luo C, Wang L, Wu G, Huang X, Zhang Y, Ma Y, Xie M, Sun Y, Huang Y, Huang Z, Song Q, Li H, Hou Y, Li X, Xu S, Chen J. Comparison of the efficacy of hematopoietic stem cell mobilization regimens: a systematic review and network meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12:310. [PMID: 34051862 PMCID: PMC8164253 DOI: 10.1186/s13287-021-02379-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mobilization failure may occur when the conventional hematopoietic stem cells (HSCs) mobilization agent granulocyte colony-stimulating factor (G-CSF) is used alone, new regimens were developed to improve mobilization efficacy. Multiple studies have been performed to investigate the efficacy of these regimens via animal models, but the results are inconsistent. We aim to compare the efficacy of different HSC mobilization regimens and identify new promising regimens with a network meta-analysis of preclinical studies. METHODS We searched Medline and Embase databases for the eligible animal studies that compared the efficacy of different HSC mobilization regimens. Primary outcome is the number of total colony-forming cells (CFCs) in per milliliter of peripheral blood (/ml PB), and the secondary outcome is the number of Lin- Sca1+ Kit+ (LSK) cells/ml PB. Bayesian network meta-analyses were performed following the guidelines of the National Institute for Health and Care Excellence Decision Support Unit (NICE DSU) with WinBUGS version 1.4.3. G-CSF-based regimens were classified into the SD (standard dose, 200-250 μg/kg/day) group and the LD (low dose, 100-150 μg/kg/day) group based on doses, and were classified into the short-term (2-3 days) group and the long-term (4-5 days) group based on administration duration. Long-term SD G-CSF was chosen as the reference treatment. Results are presented as the mean differences (MD) with the associated 95% credibility interval (95% CrI) for each regimen. RESULTS We included 95 eligible studies and reviewed the efficacy of 94 mobilization agents. Then 21 studies using the poor mobilizer mice model (C57BL/6 mice) to investigate the efficacy of different mobilization regimens were included for network meta-analysis. Network meta-analyses indicated that compared with long-term SD G-CSF alone, 14 regimens including long-term SD G-CSF + Me6, long-term SD G-CSF + AMD3100 + EP80031, long-term SD G-CSF + AMD3100 + FG-4497, long-term SD G-CSF + ML141, long-term SD G-CSF + desipramine, AMD3100 + meloxicam, long-term SD G-CSF + reboxetine, AMD3100 + VPC01091, long-term SD G-CSF + FG-4497, Me6, long-term SD G-CSF + EP80031, POL5551, long-term SD G-CSF + AMD3100, AMD1300 + EP80031 and long-term LD G-CSF + meloxicam significantly increased the collections of total CFCs. G-CSF + Me6 ranked first among these regimens in consideration of the number of harvested CFCs/ml PB (MD 2168.0, 95% CrI 2062.0-2272.0). In addition, 7 regimens including long-term SD G-CSF + AMD3100, AMD3100 + EP80031, long-term SD G-CSF + EP80031, short-term SD G-CSF + AMD3100 + IL-33, long-term SD G-CSF + ML141, short-term LD G-CSF + ARL67156, and long-term LD G-CSF + meloxicam significantly increased the collections of LSK cells compared with G-CSF alone. Long-term SD G-CSF + AMD3100 ranked first among these regimens in consideration of the number of harvested LSK cells/ml PB (MD 2577.0, 95% CrI 2422.0-2733.0). CONCLUSIONS Considering the number of CFC and LSK cells in PB as outcomes, G-CSF plus AMD3100, Me6, EP80031, ML141, FG-4497, IL-33, ARL67156, meloxicam, desipramine, and reboxetine are all promising mobilizing regimens for future investigation.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Mingling Xie
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Sun
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Qiuyue Song
- Department of Health Statistics, Third Military Medical University, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|
10
|
