1
|
Vanickova K, Milosevic M, Ribeiro Bas I, Burocziova M, Yokota A, Danek P, Grusanovic S, Chiliński M, Plewczynski D, Rohlena J, Hirai H, Rohlenova K, Alberich‐Jorda M. Hematopoietic stem cells undergo a lymphoid to myeloid switch in early stages of emergency granulopoiesis. EMBO J 2023; 42:e113527. [PMID: 37846891 PMCID: PMC10690458 DOI: 10.15252/embj.2023113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Emergency granulopoiesis is the enhanced and accelerated production of granulocytes that occurs during acute infection. The contribution of hematopoietic stem cells (HSCs) to this process was reported; however, how HSCs participate in emergency granulopoiesis remains elusive. Here, using a mouse model of emergency granulopoiesis we observe transcriptional changes in HSCs as early as 4 h after lipopolysaccharide (LPS) administration. We observe that the HSC identity is changed towards a myeloid-biased HSC and show that CD201 is enriched in lymphoid-biased HSCs. While CD201 expression under steady-state conditions reveals a lymphoid bias, under emergency granulopoiesis loss of CD201 marks the lymphoid-to-myeloid transcriptional switch. Mechanistically, we determine that lymphoid-biased CD201+ HSCs act as a first response during emergency granulopoiesis due to direct sensing of LPS by TLR4 and downstream activation of NF-κΒ signaling. The myeloid-biased CD201- HSC population responds indirectly during an acute infection by sensing G-CSF, increasing STAT3 phosphorylation, and upregulating LAP/LAP* C/EBPβ isoforms. In conclusion, HSC subpopulations support early phases of emergency granulopoiesis due to their transcriptional rewiring from a lymphoid-biased to myeloid-biased population and thus establishing alternative paths to supply elevated numbers of granulocytes.
Collapse
Affiliation(s)
- Karolina Vanickova
- Laboratory of Hemato‐oncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Mirko Milosevic
- Institute of Biotechnology of the Czech Academy of SciencesPragueCzech Republic
| | - Irina Ribeiro Bas
- Laboratory of Hemato‐oncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Monika Burocziova
- Laboratory of Hemato‐oncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Asumi Yokota
- Laboratory of Stem Cell Regulation, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Petr Danek
- Laboratory of Hemato‐oncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Srdjan Grusanovic
- Laboratory of Hemato‐oncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of SciencesPragueCzech Republic
| | - Hideyo Hirai
- Laboratory of Stem Cell Regulation, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of SciencesPragueCzech Republic
| | - Meritxell Alberich‐Jorda
- Laboratory of Hemato‐oncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2 Faculty of Medicine, University Hospital MotolCharles University in PraguePrahaCzech Republic
| |
Collapse
|
2
|
Renfro Z, White BE, Stephens KE. CCAAT enhancer binding protein gamma (C/EBP-γ): An understudied transcription factor. Adv Biol Regul 2022; 84:100861. [PMID: 35121409 PMCID: PMC9376885 DOI: 10.1016/j.jbior.2022.100861] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
The CCAAT enhancer binding protein (C/EBP) family of transcription factors are important transcriptional mediators of a wide range of physiologic processes. C/EBP-γ is the shortest C/EBP protein and lacks a canonical activation domain for the recruitment of transcriptional machinery. Despite its ubiquitous expression and ability to dimerize with other C/EBP proteins, C/EBP-γ has been studied far less than other C/EBP proteins, and, to our knowledge, no review of its functions has been written. This review seeks to integrate the current knowledge about C/EBP-γ and its physiologic roles, especially in cell proliferation, the integrated stress response, oncogenesis, hematopoietic and nervous system development, and metabolism, as well as to identify areas for future research.
Collapse
Affiliation(s)
- Zachary Renfro
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Bryan E White
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Kimberly E Stephens
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| |
Collapse
|
3
|
Lobo de Figueiredo-Pontes L, Adamcova MK, Grusanovic S, Kuzmina M, Aparecida Lopes I, Fernandes de Oliveira Costa A, Zhang H, Strnad H, Lee S, Moudra A, Jonasova AT, Zidka M, Welner RS, Tenen DG, Alberich-Jorda M. Improved hematopoietic stem cell transplantation upon inhibition of natural killer cell-derived interferon-gamma. Stem Cell Reports 2021; 16:1999-2013. [PMID: 34242616 PMCID: PMC8365098 DOI: 10.1016/j.stemcr.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a frequent therapeutic approach to restore hematopoiesis in patients with hematologic diseases. Patients receive a hematopoietic stem cell (HSC)-enriched donor cell infusion also containing immune cells, which may have a beneficial effect by eliminating residual neoplastic cells. However, the effect that donor innate immune cells may have on the donor HSCs has not been deeply explored. Here, we evaluate the influence of donor natural killer (NK) cells on HSC fate, concluded that NK cells negatively affect HSC frequency and function, and identified interferon-gamma (IFNγ) as a potential mediator. Interestingly, improved HSC fitness was achieved by NK cell depletion from murine and human donor infusions or by blocking IFNγ activity. Thus, our data suggest that suppression of inflammatory signals generated by donor innate immune cells can enhance engraftment and hematopoietic reconstitution during HSCT, which is particularly critical when limited HSC numbers are available and the risk of engraftment failure is high.
