1
|
Thomas X. Rare Genetic and Uncommon Morphological Entities in Adults with Acute Myeloid Leukemia. Curr Oncol Rep 2025:10.1007/s11912-025-01678-y. [PMID: 40293670 DOI: 10.1007/s11912-025-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE OF REVIEW Despite differences in the various classification systems of acute myeloid leukemia (AML), rare entities can be identified according to clinical, biological or morphological characteristics. Uncommon AML defined on specific morphological criteria and/or genetic abnormalities were considered if occurring with a frequency of ≤ 5% in adult patients with AML. RECENT FINDINGS Most of uncommon AML are characterized by a poor outcome with the standard treatment approaches. During the last decade, several therapeutic drugs with promising investigational approaches have been used in therapeutic regimens in both frontline and relapsed/refractory AML and represent a positive potential benefit for some rare entities displaying specific molecular lesions. Several rare subtypes can be identified in adult patients with AML. In this descriptive review, we assess the available information for these rare entities and summarized treatments that could be proposed especially according to their genetic characterization.
Collapse
Affiliation(s)
- Xavier Thomas
- Department of Clinical Hematology, Hospices Civils de Lyon Service d'Hématologie Clinique Centre Hospitalier Lyon Sud, Pierre-Bénite, 69495-cedex, France.
| |
Collapse
|
2
|
Li J, Peng T, Cheng G, Yang L, Zhou J, Zhang R, Zhang P. A novel MECOM gene variant causes severe thrombocytopenia in a neonate: a case report and review of the literature. J Med Case Rep 2025; 19:147. [PMID: 40170114 PMCID: PMC11960019 DOI: 10.1186/s13256-025-05194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Mutations in the MECOM gene have been recognized as a causative factor in MECOM-associated syndrome, which encompasses a spectrum of hematologic and extra-hematologic manifestations. Hematologic features range from isolated thrombocytopenia to severe bone marrow failure, while extra-hematologic manifestations may include skeletal, cardiac, renal, and other abnormalities. Here, we present a case of a Han Chinese newborn with a previously unreported variant in the MECOM gene. CASE PRESENTATION We report a 0-day-old female Han Chinese neonate who presented with severe thrombocytopenia and intracranial hemorrhage, ultimately succumbing to multiple organ failure and intracranial hemorrhage on the third day after birth. Genetic sequencing identified a heterozygous frameshift variant, c.157_158del, within the MECOM gene. This variant led to a substitution of the 53rd amino acid from methionine to glycine, terminating at the 54th amino acid. A comprehensive review of literature indicated that MECOM gene mutations included missense (68.3%), deletion (8.5%), splice site (8.5%), frameshift (7.3%), and nonsense (7.3%) mutations. Patients with missense mutations frequently exhibited radioulnar synostosis, while bone marrow failure was more commonly associated with the other four types of mutations. CONCLUSION This study adds a novel variant of the MECOM gene to the current body of knowledge. In addition, we provide a comprehensive summary of previously reported cases. This case expands the phenotypic spectrum of MECOM variants and underscores the potential for rapid progression to a life-threatening condition.
Collapse
Affiliation(s)
- Jiaxin Li
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Peng
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Guoqiang Cheng
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jianguo Zhou
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Rong Zhang
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Peng Zhang
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
3
|
Hendricks RM, Kim J, Haley JS, Ramos ML, Mirshahi UL, Carey DJ, Stewart DR, McReynolds LJ. Genome-first determination of the prevalence and penetrance of eight germline myeloid malignancy predisposition genes: a study of two population-based cohorts. Leukemia 2025; 39:400-411. [PMID: 39501104 PMCID: PMC11794151 DOI: 10.1038/s41375-024-02436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 02/06/2025]
Abstract
It is estimated that 10% of individuals with a myeloid malignancy carry a germline susceptibility. Using the genome-first approach, in which individuals were ascertained on genotype alone, rather than clinical phenotype, we quantified the prevalence and penetrance of pathogenic germline variants in eight myeloid malignancy predisposition (gMMP) genes. ANKRD26, CEBPA, DDX41, MECOM, SRP72, ETV6, RUNX1 and GATA2, were analyzed from the Geisinger MyCode DiscovEHR (n = 170,503) and the United Kingdom Biobank (UKBB, n = 469,595). We identified a high risk of myeloid malignancies (MM) (odds ratio[OR] all genes: DiscovEHR, 4.6 [95% confidential interval (CI) 2.1-9.7], p < 0.0001; UKBB, 6.0 [95% CI 4.3-8.2], p = 3.1 × 10-27), and decreased overall survival (hazard ratio [HR] DiscovEHR, 1.8 [95% CI 1.3-2.6], p = 0.00049; UKBB, 1.4 [95% CI 1.2-1.8], p = 8.4 × 10-5) amongst heterozygotes. Pathogenic DDX41 variants were the most commonly identified, and in UKBB showed a significantly increased risk of MM (OR 5.7 [95% CI 3.9-8.3], p = 6.0 × 10-20) and increased all-cause mortality (HR 1.35 [95% CI 1.1-1.7], p = 0.0063). Through a genome-first approach, this study genetically ascertained individuals with a gMMP and determined their MM risk and survival.
Collapse
Affiliation(s)
- Rachel M Hendricks
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jeremy S Haley
- Department of Genomic Health, Weis Center for Research, Geisinger Medical Center, Danville, PA, USA
| | - Mark Louie Ramos
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Uyenlinh L Mirshahi
- Department of Genomic Health, Weis Center for Research, Geisinger Medical Center, Danville, PA, USA
| | - David J Carey
- Department of Genomic Health, Weis Center for Research, Geisinger Medical Center, Danville, PA, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Liu Y, Calzone K, McReynolds LJ. Genetic predisposition to myelodysplastic syndrome: Genetic counseling and transplant implications. Semin Hematol 2024; 61:370-378. [PMID: 39443230 DOI: 10.1053/j.seminhematol.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
The development of myelodysplastic syndromes (MDS) is influenced by various genetic predispositions. Several important genes contribute to disease susceptibility. This paper explores common genetic predisposition genes in MDS, including DDX41, CEBPA, and SAMD9/SAMD9L, which are linked to hereditary conditions presenting diagnostic and clinical challenges. It delves into hereditary conditions that affect platelet production and count, such as RUNX1, ETV6, and ANKRD26, detailing their clinical features and how they contribute to an increased risk of MDS. The discussion extends to additional genetic syndromes like GATA2 deficiency, telomere biology disorders, Fanconi anemia, and Li-Fraumeni syndrome, along with new findings on genes like ERG that offer new insights into disease etiology. The importance of genetic counseling in MDS is underscored, outlining its goals, methods for evaluating family history, risk assessment, and the ethical considerations involved. Furthermore, the role of hematopoietic cell transplantation in managing MDS, particularly in patients with germline syndromes, is reviewed, emphasizing the need for optimal donor selection and personalized treatment approaches. This comprehensive overview illustrates the critical role of genetic factors in MDS and highlights the need for continued research and tailored clinical practices to improve patient outcomes.
Collapse
Affiliation(s)
- Yi Liu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Kathleen Calzone
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| |
Collapse
|
5
|
Alhajahjeh A, Bewersdorf JP, Bystrom RP, Zeidan AM, Shimony S, Stahl M. Acute myeloid leukemia (AML) with chromosome 3 inversion: biology, management, and clinical outcome. Leuk Lymphoma 2024; 65:1541-1551. [PMID: 38962996 DOI: 10.1080/10428194.2024.2367040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
Acute myeloid leukemia (AML) is a complex hematological malignancy characterized by diverse genetic alterations, each with distinct clinical implications. Chromosome 3 inversion (inv(3)) is a rare genetic anomaly found in approximately 1.4-1.6% of AML cases, which profoundly affects prognosis. This review explores the pathophysiology of inv(3) AML, focusing on fusion genes like GATA2::EVI1 or GATA2::MECOM. These genetic rearrangements disrupt critical cellular processes and lead to leukemia development. Current treatment modalities, including intensive chemotherapy (IC), hypomethylating agents (HMAs) combined with venetoclax, and allogeneic stem cell transplantation are discussed, highlighting outcomes achieved and their limitations. The review also addresses subgroups of inv(3) AML, describing additional mutations and their impact on treatment response. The poor prognosis associated with inv(3) AML underscores the urgent need to develop more potent therapies for this AML subtype. This comprehensive overview aims to contribute to a deeper understanding of inv(3) AML and guide future research and treatment strategies.