Saiki W, Ma C, Okajima T, Takeuchi H. Current Views on the Roles of O-Glycosylation in Controlling Notch-Ligand Interactions. Biomolecules 2021; 11:biom11020309. [PMID: 33670724 PMCID: PMC7922208 DOI: 10.3390/biom11020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The 100th anniversary of Notch discovery in Drosophila has recently passed. The Notch is evolutionarily conserved from Drosophila to humans. The discovery of human-specific Notch genes has led to a better understanding of Notch signaling in development and diseases and will continue to stimulate further research in the future. Notch receptors are responsible for cell-to-cell signaling. They are activated by cell-surface ligands located on adjacent cells. Notch activation plays an important role in determining the fate of cells, and dysregulation of Notch signaling results in numerous human diseases. Notch receptors are primarily activated by ligand binding. Many studies in various fields including genetics, developmental biology, biochemistry, and structural biology conducted over the past two decades have revealed that the activation of the Notch receptor is regulated by unique glycan modifications. Such modifications include O-fucose, O-glucose, and O-N-acetylglucosamine (GlcNAc) on epidermal growth factor-like (EGF) repeats located consecutively in the extracellular domain of Notch receptors. Being fine-tuned by glycans is an important property of Notch receptors. In this review article, we summarize the latest findings on the regulation of Notch activation by glycosylation and discuss future challenges.
Collapse
Affiliation(s)
- Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Chenyu Ma
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Correspondence: ; Tel.: +81-52-744-2068
| |
Collapse
|
11
|
Lakhan R, Rathinam CV. Deficiency of Rbpj Leads to Defective Stress-Induced Hematopoietic Stem Cell Functions and Hif Mediated Activation of Non-canonical Notch Signaling Pathways. Front Cell Dev Biol 2021; 8:622190. [PMID: 33569384 PMCID: PMC7868433 DOI: 10.3389/fcell.2020.622190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Deregulated notch signaling has been associated with human pathobiology. However, functions of notch pathways in hematopoiesis remain incompletely understood. Here, we ablated canonical notch pathways, through genetic deletion of Rbpj, in hematopoietic stem cells (HSCs). Our data identified that loss of canonical notch results in normal adult HSC pool, at steady state conditions. However, HSC maintenance and functions in response to radiation-, chemotherapy-, and cytokine- induced stress were compromised in the absence of canonical notch. Rbpj deficient HSCs exhibit decreased proliferation rates and elevated expression of p57Kip2. Surprisingly, loss of Rbpj resulted in upregulation of key notch target genes and augmented binding of Hes1 to p57 and Gata2 promoters. Further molecular analyses identified an increase in notch activity, elevated expression and nuclear translocation of Hif proteins, and augmented binding of Hif1α to Hes1 promoter in the absence of Rbpj. These studies, for the first time, identify a previously unknown role for non-canonical notch signaling and establish a functional link between Hif and Notch pathways in hematopoiesis.
Collapse
Affiliation(s)
- Ram Lakhan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chozha V Rathinam
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Stem Cell and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Gan RH, Lin LS, Zheng DP, Zhao Y, Ding LC, Zheng DL, Lu YG. High expression of Notch2 drives tongue squamous cell carcinoma carcinogenesis. Exp Cell Res 2020; 399:112452. [PMID: 33382997 DOI: 10.1016/j.yexcr.2020.112452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) is one of the most common cancers in the oral cavity. Notch signaling is frequently dysregulated in cancer. However, the role of Notch2 in TSCC is not well understood. The aim of this study was to investigate the effect of abnormal expression of Notch2 in TSCC. The expression of Notch2 was tested in 47 pairs of tissues from tongue cancer and normal samples by using immunohistochemical staining. Tongue cancer cells were transfected with siRNA or plasmid. The proliferation of the cells was tested by the CCK8 assay and colony formation assay. Subcutaneous tumor model was established to observe tumor growth. Transwell assay was used to detect the changes of cell migration and invasion ability. A humanized anti-Notch2 antibody was used to TSCC cells. We found that Notch2 was upregulated in tongue carcinoma tissues. Knocking down the expression of Notch2 by siRNA in the TSCC cell lines decreased proliferation ability both in vitro and in vivo. In addition, migration and invasion abilities were inhibited by knockdown of Notch2 in the TSCC cells. However, overexpression of Notch2 increased tongue cancer cell proliferation, invasion and migration. The humanized anti-Notch2 antibody inhibited TSCC cell growth. The results indicated that Notch2 is an oncogene in tongue squamous cell carcinoma and may become the target of a new approach for treating TSCC.
