1
|
Tabata R, Yamamoto N, Tabata C. Supportive effect of corticosteroid on bone marrow recovery in FLT3/ITD positive acute myeloid leukemia with trisomy 13. J Steroid Biochem Mol Biol 2025; 248:106697. [PMID: 39922322 DOI: 10.1016/j.jsbmb.2025.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Trisomy 13 is a rare chromosomal abnormality mainly observed in patients with FAB M0, and is associated with increased FLT3 expression, characterized by aggressive and inferior outcomes. Herein, we describe a case of FLT3/ITD-positive acute myeloid leukemia with trisomy 13, whose neutropenia and thrombocytopenia were improved by corticosteroids with a decrease in blasts in the peripheral blood without chemotherapy. Only short-term chemotherapy could be administered because of the patient's poor general condition. In contrast, repeated administration of methylprednisolone pulse therapy followed by high-dose prednisolone was required to control the interstitial pneumonitis. Although appropriate chemotherapy, such as oral administration of FLT inhibitors, could not be administered, a dramatic decrease in blasts and an increase in both neutrophils and platelets were observed. The addition of corticosteroids to chemotherapy is associated with a better clinical course in patients with hyperleukocytic and pediatric acute myeloid leukemia. In the present patient, the peripheral WBC count was not high, the steroids allowed for the recovery of normal hematopoiesis with diminishing blasts. Although stem cell transplantation is necessary to improve overall survival for aggressive acute myeloid leukemia, intensive chemotherapy cannot often be administered in frail older patients. Lower dose of steroids might be able to effectively control acute myeloid leukemia without serious adverse effects, resulting in a better clinical course in frail older patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Rie Tabata
- Department of Hematology, Saiseikai NOE Hospital, Osaka, Japan.
| | - Naoki Yamamoto
- Department of Respiratory Medicine, Saiseikai NOE Hospital, Osaka, Japan
| | - Chiharu Tabata
- Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Hyogo, Japan
| |
Collapse
|
2
|
Jin Y, Liang Y, Wu B, Wu S, Liu X, Zhou F. Establishment of CD34 + hematopoietic stem cell-derived xenograft model of hyperleukocytic acute myeloid leukemia. BMC Cancer 2025; 25:499. [PMID: 40102796 PMCID: PMC11917077 DOI: 10.1186/s12885-025-13907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Hyperleukocytic acute myeloid leukemia (HLL) is marked by high early mortality and presents significant therapeutic challenges. Research on HLL is still in its infancy, and comprehensive development of patient-derived xenograft (PDX) models, especially CD34 + hematopoietic stem cell-derived models, remains limited. METHODS We evaluated the establishment of the HLL model through blood examinations, smear analysis, bone marrow biopsy, flow cytometry, and mutation analysis. Correlation between survival times in mice and patients was assessed using linear regression. RESULTS In the HLL PDX mouse model, leukocyte counts could reach up to 37.35^10⁹/L, and immunophenotyping revealed the presence of hCD45+, hCD15+, and hCD33 + cells in both peripheral blood (PB) and bone marrow (BM) following inoculation with PB-derived cells for the establishment of the HLL PDX model. Similar results were observed with cells derived from the patient's BM. In the CD34 + hematopoietic stem cell-derived xenograft model, extensive infiltration of CD34 + cells into the BM, liver, and spleen was observed. Additionally, human WT1 and NRAS mutations were identified in the liver, spleen, and BM of the mice. A comparative analysis of multiple experiments revealed that shorter survival times were observed in mice receiving a higher irradiation dose of 2.5 Gy and a greater number of cells derived from PB. Additionally, shorter survival times were observed in model mice injected with cells carrying NRAS, DNMT3A, FLT3, or NPM1 gene mutations. Correlation analysis indicated that the survival times of the mice were significantly associated with the survival status of the patients. CONCLUSIONS We successfully established a CD34 + hematopoietic stem cell-derived xenograft model of HLL, providing a valuable tool for mechanistic research, drug screening, individualized therapy, and precision medicine. TRIAL REGISTRATION Not application.
Collapse
Affiliation(s)
- Yanxia Jin
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
- College of Life Sciences, Hubei Normal University, Huangshi, 435002, Hubei, China
| | - Yuxing Liang
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Balu Wu
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Sanyun Wu
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoyan Liu
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.
| | - Fuling Zhou
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.