Collapse
Affiliation(s)
- Abdulrahman Alhajahjeh
- Department Internal Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Rebecca P Bystrom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, USA
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
6
|
Maese LD, Wlodarski MW, Kim SY, Bertuch AA, Bougeard G, Chang VY, Godley LA, Khincha PP, Kuiper RP, Lesmana H, McGee RB, McReynolds LJ, Meade J, Plon SE, Savage SA, Scollon SR, Scott HS, Walsh MF, Nichols KE, Porter CC. Update on Recommendations for Surveillance for Children with Predisposition to Hematopoietic Malignancy. Clin Cancer Res 2024; 30:4286-4295. [PMID: 39078402 PMCID: PMC11444884 DOI: 10.1158/1078-0432.ccr-24-0685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Children harboring certain germline gene variants have an increased risk of developing myelodysplastic syndrome (MDS) and other hematopoietic malignancies (HM), such as leukemias and lymphomas. Recent studies have identified an expanding number of these predisposition genes, with variants most prevalent in children with MDS but also found in children with other HM. For some hematopoietic malignancy predispositions (HMP), specifically those with a high risk of MDS, early intervention through hematopoietic stem cell transplantation can favorably impact overall survival, providing a rationale for rigorous surveillance. A multidisciplinary panel of experts at the 2023 AACR Childhood Cancer Predisposition Workshop reviewed the latest advances in the field and updated prior 2017 surveillance recommendations for children with HMP. In addition to general guidance for all children with HMP, which includes annual physical examination, education about the signs and symptoms of HM, consultation with experienced providers, and early assessment by a hematopoietic stem cell transplantation specialist, the panel provided specific recommendations for individuals with a higher risk of MDS based on the affected gene. These recommendations include periodic and comprehensive surveillance for individuals with those syndromes associated with higher risk of MDS, including serial bone marrow examinations to monitor for morphologic changes and deep sequencing for somatic changes in genes associated with HM progression. This approach enables close monitoring of disease evolution based on the individual's genetic profile. As more HMP-related genes are discovered and the disorders' natural histories are better defined, these personalized recommendations will serve as a foundation for future guidelines in managing these conditions.
Collapse
Affiliation(s)
- Luke D. Maese
- University of Utah-Huntsman Cancer Institute, Primary Children’s Hospital, Salt Lake City, Utah
| | | | - Sun Young Kim
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Alison A. Bertuch
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Gaelle Bougeard
- Univ Rouen Normandie, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Vivian Y Chang
- University of California Los Angeles, Los Angeles, California
| | - Lucy A. Godley
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, Utrecht University Medical Center, Utrecht University, The Netherlands
| | - Harry Lesmana
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Rose B. McGee
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sharon E. Plon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Hamish S. Scott
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael F. Walsh
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York City, New York
| | - Kim E. Nichols
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
7
|
Venugopal P, Arts P, Fox LC, Simons A, Hiwase DK, Bardy PG, Swift A, Ross DM, van Vulpen LFD, Buijs A, Bolton KL, Getta B, Furlong E, Carter T, Krapels I, Hoeks M, Al Kindy A, Al Kindy F, de Munnik S, Evans P, Frank MSB, Bournazos AM, Cooper ST, Ha TT, Jackson MR, Arriola-Martinez L, Phillips K, Brennan Y, Bakshi M, Ambler K, Gao S, Kassahn KS, Kenyon R, Hung K, Babic M, McGovern A, Rawlings L, Vakulin C, Dejong L, Fathi R, McRae S, Myles N, Ladon D, Jongmans M, Kuiper RP, Poplawski NK, Barbaro P, Blombery P, Brown AL, Hahn CN, Scott HS. Unraveling facets of MECOM-associated syndrome: somatic genetic rescue, clonal hematopoiesis, and phenotype expansion. Blood Adv 2024; 8:3437-3443. [PMID: 38662475 PMCID: PMC11259931 DOI: 10.1182/bloodadvances.2023012331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Parvathy Venugopal
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Lucy C. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Annet Simons
- Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Devendra K. Hiwase
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Peter G. Bardy
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Clinical Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Annette Swift
- Department of Paediatric Haematology, Queensland Children’s Hospital, South Brisbane, QLD, Australia
| | - David M. Ross
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Clinical Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
- Department of Haematology, Flinders Medical Centre, Adelaide, SA, Australia
| | - Lize F. D. van Vulpen
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arjan Buijs
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Kelly L. Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Bartlomiej Getta
- Department of Haematology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Eliska Furlong
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
| | - Tina Carter
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
| | - Ingrid Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marlijn Hoeks
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adila Al Kindy
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital and Department of Genetics, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Farah Al Kindy
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital and Department of Genetics, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Sonja de Munnik
- Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Pamela Evans
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Mahalia S. B. Frank
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Adam M. Bournazos
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The Children's Medical Research Institute, Westmead, NSW, Australia
| | - Sandra T. Cooper
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The Children's Medical Research Institute, Westmead, NSW, Australia
- School of Medicine, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Thuong Thi Ha
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Matilda R. Jackson
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Australian Genomics, Parkville, VIC, Australia
| | - Luis Arriola-Martinez
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Yvonne Brennan
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Karen Ambler
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Song Gao
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Karin S. Kassahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Rosalie Kenyon
- ACRF Genomics Facility, Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Kevin Hung
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Milena Babic
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Alan McGovern
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Lesley Rawlings
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Cassandra Vakulin
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Lucas Dejong
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Rema Fathi
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Simon McRae
- Western Haematology and Oncology Clinics, West Perth, WA, Australia
| | - Nicholas Myles
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Clinical Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Dariusz Ladon
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Marjolijn Jongmans
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roland P. Kuiper
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Nicola K. Poplawski
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Pasquale Barbaro
- Department of Paediatric Haematology, Queensland Children’s Hospital, South Brisbane, QLD, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
8
|
Trottier AM, Feurstein S, Godley LA. Germline predisposition to myeloid neoplasms: Characteristics and management of high versus variable penetrance disorders. Best Pract Res Clin Haematol 2024; 37:101537. [PMID: 38490765 DOI: 10.1016/j.beha.2024.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Myeloid neoplasms with germline predisposition have been recognized increasingly over the past decade with numerous newly described disorders. Penetrance, age of onset, phenotypic heterogeneity, and somatic driver events differ widely among these conditions and sometimes even within family members with the same variant, making risk assessment and counseling of these individuals inherently difficult. In this review, we will shed light on high malignant penetrance (e.g., CEBPA, GATA2, SAMD9/SAMD9L, and TP53) versus variable malignant penetrance syndromes (e.g., ANKRD26, DDX41, ETV6, RUNX1, and various bone marrow failure syndromes) and their clinical features, such as variant type and location, course of disease, and prognostic markers. We further discuss the recommended management of these syndromes based on penetrance with an emphasis on somatic aberrations consistent with disease progression/transformation and suggested timing of allogeneic hematopoietic stem cell transplant. This review will thereby provide important data that can help to individualize and improve the management for these patients.