Collapse
Affiliation(s)
- Rui-Huan Gan
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China; Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China; Fujian Key Laboratory of Oral Disease, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Li-Song Lin
- Department of Oral and Maxillofacial Surgery, Affiliated First Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350000, China
| | - Dan-Ping Zheng
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, 1 Xue Yuan Road, Shang Jie Town, Min Hou County, Fuzhou, 350000, China
| | - Yong Zhao
- Department of Pathology, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China
| | - Lin-Can Ding
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China; Fujian Key Laboratory of Oral Disease, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Disease, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China.
| | - You-Guang Lu
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China; Fujian Key Laboratory of Oral Disease, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China.
| |
Collapse
|
13
|
Kulkarni R, Kale V. Physiological Cues Involved in the Regulation of Adhesion Mechanisms in Hematopoietic Stem Cell Fate Decision. Front Cell Dev Biol 2020; 8:611. [PMID: 32754597 PMCID: PMC7366553 DOI: 10.3389/fcell.2020.00611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) could have several fates in the body; viz. self-renewal, differentiation, migration, quiescence, and apoptosis. These fate decisions play a crucial role in maintaining homeostasis and critically depend on the interaction of the HSCs with their micro-environmental constituents. However, the physiological cues promoting these interactions in vivo have not been identified to a great extent. Intense research using various in vitro and in vivo models is going on in various laboratories to understand the mechanisms involved in these interactions, as understanding of these mechanistic would greatly help in improving clinical transplantations. However, though these elegant studies have identified the molecular interactions involved in the process, harnessing these interactions to the recipients' benefit would ultimately depend on manipulation of environmental cues initiating them in vivo: hence, these need to be identified at the earliest. HSCs reside in the bone marrow, which is a very complex tissue comprising of various types of stromal cells along with their secreted cytokines, extra-cellular matrix (ECM) molecules and extra-cellular vesicles (EVs). These components control the HSC fate decision through direct cell-cell interactions - mediated via various types of adhesion molecules -, cell-ECM interactions - mediated mostly via integrins -, or through soluble mediators like cytokines and EVs. This could be a very dynamic process involving multiple transient interactions acting concurrently or sequentially, and the adhesion molecules involved in various fate determining situations could be different. If the switch mechanisms governing these dynamic states in vivo are identified, they could be harnessed for the development of novel therapeutics. Here, in addition to reviewing the adhesion molecules involved in the regulation of HSCs, we also touch upon recent advances in our understanding of the physiological cues known to initiate specific adhesive interactions of HSCs with the marrow stromal cells or ECM molecules and EVs secreted by them.
Collapse
Affiliation(s)
- Rohan Kulkarni
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, India
| |
Collapse
|
14
|
Notch blockade overcomes endothelial cell-mediated resistance of FLT3/ITD-positive AML progenitors to AC220 treatment. Leukemia 2020; 35:601-605. [PMID: 32513964 DOI: 10.1038/s41375-020-0893-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022]
|
15
|
Albakri M, Tashkandi H, Zhou L. A Review of Advances in Hematopoietic Stem Cell Mobilization and the Potential Role of Notch2 Blockade. Cell Transplant 2020; 29:963689720947146. [PMID: 32749152 PMCID: PMC7563033 DOI: 10.1177/0963689720947146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation can be a potential cure for hematological malignancies and some nonhematologic diseases. Hematopoietic stem and progenitor cells (HSPCs) collected from peripheral blood after mobilization are the primary source to provide HSC transplantation. In most of the cases, mobilization by the cytokine granulocyte colony-stimulating factor with chemotherapy, and in some settings, with the CXC chemokine receptor type 4 antagonist plerixafor, can achieve high yield of hematopoietic progenitor cells (HPCs). However, adequate mobilization is not always successful in a significant portion of donors. Research is going on to find new agents or strategies to increase HSC mobilization. Here, we briefly review the history of HSC transplantation, current mobilization regimens, some of the novel agents that are under investigation for clinical practice, and our recent findings from animal studies regarding Notch and ligand interaction as potential targets for HSPC mobilization.