- Research Center for Lifeorgdivision Health, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
Costa A, Scalzulli E, Carmosino I, Ielo C, Bisegna ML, Martelli M, Breccia M. Clinical and biological advances of critical complications in acute myeloid leukemia. Leuk Lymphoma 2025; 66:400-419. [PMID: 39582141 DOI: 10.1080/10428194.2024.2425051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
Managing acute myeloid leukemia (AML) and its critical complications requires understanding the complex interplay between disease biology, treatment strategies, and patient characteristics. Complications like sepsis, acute respiratory failure (ARF), hyperleukocytosis, coagulopathy, tumor lysis syndrome (TLS) and central nervous system (CNS) involvement present unique challenges needing precise evaluation and tailored interventions. Venetoclax-induced TLS and differentiation syndrome (DS) from IDH1/IDH2 or menin inhibitors highlight the need for ongoing research and innovative approaches. As the microbiological landscape evolves and new therapeutic agents emerge, adapting strategies to mitigate harmful pharmacological interactions is crucial. Advances in understanding the genetic profiles of patients with hyperleukocytosis contribute to better-targeted therapeutic strategies. Effective AML management relies on collaborative efforts from hematologists, specialized services, and intensive care units (ICUs). This review analyzes recent data on critical AML complications, identifies areas for further investigation, and proposes ways to advance clinical research and enhance patient care strategies.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Ida Carmosino
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maria Laura Bisegna
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Sauter C, Bastie JN, Delva L, Aucagne R. [Protein arginine methyltransferase PRMT2 is involved in the control of inflammation in acute myeloid leukemia]. Med Sci (Paris) 2024; 40:979-982. [PMID: 39705572 DOI: 10.1051/medsci/2024168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Affiliation(s)
- Camille Sauter
- Inserm UMR 1231, équipe Epi2THM, équipe LabEx LipSTIC, UFR des sciences de santé, Université de Bourgogne, Dijon, France
| | - Jean-Noël Bastie
- Inserm UMR 1231, équipe Epi2THM, équipe LabEx LipSTIC, UFR des sciences de santé, Université de Bourgogne, Dijon, France - Département d'hématologie clinique, Hôpital universitaire Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Laurent Delva
- Inserm UMR 1231, équipe Epi2THM, équipe LabEx LipSTIC, UFR des sciences de santé, Université de Bourgogne, Dijon, France
| | - Romain Aucagne
- Inserm UMR 1231, équipe Epi2THM, équipe LabEx LipSTIC, UFR des sciences de santé, Université de Bourgogne, Dijon, France
| |
Collapse
|
5
|
Haddad FG, Sasaki K, Senapati J, Xiao L, Park G, Abuasab T, Venugopal S, Rivera D, Bazinet A, Babakhanlou R, Kim K, Ong F, Desikan S, Pemmaraju N, Loghavi S, Borthakur G, DiNardo C, Abbas HA, Short NJ, Daver N, Jabbour E, Garcia-Manero G, Ravandi F, Kantarjian H, Kadia T. Outcomes of Patients With Newly Diagnosed AML and Hyperleukocytosis. JCO Oncol Pract 2024; 20:1637-1644. [PMID: 39013130 DOI: 10.1200/op.24.00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE AML presenting with hyperleukocytosis is associated with poor outcomes. We aim to understand the factors associated with early mortality and overall survival (OS) to help guide management and improve early mortality. METHODS We retrospectively reviewed data from 129 consecutive patients with newly diagnosed AML and a WBC count ≥100 × 109/L between January 2010 and April 2020. Logistic regression models estimated odds ratios for 4-week mortality. Cox proportional hazard models estimated hazard ratios for OS. RESULTS The median age was 65 years (range, 23-86); the median WBC was 146 × 109/L (range, 100-687). Seventy-five (58%) patients had clinical leukostasis (CL). FLT3, NPM1, and RAS pathway mutations were detected in 63%, 45%, and 27% of patients, respectively. Cytoreduction consisted of hydroxyurea in 124 (96%) patients, cytarabine in 69 (54%), and leukapheresis in 31 (24%). The cumulative 4-week and 8-week mortality rates were 9% and 13%, respectively, all in patients age 65 years and older. By multivariate analysis, older age, CL, and thrombocytopenia <40 × 109/L were independently associated with a higher 4-week mortality rate. After a median follow-up of 49.4 months, the median OS was 14.3 months (95% CI, 7 to 21.6), with 4-year OS of 29%. Age 65 years and older, CL, tumor lysis syndrome, elevated LDH ≥2,000 U/L, elevated lactate ≥2.2 mmol/L, and poor-risk cytogenetics were independent factors associated with worse OS. CONCLUSION Hyperleukocytosis is a life-threatening hematologic emergency. Early recognition and intervention including cytoreduction, blood product support, antibiotics, and renal replacement therapy may help mitigate the risk of morbidity and early mortality.