Collapse
Affiliation(s)
- Amy M Trottier
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Sernoskie SC, Bonneil É, Thibault P, Jee A, Uetrecht J. Involvement of Extracellular Vesicles in the Proinflammatory Response to Clozapine: Implications for Clozapine-Induced Agranulocytosis. J Pharmacol Exp Ther 2024; 388:827-845. [PMID: 38262745 DOI: 10.1124/jpet.123.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
Most idiosyncratic drug reactions (IDRs) appear to be immune-mediated, but mechanistic events preceding severe reaction onset remain poorly defined. Damage-associated molecular patterns (DAMPs) may contribute to both innate and adaptive immune phases of IDRs, and changes in extracellular vesicle (EV) cargo have been detected post-exposure to several IDR-associated drugs. To explore the hypothesis that EVs are also a source of DAMPs in the induction of the immune response preceding drug-induced agranulocytosis, the proteome and immunogenicity of clozapine- (agranulocytosis-associated drug) and olanzapine- (non-agranulocytosis-associated drug) exposed EVs were compared in two preclinical models: THP-1 macrophages and Sprague-Dawley rats. Compared with olanzapine, clozapine induced a greater increase in the concentration of EVs enriched from both cell culture media and rat serum. Moreover, treatment of drug-naïve THP-1 cells with clozapine-exposed EVs induced an inflammasome-dependent response, supporting a potential role for EVs in immune activation. Proteomic and bioinformatic analyses demonstrated an increased number of differentially expressed proteins with clozapine that were enriched in pathways related to inflammation, myeloid cell chemotaxis, wounding, transforming growth factor-β signaling, and negative regulation of stimuli response. These data indicate that, although clozapine and olanzapine exposure both alter the protein cargo of EVs, clozapine-exposed EVs carry mediators that exhibit significantly greater immunogenicity. Ultimately, this supports the working hypothesis that drugs associated with a risk of IDRs induce cell stress, release of proinflammatory mediators, and early immune activation that precedes severe reaction onset. Further studies characterizing EVs may elucidate biomarkers that predict IDR risk during development of drug candidates. SIGNIFICANCE STATEMENT: This work demonstrates that clozapine, an idiosyncratic drug-induced agranulocytosis (IDIAG)-associated drug, but not olanzapine, a safer structural analogue, induces an acute proinflammatory response and increases extracellular vesicle (EV) release in two preclinical models. Moreover, clozapine-exposed EVs are more immunogenic, as measured by their ability to activate inflammasomes, and contain more differentially expressed proteins, highlighting a novel role for EVs during the early immune response to clozapine and enhancing our mechanistic understanding of IDIAG and other idiosyncratic reactions.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Éric Bonneil
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Pierre Thibault
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Alison Jee
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Jack Uetrecht
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| |
Collapse
|
11
|
Huang D, Jiang M, Zhu Y, Li D, Lu X, Gao J. A novel missense mutation in the MECOM gene in a Chinese boy with radioulnar synostosis with amegakaryocytic thrombocytopenia. BMC Pediatr 2024; 24:62. [PMID: 38245683 PMCID: PMC10799460 DOI: 10.1186/s12887-024-04552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT) type 2, caused by MDS1 and EVI1 complex locus (MECOM) gene mutations, is a rare inherited bone marrow failure syndrome (IBMFS) with skeletal anomalies, characterized by varying presentation of congenital thrombocytopenia (progressing to pancytopenia), bilateral proximal radioulnar synostosis, and other skeletal abnormalities. Due to limited knowledge and heterogenous manifestations, clinical diagnosis of the disease is challenging. Here we reported a novel MECOM mutation in a Chinese boy with typical clinical features for RUSAT-2. Trio-based whole exome sequencing of buccal swab revealed a novel heterozygous missense mutation in exon 11 of the MECOM gene (chr3:168818673; NM_001105078.3:c.2285G > A). The results strongly suggest that the variant was a germline mutation and disease-causing mutation. The patient received matched unrelated donor hematopoetic stem cell transplantation (HSCT). This finding was not only expanded the pathogenic mutation spectrum of MECOM gene, but also provided key information for clinical diagnosis and treatment of RUSAT-2.
Collapse
Affiliation(s)
- Duowen Huang
- Department of Pediatric Hematology and Oncology, West China Second University Hospital, Sichuan University, No. 20 Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan Province, China
| | - Mingyan Jiang
- Department of Pediatric Hematology and Oncology, West China Second University Hospital, Sichuan University, No. 20 Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan Province, China
| | - Yiping Zhu
- Department of Pediatric Hematology and Oncology, West China Second University Hospital, Sichuan University, No. 20 Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan Province, China
| | - Dongjun Li
- Department of Pediatric Hematology and Oncology, West China Second University Hospital, Sichuan University, No. 20 Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan Province, China
| | - Xiaoxi Lu
- Department of Pediatric Hematology and Oncology, West China Second University Hospital, Sichuan University, No. 20 Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan Province, China.
| | - Ju Gao
- Department of Pediatric Hematology and Oncology, West China Second University Hospital, Sichuan University, No. 20 Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
12
|
Ammeti D, Marzollo A, Gabelli M, Zanchetta ME, Tretti-Parenzan C, Bottega R, Capaci V, Biffi A, Savoia A, Bresolin S, Faleschini M. A novel mutation in MECOM affects MPL regulation in vitro and results in thrombocytopenia and bone marrow failure. Br J Haematol 2023; 203:852-859. [PMID: 37610030 DOI: 10.1111/bjh.19023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023]
Abstract
MECOM-associated syndrome (MECOM-AS) is a rare disease characterized by amegakaryocytic thrombocytopenia, progressive bone marrow failure, pancytopenia and radioulnar synostosis with high penetrance. The clinical phenotype may also include finger malformations, cardiac and renal alterations, hearing loss, B-cell deficiency and predisposition to infections. The syndrome, usually diagnosed in the neonatal period because of severe thrombocytopenia, is caused by mutations in the MECOM gene, encoding for the transcription factor EVI1. The mechanism linking the alteration of EVI1 function and thrombocytopenia is poorly understood. In a paediatric patient affected by severe thrombocytopenia, we identified a novel variant of the MECOM gene (p.P634L), whose effect was tested on pAP-1 enhancer element and promoters of targeted genes showing that the mutation impairs the repressive activity of the transcription factor. Moreover, we demonstrated that EVI1 controls the transcriptional regulation of MPL, a gene whose mutations are responsible for congenital amegakaryocytic thrombocytopenia (CAMT), potentially explaining the partial overlap between MECOM-AS and CAMT.