Collapse
Affiliation(s)
- Lorena Lobo de Figueiredo-Pontes
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14048-900, Brazil
| | - Miroslava K Adamcova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague 150 06, Czech Republic
| | - Srdjan Grusanovic
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague 150 06, Czech Republic; Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Maria Kuzmina
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Izabela Aparecida Lopes
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14048-900, Brazil
| | - Amanda Fernandes de Oliveira Costa
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14048-900, Brazil
| | - Hong Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic
| | - Sanghoon Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alena Moudra
- 1(st) Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague 120 00, Czech Republic
| | - Anna T Jonasova
- 1(st) Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague 120 00, Czech Republic
| | - Michal Zidka
- Orthopaedic Department CLPA-Mediterra, Prague 190 00, Czech Republic; 3(rd) Medical Faculty, Charles University, Prague 100 00, Czech Republic
| | - Robert S Welner
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Division Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore.
| | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 142 00, Czech Republic; Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague 150 06, Czech Republic.
| |
Collapse
|
4
|
Tsyklauri O, Niederlova V, Forsythe E, Prasai A, Drobek A, Kasparek P, Sparks K, Trachtulec Z, Prochazka J, Sedlacek R, Beales P, Huranova M, Stepanek O. Bardet-Biedl Syndrome ciliopathy is linked to altered hematopoiesis and dysregulated self-tolerance. EMBO Rep 2021; 22:e50785. [PMID: 33426789 DOI: 10.15252/embr.202050785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Bardet-Biedl Syndrome (BBS) is a pleiotropic genetic disease caused by the dysfunction of primary cilia. The immune system of patients with ciliopathies has not been investigated. However, there are multiple indications that the impairment of the processes typically associated with cilia may have influence on the hematopoietic compartment and immunity. In this study, we analyze clinical data of BBS patients and corresponding mouse models carrying mutations in Bbs4 or Bbs18. We find that BBS patients have a higher prevalence of certain autoimmune diseases. Both BBS patients and animal models have altered red blood cell and platelet compartments, as well as elevated white blood cell levels. Some of the hematopoietic system alterations are associated with BBS-induced obesity. Moreover, we observe that the development and homeostasis of B cells in mice is regulated by the transport complex BBSome, whose dysfunction is a common cause of BBS. The BBSome limits canonical WNT signaling and increases CXCL12 levels in bone marrow stromal cells. Taken together, our study reveals a connection between a ciliopathy and dysregulated immune and hematopoietic systems.
Collapse
Affiliation(s)
- Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elizabeth Forsythe
- Genetics and Genomic Medicine Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Bardet-Biedl Syndrome Service, Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Avishek Prasai
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Kasparek
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Kathryn Sparks
- National Bardet-Biedl Syndrome Service, Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Philip Beales
- Genetics and Genomic Medicine Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,National Bardet-Biedl Syndrome Service, Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Danek P, Kardosova M, Janeckova L, Karkoulia E, Vanickova K, Fabisik M, Lozano-Asencio C, Benoukraf T, Tirado-Magallanes R, Zhou Q, Burocziova M, Rahmatova S, Pytlik R, Brdicka T, Tenen DG, Korinek V, Alberich-Jorda M. β-Catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood 2020; 136:2574-2587. [PMID: 32822472 PMCID: PMC7714095 DOI: 10.1182/blood.2019004664] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical Wnt signaling pathway is mediated by interaction of β-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of β-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates β-catenin-TCF/LEF interaction. Disruption of the β-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of β-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of β-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the β-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the β-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.
Collapse
Affiliation(s)
- Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslava Kardosova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | - Elena Karkoulia
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Vanickova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Fabisik
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Carlos Lozano-Asencio
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Touati Benoukraf
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Qiling Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Monika Burocziova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Rahmatova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Robert Pytlik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Tomas Brdicka
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | | | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Yan C, Zhang L, Yang L, Zhang Q, Wang X. C/EBPγ is a critical negative regulator of LPS-/IgG immune complex-induced acute lung injury through the downregulation of C/EBPβ-/C/EBPδ-dependent C/EBP transcription activation. FASEB J 2020; 34:13696-13710. [PMID: 32786052 DOI: 10.1096/fj.202001402r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 11/11/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome are life-threatening diseases. Despite recent advances in intensive care medicine, the mortality is still as high as 50%, which stems from our insufficient understanding of the underlying mechanisms of the diseases. The roles of C/EBPβ and C/EBPδ have been extensively investigated in LPS- and IgG immune complexes-stimulated acute lung injury. However, the effect of C/EBPγ, belonging to the same family as C/EBPβ and C/EBPδ, on ALI has not been elucidated. Our previous data have shown that during LPS-/IgG immune complexes-induced ALI, the DNA binding activities of C/EBPγ are obviously reduced. In the present study, we determine whether ALI induced by LPS and IgG immune complexes is affected by C/EBPγ. We find that adenovirus-mediated C/EBPγ expression in the lung tissue alleviates LPS-/IgG immune complexes-stimulated acute pulmonary damage through reducing vascular permeability changes and recruitment of neutrophils into alveolar spaces, which might be linked to a decrease in the production of pro-inflammatory mediators, such as TNF-α and IL-6. Moreover, our data obtained from macrophages in vitro are consistent with the in vivo results. In terms of mechanisms, C/EBPγ might inhibit LPS-/IgG immune complexes-mediated inflammation via alleviating C/EBPβ and C/EBPδ transcription activities as reflected by luciferase assays. However, the NF-κB-dependent production of pro-inflammatory mediators is not affected by C/EBPγ. Taken together, C/EBPγ suppresses LPS- and IgG immune complexes-induced pro-inflammatory mediators' production through the downregulation of C/EBP but not NF-κB activation, leading to the subsequent attenuation of ALI. Collectively, our data provide an insight into the critical role of C/EBPγ in acute lung injury.
Collapse
Affiliation(s)
- Chunguang Yan
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China.,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lanqiu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Lei Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Qi Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| | - Ximo Wang
- Department of Surgery, Tianjin Nankai Hospital, Tianjin University, Tianjin, China
| |
Collapse
|