Collapse
Affiliation(s)
- Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Grace Park
- Department of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tareq Abuasab
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sangeetha Venugopal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel Rivera
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rodrick Babakhanlou
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kunhwa Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Faustine Ong
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sai Desikan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Wu J, Li X, Xiong B, Yin W, Li R, Chen G, Ma L, Tong X, Liu X, Zhou F. Multi-Omic Analysis Reveals the Impact of Bortezomib in Hyperleukocytic Acute Myeloid Leukemia. Cancer Med 2024; 13:e70438. [PMID: 39584619 PMCID: PMC11586862 DOI: 10.1002/cam4.70438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Hyperleukocytic acute myeloid leukemia (HL-AML) is associated with early complications and high mortality rates, highlighting the urgent need for more effective therapeutic strategies. METHODS This study conducted label-free proteomic analysis on serum from HL-AML and non-HL AML (NHL-AML) patients, integrating the data with the OHSU transcriptomic database. Flow cytometry was used to evaluate the in vitro impact of bortezomib. The in vivo effectiveness of bortezomib was assessed using the patient-derived xenograft (PDX) model of HL-AML. RESULTS Through integrated analysis of serum proteomics and transcriptomics, we observed an abnormal enrichment of the NF-kappa B pathway in HL-AML, suggesting its potential as a novel therapeutic target. Given that bortezomib is an inhibitor of the NF-kappa B pathway, HL-AML bone marrow cells were treated with varying concentrations of bortezomib (0, 5, 10, and 20 nM) in vitro. The results indicated a significant cytotoxic effect of bortezomib on HL-AML cells, accompanied by increased apoptosis rates and decreased proliferation. Co-administration of bortezomib with the frontline clinical chemotherapeutic regimen of daunorubicin and cytarabine (DA regimen) significantly extended mouse survival. Bone marrow immunophenotyping showed reductions in CD45+ and CD33+ cell populations, indicating disease amelioration. Immunohistochemical analysis further confirmed the inhibitory effect on the NF-kappa B pathway, as evidenced by reduced levels of P-IKBα and P-p65 proteins, validating the proposed therapeutic mechanism. CONCLUSIONS These data suggest that combination therapy involving bortezomib and the DA regimen may represent a promising strategy for HL-AML.
Collapse
Affiliation(s)
- Jinxian Wu
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xinqi Li
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Bei Xiong
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Wanyue Yin
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Ruihang Li
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Guopeng Chen
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Linlu Ma
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xiqin Tong
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xiaoyan Liu
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Fuling Zhou
- Department of HematologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Research Center for Lifespan HealthWuhan UniversityWuhanHubeiChina
| |
Collapse
|
7
|
Zhang Y, Zhao X, Zhang J, Zhang Y, Wei Y. Advancements in the impact of human microbiota and probiotics on leukemia. Front Microbiol 2024; 15:1423838. [PMID: 39021626 PMCID: PMC11251910 DOI: 10.3389/fmicb.2024.1423838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The human gut microbiota is a complex ecosystem that plays a crucial role in promoting the interaction between the body and its environment. It has been increasingly recognized that the gut microbiota has diverse physiological functions. Recent studies have shown a close association between the gut microbiota and the development of certain tumors, including leukemia. Leukemia is a malignant clonal disease characterized by the uncontrolled growth of one or more types of blood cells, which is the most common cancer in children. The imbalance of gut microbiota is linked to the pathological mechanisms of leukemia. Probiotics, which are beneficial microorganisms that help maintain the balance of the host microbiome, play a role in regulating gut microbiota. Probiotics have the potential to assist in the treatment of leukemia and improve the clinical prognosis of leukemia patients. This study reviews the relationship between gut microbiota, probiotics, and the progression of leukemia based on current research. In addition, utilizing zebrafish leukemia models in future studies might reveal the specific mechanisms of their interactions, thereby providing new insights into the clinical treatment of leukemia. In conclusion, further investigation is still needed to fully understand the accurate role of microbes in leukemia.