Collapse
Affiliation(s)
- Daniele Ammeti
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Maria Gabelli
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | | | - Caterina Tretti-Parenzan
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | - Roberta Bottega
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Valeria Capaci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | - Anna Savoia
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
13
|
Chen Z, Li P, Shen L, Jiang X. Heat shock protein B7 (HSPB7) inhibits lung adenocarcinoma progression by inhibiting glycolysis. Oncol Rep 2023; 50:196. [PMID: 37732539 PMCID: PMC10560864 DOI: 10.3892/or.2023.8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
In the present study, it was aimed to investigate the effects and potential mechanisms of heat shock protein B7 (HSPB7) on lung adenocarcinoma (LUAD). Bioinformatic analysis was performed to explore the association between HSPB7 expression and patients with LUAD. MTT, colony formation, wound healing and Transwell assays were performed to examine the proliferative, migratory and invasive abilities of H1975 and A549 cells. Western blot analysis was conducted to determine the corresponding protein expression. Co‑Immunoprecipitation and Chromatin immunoprecipitation assays were carried out to reveal the interaction between HSPB7 and myelodysplastic syndrome 1 and ecotropic viral integration site 1 complex locus (MECOM). In addition, an animal model was conducted by the subcutaneous injection of A549 cells into BALB/c nude mice, and tumor weight and size were measured. HSPB7 was downregulated in LUAD tissues and cells, and its expression level correlated with patient prognosis. Cell functional data revealed that silencing of HSPB7 promoted lung cancer cell proliferation, migration, invasion and epithelial mesenchymal transition (EMT); whereas overexpression of HSPB7 led to the opposite results. Furthermore, bioinformatics analysis showed that HSPB7 inhibited glycolysis. HSPB7 decreased glucose consumption, lactic acid production, and lactate dehydrogenase A, hexokinase 2 and pyruvate kinase muscle isoform 2 protein levels. The results demonstrated that MECOM was a transcription factor of HSPB7. Collectively, these results suggested that HSPB7 is regulated by MECOM, and that HSPB7 attenuates LUAD cell proliferation, migration, invasion and EMT by inhibiting glycolysis.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Peipei Li
- Department of General Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Lingguang Shen
- Department of General Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xiuyu Jiang
- Health Management Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
14
|
Nagai K, Niihori T, Muto A, Hayashi Y, Abe T, Igarashi K, Aoki Y. Mecom mutation related to radioulnar synostosis with amegakaryocytic thrombocytopenia reduces HSPCs in mice. Blood Adv 2023; 7:5409-5420. [PMID: 37099686 PMCID: PMC10509669 DOI: 10.1182/bloodadvances.2022008462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
Radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT) is an inherited bone marrow failure syndrome characterized by the congenital fusion of the forearm bones. RUSAT is largely caused by missense mutations that are clustered in a specific region of the MDS1 and EVI1 complex locus (MECOM). EVI1, a transcript variant encoded by MECOM, is a zinc finger transcription factor involved in hematopoietic stem cell maintenance that induce leukemic transformation when overexpressed. Mice with exonic deletions in Mecom show reduced hematopoietic stem and progenitor cells (HSPCs). However, the pathogenic roles of RUSAT-associated MECOM mutations in vivo have not yet been elucidated. To investigate the impact of the RUSAT-associated MECOM mutation on the phenotype, we generated knockin mice harboring a point mutation (translated into EVI1 p.H752R and MDS1-EVI1 p.H942R), which corresponds to an EVI1 p.H751R and MDS1-EVI1 p.H939R mutation identified in a patient with RUSAT. Homozygous mutant mice died at embryonic day 10.5 to 11.5. Heterozygous mutant mice (Evi1KI/+ mice) grew normally without radioulnar synostosis. Male Evi1KI/+ mice, aged between 5 and 15 weeks, exhibited lower body weight, and those aged ≥16 weeks showed low platelet counts. Flow cytometric analysis of bone marrow cells revealed a decrease in HSPCs in Evi1KI/+ mice between 8 and 12 weeks. Moreover, Evi1KI/+ mice showed delayed leukocyte and platelet recovery after 5-fluorouracil-induced myelosuppression. These findings suggest that Evi1KI/+ mice recapitulate the bone marrow dysfunction in RUSAT, similar to that caused by loss-of-function Mecom alleles.
Collapse
Affiliation(s)
- Koki Nagai
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikazu Hayashi
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Taiki Abe
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
Sumiyoshi A, Fujii H, Okuma Y. Targeting microbiome, drug metabolism, and drug delivery in oncology. Adv Drug Deliv Rev 2023; 199:114902. [PMID: 37263544 DOI: 10.1016/j.addr.2023.114902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Recent emerging scientific evidence shows a relationship between gut microbiota (GM) and immunomodulation. In the recently published "Hallmarks of Cancer", the microbiome has been reported to play a crucial role in cancer research, and perspectives for its clinical implementation to improve the effectiveness of pharmacotherapy were explored. Several studies have shown that GM can affect the outcomes of pharmacotherapy in cancer, suggesting that GM may affect anti-tumor immunity. Thus, studies on GM that analyze big data using computer-based analytical methods are required. In order to successfully deliver GM to an environment conducive to the proliferation of immune cells both within and outside the tumor microenvironment (TME), it is crucial to address a variety of challenges associated with distinct delivery methods, specifically those pertaining to oral, endoscopic, and intravenous delivery. Clinical trials are in progress to evaluate the effects of targeting GM and whether it can enhance immunity or act on the TME, thereby to improve the clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ai Sumiyoshi
- Department of Pharmacy, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan
| | - Hiroyuki Fujii
- Department of Thoracic Oncology, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan; Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital 5-1-1 Tsukiji Chuo, Tokyo 104-0045, Japan.
| |
Collapse
|
16
|
Voit RA, Sankaran VG. MECOM Deficiency: from Bone Marrow Failure to Impaired B-Cell Development. J Clin Immunol 2023:10.1007/s10875-023-01545-0. [PMID: 37407873 DOI: 10.1007/s10875-023-01545-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
MECOM deficiency is a recently identified inborn error of immunity and inherited bone marrow failure syndrome caused by haploinsufficiency of the hematopoietic transcription factor MECOM. It is unique among inherited bone marrow failure syndromes, many of which present during later childhood or adolescence, because of the early age of onset and severity of the pancytopenia, emphasizing the importance and gene dose dependency of MECOM during hematopoiesis. B-cell lymphopenia and hypogammaglobulinemia have been described in a subset of patients with MECOM deficiency. While the mechanisms underlying the B-cell deficiency are currently unknown, recent work has provided mechanistic insights into the function of MECOM in hematopoietic stem cell (HSC) maintenance. MECOM binds to regulatory enhancers that control the expression of a network of genes essential for HSC maintenance and self-renewal. Heterozygous mutations, as seen in MECOM-deficient bone marrow failure, lead to dysregulated MECOM network expression. Extra-hematopoietic manifestations of MECOM deficiency, including renal and cardiac anomalies, radioulnar synostosis, clinodactyly, and hearing loss, have been reported. Individuals with specific genotypes have some of the systemic manifestations with isolated mild thrombocytopenia or without hematologic abnormalities, highlighting the tissue specificity of mutations in some MECOM domains. Those infants with MECOM-associated bone marrow failure require HSC transplantation for survival. Here, we review the expanding cohort of patient phenotypes and accompanying genotypes resulting in MECOM deficiency, and the proposed mechanisms underlying MECOM regulation of human HSC maintenance and B-cell development.
Collapse
Affiliation(s)
- Richard A Voit
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
17
|
Lozano Chinga MM, Bertuch AA, Afify Z, Dollerschell K, Hsu JI, John TD, Rao ES, Rowe RG, Sankaran VG, Shimamura A, Williams DA, Nakano TA. Expanded phenotypic and hematologic abnormalities beyond bone marrow failure in MECOM-associated syndromes. Am J Med Genet A 2023; 191:1826-1835. [PMID: 37067177 PMCID: PMC10330190 DOI: 10.1002/ajmg.a.63208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
The MECOM gene encodes multiple protein isoforms that are essential for hematopoietic stem cell self-renewal and maintenance. Germline MECOM variants have been associated with congenital thrombocytopenia, radioulnar synostosis and bone marrow failure; however, the phenotypic spectrum of MECOM-associated syndromes continues to expand and novel pathogenic variants continue to be identified. We describe eight unrelated patients who add to the previously known phenotypes and genetic defects of MECOM-associated syndromes. As each subject presented with unique MECOM variants, the series failed to demonstrate clear genotype-to-phenotype correlation but may suggest a role for additional modifiers that affect gene expression and subsequent phenotype. Recognition of the expanded hematologic and non-hematologic clinical features allows for rapid molecular diagnosis, early identification of life-threatening complications, and improved genetic counseling for families. A centralized international publicly accessible database to share annotated MECOM variants would advance their clinical interpretation and provide a foundation to perform functional MECOM studies.
Collapse
Affiliation(s)
- Michell M Lozano Chinga
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
- University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Alison A Bertuch
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Zeinab Afify
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | - Kaylee Dollerschell
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joanne I Hsu
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Tami D John
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Emily S Rao
- Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Robert Grant Rowe
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Vijay G Sankaran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David A Williams
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Taizo A Nakano
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
18
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
19
|
Wall E, Forsyth J, Kinning E, Marton T. Fetal hydrops caused by a novel pathogenic MECOM variant. Prenat Diagn 2023; 43:717-720. [PMID: 37160698 DOI: 10.1002/pd.6353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
We report a fetus with hydrops, congenital heart disease and bilateral radioulnar synostosis caused by a novel pathogenic MECOM variant. The female fetus was referred for post-mortem examination after fetal hydrops and intrauterine death was diagnosed at 20 weeks gestation. Post-mortem examination confirmed fetal hydrops, pallor, truncus arteriosus and bilateral radioulnar synostosis. Trio whole genome sequencing analysis detected a novel de novo heterozygous pathogenic loss-of-function variant in MECOM (NM_004991), associated with a diagnosis of Radioulnar Synostosis with Amegakaryocytic Thrombocytopenia 2 (RUSAT-2). RUSAT-2 is a variable condition associated postnatally with bone marrow failure, radioulnar synostosis and congenital anomalies. RUSAT-2 is not currently associated with a prenatal phenotype or fetal demise, and was not present on diagnostic NHS prenatal gene panels at time of diagnosis. This case highlights the diagnostic value of detailed phenotyping with post-mortem examination, and of using a broad sequencing approach.