Collapse
Affiliation(s)
- Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland,
OH, USA
| | - Hammad Tashkandi
- Department of Pathology, University of Pittsburgh Medical Center,
PA, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland,
OH, USA
| |
Collapse
|
16
|
Reid JC, Tanasijevic B, Golubeva D, Boyd AL, Porras DP, Collins TJ, Bhatia M. CXCL12/CXCR4 Signaling Enhances Human PSC-Derived Hematopoietic Progenitor Function and Overcomes Early In Vivo Transplantation Failure. Stem Cell Reports 2019; 10:1625-1641. [PMID: 29742393 PMCID: PMC5995456 DOI: 10.1016/j.stemcr.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 02/03/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) generate hematopoietic progenitor cells (HPCs) but fail to engraft xenograft models used to detect adult/somatic hematopoietic stem cells (HSCs) from donors. Recent progress to derive hPSC-derived HSCs has relied on cell-autonomous forced expression of transcription factors; however, the relationship of bone marrow to transplanted cells remains unknown. Here, we quantified a failure of hPSC-HPCs to survive even 24 hr post transplantation. Across several hPSC-HPC differentiation methodologies, we identified the lack of CXCR4 expression and function. Ectopic CXCR4 conferred CXCL12 ligand-dependent signaling of hPSC-HPCs in biochemical assays and increased migration/chemotaxis, hematopoietic progenitor capacity, and survival and proliferation following in vivo transplantation. This was accompanied by a transcriptional shift of hPSC-HPCs toward somatic/adult sources, but this approach failed to produce long-term HSC xenograft reconstitution. Our results reveal that networks involving CXCR4 should be targeted to generate putative HSCs with in vivo function from hPSCs. Transplant kinetics indicate human PSC-HPCs fail in the first 24 hr in bone marrow hPSC-HPCs aberrantly express chemokine receptors, specifically lacking CXCR4 Ectopic CXCR4 enhances hPSC-HPC function in vitro and transplantation in vivo CXCR4 linked with global transcriptional shift of hPSC-HPCs toward somatic HPCs
Collapse
Affiliation(s)
- Jennifer C Reid
- Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Borko Tanasijevic
- Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Diana Golubeva
- Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Allison L Boyd
- Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Deanna P Porras
- Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Tony J Collins
- Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
17
|
Xiu MX, Liu YM. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res 2019; 9:837-854. [PMID: 31218097 PMCID: PMC6556604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023] Open
Abstract
Deregulated Notch signaling is a key factor thought to facilitate the stem-like proliferation of cancer cells, thereby facilitating disease progression. Four subtypes of Notch receptor have been described to date, with each playing a distinct role in cancer development and progression, therefore warranting a careful and comprehensive examination of the targeting of each receptor subtype in the context of oncogenesis. Clinical efforts to translate the DAPT, which blocks Notch signaling, have been unsuccessful due to a combination of serious gastrointestinal side effects and a lack of complete blocking efficacy. There is therefore a clear need to identify better therapeutic strategies for targeting and manipulating Notch signaling. Notch2 is a Notch receptor that is commonly overexpressed in a range of cancers, and which is linked to a unique oncogenic mechanism. Successful efforts to block Notch2 signaling will depend upon doing so both efficiently and specifically in patients. As such, in the present review we will explore the role of Notch2 signaling in the development and progression of cancer, and we will assess agents and strategies with the potential to effectively disrupt Notch2 signaling and thereby yield novel cancer treatment regimens.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| | - Yuan-Meng Liu