Collapse
Affiliation(s)
- Elizabeth Wall
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Joan Forsyth
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Esther Kinning
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Tamás Marton
- Histopathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
20
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
21
|
Förster A, Davenport C, Duployez N, Erlacher M, Ferster A, Fitzgibbon J, Göhring G, Hasle H, Jongmans MC, Kolenova A, Kronnie G, Lammens T, Mecucci C, Mlynarski W, Niemeyer CM, Sole F, Szczepanski T, Waanders E, Biondi A, Wlodarski M, Schlegelberger B, Ripperger T. European standard clinical practice - Key issues for the medical care of individuals with familial leukemia. Eur J Med Genet 2023; 66:104727. [PMID: 36775010 DOI: 10.1016/j.ejmg.2023.104727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Although hematologic malignancies (HM) are no longer considered exclusively sporadic, additional awareness of familial cases has yet to be created. Individuals carrying a (likely) pathogenic germline variant (e.g., in ETV6, GATA2, SAMD9, SAMD9L, or RUNX1) are at an increased risk for developing HM. Given the clinical and psychological impact associated with the diagnosis of a genetic predisposition to HM, it is of utmost importance to provide high-quality, standardized patient care. To address these issues and harmonize care across Europe, the Familial Leukemia Subnetwork within the ERN PaedCan has been assigned to draft an European Standard Clinical Practice (ESCP) document reflecting current best practices for pediatric patients and (healthy) relatives with (suspected) familial leukemia. The group was supported by members of the German network for rare diseases MyPred, of the Host Genome Working Group of SIOPE, and of the COST action LEGEND. The ESCP on familial leukemia is proposed by an interdisciplinary team of experts including hematologists, oncologists, and human geneticists. It is intended to provide general recommendations in areas where disease-specific recommendations do not yet exist. Here, we describe key issues for the medical care of familial leukemia that shall pave the way for a future consensus guideline: (i) identification of individuals with or suggestive of familial leukemia, (ii) genetic analysis and variant interpretation, (iii) genetic counseling and patient education, and (iv) surveillance and (psychological) support. To address the question on how to proceed with individuals suggestive of or at risk of familial leukemia, we developed an algorithm covering four different, partially linked clinical scenarios, and additionally a decision tree to guide clinicians in their considerations regarding familial leukemia in minors with HM. Our recommendations cover, not only patients but also relatives that both should have access to adequate medical care. We illustrate the importance of natural history studies and the need for respective registries for future evidence-based recommendations that shall be updated as new evidence-based standards are established.
Collapse
Affiliation(s)
- Alisa Förster
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicolas Duployez
- Department of Hematology, CHU Lille, INSERM, University Lille, Lille, France
| | - Miriam Erlacher
- Division of Pediatric Hematology-Oncology, Department of Pediatric and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Alina Ferster
- Department of Pediatric Rheumatology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marjolijn C Jongmans
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, Comenius University Medical School and University Children's Hospital, Bratislava, Slovakia
| | | | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Cristina Mecucci
- Institute of Hematology and Center for Hemato-Oncology Research, University and Hospital of Perugia, Perugia, Italy
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesc Sole
- Josep Carreras Leukemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Tomasz Szczepanski
- Polish Pediatric Leukemia/Lymphoma Study Group, Zabrze, Poland; Medical University of Silesia, Katowice, Poland
| | - Esmé Waanders
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Andrea Biondi
- Clinica Pediatrica and Centro Ricerca Tettamanti, Università di Milano-Bicocca, Monza, Italy
| | - Marcin Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
22
|
Feurstein S. Emerging bone marrow failure syndromes- new pieces to an unsolved puzzle. Front Oncol 2023; 13:1128533. [PMID: 37091189 PMCID: PMC10119586 DOI: 10.3389/fonc.2023.1128533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Inherited bone marrow failure (BMF) syndromes are genetically diverse - more than 100 genes have been associated with those syndromes and the list is rapidly expanding. Risk assessment and genetic counseling of patients with recently discovered BMF syndromes is inherently difficult as disease mechanisms, penetrance, genotype-phenotype associations, phenotypic heterogeneity, risk of hematologic malignancies and clonal markers of disease progression are unknown or unclear. This review aims to shed light on recently described BMF syndromes with sparse concise data and with an emphasis on those associated with germline variants in ADH5/ALDH2, DNAJC21, ERCC6L2 and MECOM. This will provide important data that may help to individualize and improve care for these patients.
Collapse
|
23
|
Al-Abboh H, Zahra A, Adekile A. A novel MECOM variant associated with congenital amegakaryocytic thrombocytopenia and radioulnar synostosis. Pediatr Blood Cancer 2022; 69:e29761. [PMID: 35484980 DOI: 10.1002/pbc.29761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Hanan Al-Abboh
- Pediatric Hematology Unit, Mubarak Hospital, Al-Jabiriyah, Kuwait
| | - Akmal Zahra
- Pediatric Hematology Unit, Mubarak Hospital, Al-Jabiriyah, Kuwait
| | - Adekunle Adekile
- Pediatric Hematology Unit, Mubarak Hospital, Al-Jabiriyah, Kuwait.,Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
24
|
Tateishi AT, Okuma Y. Onco-biome in pharmacotherapy for lung cancer: a narrative review. Transl Lung Cancer Res 2022; 11:2332-2345. [PMID: 36519027 PMCID: PMC9742621 DOI: 10.21037/tlcr-22-299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND AND OBJECTIVE The gut microbiota (GM) was recently recognized to play an important role in modulating systemic immune responses and is known to influence the effects or adverse events of immune checkpoint blockade (ICB) or carcinogenesis by crosstalk with regulators of cancer-related immunity, and this relationship is complex and multifactorial. Diversity in the gut microbiome and the abundance of specific bacterial species have been identified to be associated with better response and prognosis. Therefore, the purpose of the current interest in the gut microbiome is to enable modulation of the immune system in donor cancer patients by the administration of specific bacterial species and enabling their dominance. To understand this "terra incognita" is to uncover the role of the mechanisms underlying unknown organ functions, and this knowledge will lead to enhanced immunotherapy for lung cancer patients. METHODS In this article, we summarized the literature on the relationship between the microbiome and lung cancer and the potential of the microbiome as a therapeutic target. KEY CONTENT AND FINDINGS This article is organized into the following sections: introduction, methods, microbiota and cancer development, microbiota and lung cancer treatment, future directions, and conclusion. CONCLUSIONS The gut microbiome is currently becoming the hallmark of cancer research and has an established and critical role in regulating antitumor immunity and the response to ICB in patients with lung cancers.
Collapse
|
25
|
Wang L, Tang J, Feng J, Huang Y, Cheng Y, Xu H, Miao Y. Case report: A rare case of coexisting Waldenstrom Macroglobulinemia and B-cell acute lymphoblastic leukemia with KMT2D and MECOM mutations. Front Immunol 2022; 13:1001482. [PMID: 36325357 PMCID: PMC9618799 DOI: 10.3389/fimmu.2022.1001482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Waldenstrom Macroglobulinemia (WM) is a rare and indolent lymphoma of B-cell origin characterized by elevated monoclonal IgM, with MYD88L265P mutation and CXCR4 mutation as common molecular alterations. B-cell Acute Lymphoblastic Leukemia (B-ALL) is clinically heterogeneous, characterized by abnormal proliferation and aggregation of immature lymphocytes in the bone marrow and lymphoid tissue. WM and ALL are hematologic malignancies of B-cell origin with completely different clinical manifestations and biological features. KMT2D and MECOM mutations are very rare in ALL and usually indicate poor disease prognosis. The coexistence of WM and ALL with KMT2D and MECOM mutations have not been reported. Case presentation A 74-year-old female patient was diagnosed with WM in July 2018 and received four cycles of chemotherapy of bortezomib and dexamethasone. In November 2018, she received immunomodulator thalidomide as maintenance therapy. In November 2020, Bruton’s Tyrosine Kinase inhibitors (BTKi) has been introduced into the Chinese market and she took zanubrutinib orally at a dose of 80 mg per day. The disease remained in remission. In December 2021, she presented with multiple enlarged lymph nodes throughout the body. Bone marrow and next-generation sequencing (NGS) suggested the coexistence of WM and B-ALL with KMT2D and MECOM mutations. The patient was treated with zanubrutinib in combination with vincristine and dexamethasone, after which she developed severe myelosuppression and septicemia. The patient finally got remission. Due to the patient’s age and poor status, she refused intravenous chemotherapy and is currently treated with zanubrutinib. Conclusions The coexistence of WM and B-ALL is very rare and has not been reported. The presence of both KMT2D and MECOM mutations predicts a poor prognosis and the possibility of insensitivity to conventional treatment options. BTKi achieves its anti-tumor effects by inhibiting BTK activation and blocking a series of malignant transformations in B-cell tumors. In addition, it also acts on T-cell immunity and tumor microenvironment. Combination therapy based on BTKi may improve the prognosis of this patient.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Hematology, The First People’s Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Jiao Tang
- Department of Neurology, The First People’s Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Jun Feng
- Department of Hematology, The First People’s Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Yongfen Huang
- Department of Hematology, The First People’s Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Yuexin Cheng
- Department of Hematology, The First People’s Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Hao Xu
- Department of Hematology, The First People’s Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
| | - Yuqing Miao
- Department of Hematology, The First People’s Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, China
- *Correspondence: Yuqing Miao,
| |
Collapse
|
26
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1358] [Impact Index Per Article: 452.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Lee J, Kim SM, Kim S, Yun J, Jeong D, Lee YE, Roh EY, Lee DS. Clinical and Genomic Profiles of Korean Patients with MECOM Rearrangement and the t(3;21)(q26.2;q22.1) Translocation. Ann Lab Med 2022; 42:590-596. [PMID: 35470277 PMCID: PMC9057822 DOI: 10.3343/alm.2022.42.5.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
The translocation (3;21)(q26.2;q22.1) is a unique cytogenetic aberration that characterizes acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) in patients with AML and myelodysplastic syndrome (MDS) or a therapy-related myeloid neoplasm. Using multigene target sequencing and FISH, we investigated the clinical and genomic profiles of patients with t(3;21) over the past 10 years. The frequency of t(3;21) among myeloid malignancies was very low (0.2%). Half of the patients had a history of cancer treatment and the remaining patients had de novo MDS. Twenty-one somatic variants were detected in patients with t(3;21), including in CBL, GATA2, and SF3B1. Recurrent variants in RUNX1 (c.1184A>C, p.Glu395Ala) at the same site were detected in two patients. None of the patients with t(3;21) harbored germline predisposition mutations for myeloid neoplasms. MECOM rearrangement was detected at a higher rate using FISH than using G-banding, suggesting that FISH is preferable for monitoring. Although survival of patients with t(3;21) is reportedly poor, the survival of patients with t(3;21) in this study was not poor when compared with that of other AML patients in Korea.
Collapse
Affiliation(s)
- Jikyo Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Soonok Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jiwon Yun
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dajeong Jeong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Youn Roh
- Department of Laboratory Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Abstract
The new techniques of genetic analysis have made it possible to identify many new forms of inherited thrombocytopenias (IT) and study large series of patients. In recent years, this has changed the view of IT, highlighting the fact that, in contrast to previous belief, most patients have a modest bleeding diathesis. On the other hand, it has become evident that some of the mutations responsible for platelet deficiency predispose the patient to serious, potentially life-threatening diseases. Today's vision of IT is, therefore, very different from that of the past and the therapeutic approach must take these changes into account while also making use of the new therapies that have become available in the meantime. This review, the first devoted entirely to IT therapy, discusses how to prevent bleeding in those patients who are exposed to this risk, how to treat it if it occurs, and how to manage the serious illnesses to which patients with IT may be predisposed.
Collapse
|
29
|
Shen F, Yang Y, Zheng Y, Li P, Luo Z, Fu Y, Zhu G, Mei H, Chen S, Zhu Y. MECOM-related disorder: Radioulnar synostosis without hematological aberration due to unique variants. Genet Med 2022; 24:1139-1147. [PMID: 35219593 DOI: 10.1016/j.gim.2022.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The etiology for a considerable proportion of patients with congenital radioulnar synostosis (RUS) remains unclear. This study aimed to investigate the genetic cause of RUS without a known cause. METHODS Patients with RUS were investigated. Exome sequencing and/or Sanger sequencing was performed. Bioinformatics analysis was also performed. Pathogenicity was evaluated for variants of interest. RESULTS We identified unique missense variants in MECOM (encodes EVI1) associated with RUS in 8 families. Of them, 6 families had variants in residue R781, including 3 families with R781C (c.2341C>T), 2 families with R781H (c.2342G>A), and 1 family with R781L (c.2342G>T). Another 2 variants included I783T (c.2348T>C) in 1 family and Q777E (c.2329C>G) in 1 family. All these variants were clustered within the ninth zinc finger motif of EVI1. Phenotype evaluation identified that most of these patients with RUS harboring mutant MECOM had finger malformations, but none of them had identifiable hematological abnormalities. Functional experiments showed that MECOM R781C led to alterations in TGF-β-mediated transcriptional responses. CONCLUSION This study examined MECOM variants by focusing on RUS instead of hematological abnormalities. The R781 residue in EVI1 is a hotspot for human RUS variants. Mutant MECOM is the second most common cause for familial RUS.
Collapse
Affiliation(s)
- Fang Shen
- The Laboratory of Genetics and Metabolism, Pediatric Research Institute of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yongjia Yang
- The Laboratory of Genetics and Metabolism, Pediatric Research Institute of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China.
| | - Yu Zheng
- The Laboratory of Genetics and Metabolism, Pediatric Research Institute of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Pengcheng Li
- The Laboratory of Genetics and Metabolism, Pediatric Research Institute of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China; Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Zhenqing Luo
- The Laboratory of Genetics and Metabolism, Pediatric Research Institute of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yuyan Fu
- The Laboratory of Genetics and Metabolism, Pediatric Research Institute of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Guanghui Zhu
- Department of Orthopedics, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Haibo Mei
- Department of Orthopedics, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Shanlin Chen
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Yimin Zhu
- The Laboratory of Genetics and Metabolism, Pediatric Research Institute of Hunan Province, Hunan Children's Hospital, Hengyang Medical School, University of South China, Changsha, China; Emergency Research Institute of Hunan Province, Hunan People's Hospital, Changsha, China.
| |
Collapse
|
30
|
Phenotypic heterogeneity in individuals with MECOM variants in 2 families. Blood Adv 2022; 6:5257-5261. [DOI: 10.1182/bloodadvances.2020003812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
MECOM encodes the transcriptional regulators, EVI1 and MDS1-EVI1, from two distinct transcription start sites. EVI1 plays important roles in hematopoiesis and stem cell self-renewal. Recently, our group and others revealed that individuals with MECOM variants present diverse hematological and skeletal defects, including radioulnar synostosis (RUS). In the present study, we analyzed two families suspected with MECOM-associated syndrome. In family 1, a MECOM splicing variant (c.2285+1G>A) was identified in an individual with bone marrow failure (TRS4) without RUS and her mother, who had mild leukocytopenia, thrombocytopenia, and bilateral RUS. A copy neutral loss of heterozygosity decreasing the variant allele frequency was observed in the bone marrow of TRS4 and the peripheral blood leukocytes of her mother. However, TRS4 remained transfusion-dependent. In family 2, a MECOM variant (c.2208-4A>G), which was predicted to cause a cryptic acceptor site that results in a 3-base insertion (an insertion of Ser) in the mRNA, was identified in the proband, with bone marrow failure; this variant was also observed in her brother and father, both of whom have skeletal malformations, but no cytopenia. RT-PCR using leukocytes revealed a transcript with a 3-bp insertion in the proband, her brother, and the father, suggesting that the transcript variant with a 3-bp insertion is independent of blood phenotype. Collectively, these results suggest the presence of intrafamilial clinical heterogeneity in both families with MECOM splicing variants. Somatic genetic event may complicate the understanding of clinical variability among family members.