- Medical School of Nanchang University Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Wu Y, Xu Y, Huang X, Ye D, Han M, Wang HL. Regulatory Roles of Histone Deacetylases 1 and 2 in Pb-induced Neurotoxicity. Toxicol Sci 2019; 162:688-701. [PMID: 29301062 DOI: 10.1093/toxsci/kfx294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lead (Pb) prevails among the environmental hazards against human health. Although increasing evidence highlights the epigenetic roles underlying the Pb-induced neurotoxicity, the exact mechanisms concerning histone acetylation and its causative agents are still at its infancy. In the present study, the roles of histone deacetylases 1 and 2 (HDAC1/2), as well as acetylation of Lys9 on histone H3 (Ac-H3K9), in Pb-induced neurotoxicity were investigated. Pb was administered to PC12 cells at 10 μM for 24 h. And Sprague Dawley rats were chronically exposed to Pb through drinking water containing 250 ppm Pb for 2 months. Owing to Pb exposure, it indicated that HDAC2 was up-regulated accompanied by Ac-H3K9 down-regulation. Meanwhile, chromatin immunoprecipitation assay revealed that the changes in HDAC2 were attributed to histone H3 Lys27 trimethylation occupancy on its promoter. Blockade of HDAC2 with either Trichostatin A or HDAC2-knocking down construct (shHDAC2) resulted in amelioration of neurite outgrowth deficits via increasing Ac-H3K9 levels. It implied that HDAC2 plays essential regulatory roles in Pb-induced neurotoxicity. And, coimmunoprecipitation trials revealed that HDAC2 colocalized with HDAC1, forming a so-called HDAC1/2 complex. Subsequently, it was shown that HDAC1/2 repression could markedly prevent neurite outgrowth impairment and rescue the spatial memory deficits caused by Pb exposure, unequivocally implicating this complex in the studied toxicological process. Furthermore, Notch2 maybe the functional target of the HDAC1/2 and Ac-H3K9 alterations. Our study provided insight into the precise roles of HDAC1/2 in Pb-induced neurotoxicity, and thereby provided a promising molecular target for medical intervention of neurological disorders with environmental etiology.
Collapse
Affiliation(s)
- Yulan Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yi Xu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xiyao Huang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Danlei Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Miaomiao Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Hui-Li Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| |
Collapse
|
19
|
Olson TS. Translating HSC Niche Biology for Clinical Applications. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Murata A, Hikosaka M, Yoshino M, Zhou L, Hayashi SI. Kit-independent mast cell adhesion mediated by Notch. Int Immunol 2019; 31:69-79. [PMID: 30299470 DOI: 10.1093/intimm/dxy067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Kit/CD117 plays a crucial role in the cell-cell and cell-matrix adhesion of mammalian mast cells (MCs); however, it is unclear whether other adhesion molecule(s) perform important roles in the adhesion of MCs. In the present study, we show a novel Kit-independent adhesion mechanism of mouse cultured MCs mediated by Notch family members. On stromal cells transduced with each Notch ligand gene, Kit and its signaling become dispensable for the entire adhesion process of MCs from tethering to spreading. The Notch-mediated spreading of adherent MCs involves the activation of signaling via phosphatidylinositol 3-kinases and mitogen-activated protein kinases, similar to Kit-mediated spreading. Despite the activation of the same signaling pathways, while Kit supports the adhesion and survival of MCs, Notch only supports adhesion. Thus, Notch family members are specialized adhesion molecules for MCs that effectively replace the adhesion function of Kit in order to support the interaction of MCs with the surrounding cellular microenvironments.
Collapse
Affiliation(s)
- Akihiko Murata
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mari Hikosaka
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Miya Yoshino
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shin-Ichi Hayashi
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|