Collapse
|
31
|
Avagyan S, Shimamura A. Lessons From Pediatric MDS: Approaches to Germline Predisposition to Hematologic Malignancies. Front Oncol 2022; 12:813149. [PMID: 35356204 PMCID: PMC8959480 DOI: 10.3389/fonc.2022.813149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric myelodysplastic syndromes (MDS) often raise concern for an underlying germline predisposition to hematologic malignancies, referred to as germline predisposition herein. With the availability of genetic testing, it is now clear that syndromic features may be lacking in patients with germline predisposition. Many genetic lesions underlying germline predisposition may also be mutated somatically in de novo MDS and leukemias, making it critical to distinguish their germline origin. The verification of a suspected germline predisposition informs therapeutic considerations, guides monitoring pre- and post-treatment, and allows for family counseling. Presentation of MDS due to germline predisposition is not limited to children and spans a wide age range. In fact, the risk of MDS may increase with age in many germline predisposition conditions and can present in adults who lack classical stigmata in their childhood. Furthermore, germline predisposition associated with DDX41 mutations presents with older adult-onset MDS. Although a higher proportion of pediatric patients with MDS will have a germline predisposition, the greater number of MDS diagnoses in adult patients may result in a larger overall number of those with an underlying germline predisposition. In this review, we present a framework for the evaluation of germline predisposition to MDS across all ages. We discuss characteristics of personal and family history, clinical exam and laboratory findings, and integration of genetic sequencing results to assist in the diagnostic evaluation. We address the implications of a diagnosis of germline predisposition for the individual, for their care after MDS therapy, and for family members. Studies on MDS with germline predisposition have provided unique insights into the pathogenesis of hematologic malignancies and mechanisms of somatic genetic rescue vs. disease progression. Increasing recognition in adult patients will inform medical management and may provide potential opportunities for the prevention or interception of malignancy.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Molecular Pathogenesis in Myeloid Neoplasms with Germline Predisposition. Life (Basel) 2021; 12:life12010046. [PMID: 35054439 PMCID: PMC8779845 DOI: 10.3390/life12010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Myeloid neoplasms with germline predisposition have recently been added as distinct provisional entities in the 2017 revision of the World Health Organization’s classification of tumors of hematopoietic and lymphatic tissue. Individuals with germline predisposition have increased risk of developing myeloid neoplasms—mainly acute myeloid leukemia and myelodysplastic syndrome. Although the incidence of myeloid neoplasms with germline predisposition remains poorly defined, these cases provide unique and important insights into the biology and molecular mechanisms of myeloid neoplasms. Knowledge of the regulation of the germline genes and their interactions with other genes, proteins, and the environment, the penetrance and clinical presentation of inherited mutations, and the longitudinal dynamics during the process of disease progression offer models and tools that can further our understanding of myeloid neoplasms. This knowledge will eventually translate to improved disease sub-classification, risk assessment, and development of more effective therapy. In this review, we will use examples of these disorders to illustrate the key molecular pathways of myeloid neoplasms.
Collapse
|
33
|
Congenital amegakaryocytic thrombocytopenia - Not a single disease. Best Pract Res Clin Haematol 2021; 34:101286. [PMID: 34404532 DOI: 10.1016/j.beha.2021.101286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare inherited bone marrow failure syndrome (IBMFS) that is characterized by severe thrombocytopenia at birth due to ineffective megakaryopoiesis and development towards aplastic anemia during the first years of life. CAMT is not a single monogenetic disorder; rather, many descriptions of CAMT include different entities with different etiologies. CAMT in a narrow sense, which is primarily restricted to the hematopoietic system, is caused mainly by mutations in the gene for the thrombopoietin receptor (MPL), sometimes in the gene for its ligand (THPO). CAMT in association with radio-ulnar synostosis, which is not always clinically apparent, is mostly caused by mutations in MECOM, rarely in HOXA11. Patients affected by other IBMFS - especially Fanconi anemia or dyskeratosis congenita - may be misdiagnosed as having CAMT when they lack typical disease features of these syndromes or have only mild symptoms. This article reviews scientific and clinical aspects of the various disorders associated with the term "CAMT" with a main focus on the disease caused by mutations in the MPL gene.
Collapse
|
34
|
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat Rev Cancer 2021; 21:122-137. [PMID: 33328584 PMCID: PMC8404376 DOI: 10.1038/s41568-020-00315-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Although much work has focused on the elucidation of somatic alterations that drive the development of acute leukaemias and other haematopoietic diseases, it has become increasingly recognized that germline mutations are common in many of these neoplasms. In this Review, we highlight the different genetic pathways impacted by germline mutations that can ultimately lead to the development of familial and sporadic haematological malignancies, including acute lymphoblastic leukaemia, acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Many of the genes disrupted by somatic mutations in these diseases (for example, TP53, RUNX1, IKZF1 and ETV6) are the same as those that harbour germline mutations in children and adolescents who develop these malignancies. Moreover, the presumption that familial leukaemias only present in childhood is no longer true, in large part due to the numerous studies demonstrating germline DDX41 mutations in adults with MDS and AML. Lastly, we highlight how different cooperating events can influence the ultimate phenotype in these different familial leukaemia syndromes.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
35
|
Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2020; 48:100784. [PMID: 33317862 DOI: 10.1016/j.blre.2020.100784] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
The great advances in the knowledge of inherited thrombocytopenias (ITs) made since the turn of the century have significantly changed our view of these conditions. To date, ITs encompass 45 disorders with different degrees of complexity of the clinical picture and very wide variability in the prognosis. They include forms characterized by thrombocytopenia alone, forms that present with other congenital defects, and conditions that predispose to acquire additional diseases over the course of life. In this review, we recapitulate the clinical features of ITs with emphasis on the forms predisposing to additional diseases. We then discuss the key issues for a rational approach to the diagnosis of ITs in clinical practice. Finally, we aim to provide an updated and comprehensive guide to the treatment of ITs, including the management of hemostatic challenges, the treatment of severe forms, and the approach to the manifestations that add to thrombocytopenia.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy.
| | | |
Collapse
|
36
|
McGlynn KA, Sun R, Vonica A, Rudzinskas S, Zhang Y, Perkins AS. Prdm3 and Prdm16 cooperatively maintain hematopoiesis and clonogenic potential. Exp Hematol 2020; 85:20-32.e3. [PMID: 32437910 DOI: 10.1016/j.exphem.2020.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Mds1-Evi1 (also known as Prdm3) and Prdm16 are two highly related zinc finger transcription factors that, within the hematopoietic system, are both expressed primarily in hematopoietic stem cells (HSCs). Our laboratory previously found that constitutive Mds1-Evi1 knockout mice are viable, but their HSCs are unable to withstand myeloablative chemotherapy or effectively transplant irradiated recipient mice. A similar phenotype has been observed for Prdm16, except that the Prdm16 constitutive knockout is lethal. Here, we created a novel double-knockout model of Mds1-Evi1 and Prdm16 in the bone marrow, in which double knockout occurs only in cells that endogenously express Mds1-Evi1 and only upon induction with tamoxifen. We show that combined Mds1-Evi1/Prdm16 deficiency causes bone marrow failure within 15 days, with rapid loss in all progenitor compartments, while the peripheral blood exhibits progressive reductions in peripheral monocytes and granulocytes. We found that surviving hematopoietic stem cells and granulocytic progenitors had elevated apoptosis and cell division, and were unable to form colonies in vitro; adding back wild-type Mds1-Evi1 or Prdm16 to double-knockout bone marrow restores colony formation, and for MDS1-EVI1, this activity depends on a functional PR domain. All of these phenotypic effects were exhibited at milder levels in Mds1-Evi1 and Prdm16 single-knockout controls. Overall, these results illustrate that Mds1-Evi1 and Prdm16 play additive roles in maintaining normal hematopoietic stem cell survival.
Collapse
Affiliation(s)
- Kelly A McGlynn
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Rongli Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Alin Vonica
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Sarah Rudzinskas
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY.
| | - Archibald S Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
37
|
Weizmann D, Pincez T, Roussy M, Vaillancourt N, Champagne J, Laverdière C. New MECOM variant in a child with severe neonatal cytopenias spontaneously resolving. Pediatr Blood Cancer 2020; 67:e28215. [PMID: 32064714 DOI: 10.1002/pbc.28215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Danna Weizmann
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Thomas Pincez
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Mathieu Roussy
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Nathalie Vaillancourt
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Josette Champagne
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Caroline Laverdière
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
39
|
Abstract
Tackling the topic of genetic predisposition to childhood cancer requires close co-operation between pathologists, pediatric oncologists, and human geneticists. It is not just about the precise diagnosis and the most effective treatment of the cancer, but also to prevent further cancerous diseases for those affected and also their family members. On the basis of examples such as Li-Fraumeni syndrome, constitutional mismatch repair deficiency (CMMRD), medullo- and neuroblastoma, as well as hematological neoplasias, we will discuss the criteria for tumor predisposition genetic syndromes, the relationship between somatic and germline variants, and the immediate clinical consequences. In some cases, the diagnosis of a genetic tumor predisposition syndrome has immediate consequences for the treatment, e. g. to avoid radiotherapy for Li-Fraumeni syndrome, which would otherwise significantly increase the probability of secondary, independent tumors. Predictive diagnostics can be offered to identify the family members who carry the pathogenic variant. Because of their increased tumor risk, they should be integrated into cancer surveillance programs. Evidence-based data show that this significantly improves overall survival.
Collapse
|
40
|
Loganathan A, Munirathnam D, Ravikumar T. A novel mutation in the MECOM gene causing radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT-2) in an infant. Pediatr Blood Cancer 2019; 66:e27574. [PMID: 30536840 DOI: 10.1002/pbc.27574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ajeitha Loganathan
- Department of Pediatric Hematology and Oncology, Kanchi Kamakoti CHILDS Trust Hospital, Chennai, Tamil Nadu, India
| | - Deenadayalan Munirathnam
- Department of Pediatric Hematology and Oncology, Kanchi Kamakoti CHILDS Trust Hospital, Chennai, Tamil Nadu, India
| | - Thangadorai Ravikumar
- Department of Pediatrics, Kanchi Kamakoti CHILDS Trust Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
41
|
Zhu F, Cui QQ, Yang YZ, Hao JP, Yang FX, Hou ZC. Genome-wide association study of the level of blood components in Pekin ducks. Genomics 2019; 112:379-387. [PMID: 30818062 DOI: 10.1016/j.ygeno.2019.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/12/2019] [Accepted: 02/22/2019] [Indexed: 12/29/2022]
Abstract
Blood components are considered to reflect nutrient metabolism and immune activity in both humans and animals. In this study, we measured 12 blood components in Pekin ducks and performed genome-wide association analysis to identify the QTLs (quantitative trait locus) using a genotyping-by-sequencing strategy. A total of 54 QTLs were identified for blood components. One genome-wide significant QTL for alkaline phosphatase was identified within the intron-region of the OTOG gene (P = 1.31E-07). Moreover, 21 genome-wide significant SNPs for the level of serum cholinesterase were identified on six different scaffolds. In addition, for serum calcium, one genome-wide significant QTL was identified in the upstream region of gene RAB11B. These results provide new markers for functional studies in Pekin ducks, and several candidate genes were identified, which may provide additional insights into specific mechanisms for blood metabolism in ducks and their potential application for duck breeding programs.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Qian-Qian Cui
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yu-Ze Yang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | | | | | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Adv 2019. [PMID: 29540340 DOI: 10.1182/bloodadvances.2018016501] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Heterozygous mutations in MECOM (MDS1 and EVI1 complex locus) have been reported to be causative of a rare association of congenital amegakaryocytic thrombocytopenia and radioulnar synostosis. Here we report on 12 patients with congenital hypomegakaryocytic thrombocytopenia caused by MECOM mutations (including 10 novel mutations). The mutations affected different functional domains of the EVI1 protein. The spectrum of phenotypes was much broader than initially reported for the first 3 patients; we found familial as well as sporadic cases, and the clinical spectrum ranged from isolated radioulnar synostosis with no or mild hematological involvement to severe bone marrow failure without obvious skeletal abnormality. The clinical picture included radioulnar synostosis, bone marrow failure, clinodactyly, cardiac and renal malformations, B-cell deficiency, and presenile hearing loss. No single clinical manifestation was detected in all patients affected by MECOM mutations. Radioulnar synostosis and B-cell deficiency were observed only in patients with mutations affecting a short region in the C-terminal zinc finger domain of EVI1. We propose the term MECOM-associated syndrome for this heterogeneous hereditary disease and inclusion of MECOM sequencing in the diagnostic workup of congenital bone marrow failure.
Collapse
|
43
|
Kjeldsen E, Veigaard C, Aggerholm A, Hasle H. Congenital hypoplastic bone marrow failure associated with a de novo partial deletion of the MECOM gene at 3q26.2. Gene 2018; 656:86-94. [DOI: 10.1016/j.gene.2018.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 01/23/2023]
|
44
|
Walne A, Tummala H, Ellison A, Cardoso S, Sidhu J, Sciuccati G, Vulliamy T, Dokal I. Expanding the phenotypic and genetic spectrum of radioulnar synostosis associated hematological disease. Haematologica 2018. [PMID: 29519864 DOI: 10.3324/haematol.2017.183855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Amanda Walne
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, UK
| | - Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, UK
| | - Alicia Ellison
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, UK
| | - Shirleny Cardoso
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, UK
| | - Jasmin Sidhu
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, UK
| | - Gabriela Sciuccati
- Sercico de Hematologia y Oncologia, Hospital de Pediatria "Prof. Dr. J.P. Garrahan", Buenos Aires, Argentina
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts NHS Trust, UK
| |
Collapse
|
45
|
van der Veken LT, Maiburg MC, Groenendaal F, van Gijn ME, Bloem AC, Erpelinck C, Gröschel S, Sanders MA, Delwel R, Bierings MB, Buijs A. Lethal neonatal bone marrow failure syndrome with multiple congenital abnormalities, including limb defects, due to a constitutional deletion of 3' MECOM. Haematologica 2018; 103:e173-e176. [PMID: 29439187 DOI: 10.3324/haematol.2017.185033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Lars T van der Veken
- Department of Genetics, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht University, Rotterdam, the Netherlands
| | - Merel C Maiburg
- Department of Genetics, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht University, Rotterdam, the Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht University, Rotterdam, the Netherlands
| | - Mariëlle E van Gijn
- Department of Genetics, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht University, Rotterdam, the Netherlands
| | - Andries C Bloem
- Department of Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht University, Rotterdam, the Netherlands
| | - Claudia Erpelinck
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stefan Gröschel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marc B Bierings
- Department of Pediatric Hematology and stem cell transplantation, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht University, the Netherlands
| | - Arjan Buijs
- Department of Genetics, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht University, Rotterdam, the Netherlands
| |
Collapse
|