Collapse
Affiliation(s)
| | | | | | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, School of Pharmaceutical Sciences, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, School of Pharmaceutical Sciences, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Sauter C, Morin T, Guidez F, Simonet J, Fournier C, Row C, Masnikov D, Pernon B, Largeot A, Aznague A, Hérault Y, Sauvageau G, Maynadié M, Callanan M, Bastie JN, Aucagne R, Delva L. Protein arginine methyltransferase 2 controls inflammatory signaling in acute myeloid leukemia. Commun Biol 2024; 7:753. [PMID: 38902349 PMCID: PMC11190286 DOI: 10.1038/s42003-024-06453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and is involved in various cellular processes, including cancer development. PRMT2 expression is increased in several cancer types although its role in acute myeloid leukemia (AML) remains unknown. Here, we investigate the role of PRMT2 in a cohort of patients with AML, PRMT2 knockout AML cell lines as well as a Prmt2 knockout mouse model. In patients, low PRMT2 expressors are enriched for inflammatory signatures, including the NF-κB pathway, and show inferior survival. In keeping with a role for PRMT2 in control of inflammatory signaling, bone marrow-derived macrophages from Prmt2 KO mice display increased pro-inflammatory cytokine signaling upon LPS treatment. In PRMT2-depleted AML cell lines, aberrant inflammatory signaling has been linked to overproduction of IL6, resulting from a deregulation of the NF-κB signaling pathway, therefore leading to hyperactivation of STAT3. Together, these findings identify PRMT2 as a key regulator of inflammation in AML.
Collapse
Affiliation(s)
- Camille Sauter
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| | - Thomas Morin
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Fabien Guidez
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - John Simonet
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Cyril Fournier
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
| | - Céline Row
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Department of Hematology Biology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Denis Masnikov
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Baptiste Pernon
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Anne Largeot
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Aziza Aznague
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Yann Hérault
- Université de Strasbourg, CNRS UMR7104, Inserm U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Marc Maynadié
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Department of Hematology Biology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Mary Callanan
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Jean-Noël Bastie
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Department of Clinical Hematology, University Hospital Dijon Bourgogne François-Mitterrand, Dijon, France
| | - Romain Aucagne
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, Dijon, France
- Inserm UMS 58 BioSanD, CRISPR Functional Genomics (CRIGEN) facility, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Laurent Delva
- Inserm UMR 1231, Epi2THM team, LabEx LipSTIC Team, UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| |
Collapse
|
9
|
Chen DW, Fan JM, Schrey JM, Mitchell DV, Jung SK, Hurwitz SN, Perez EB, Muraro MJ, Carroll M, Taylor DM, Kurre P. Inflammatory recruitment of healthy hematopoietic stem and progenitor cells in the acute myeloid leukemia niche. Leukemia 2024; 38:741-750. [PMID: 38228679 PMCID: PMC10997516 DOI: 10.1038/s41375-024-02136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Inflammation in the bone marrow (BM) microenvironment is a constitutive component of leukemogenesis in acute myeloid leukemia (AML). Current evidence suggests that both leukemic blasts and stroma secrete proinflammatory factors that actively suppress the function of healthy hematopoietic stem and progenitor cells (HSPCs). HSPCs are also cellular components of the innate immune system, and we reasoned that they may actively propagate the inflammation in the leukemic niche. In two separate congenic models of AML we confirm by evaluation of the BM plasma secretome and HSPC-selective single-cell RNA sequencing (scRNA-Seq) that multipotent progenitors and long-lived stem cells adopt inflammatory gene expression programs, even at low leukemic infiltration of the BM. In particular, we observe interferon gamma (IFN-γ) pathway activation, along with secretion of its chemokine target, CXCL10. We show that AML-derived nanometer-sized extracellular vesicles (EVAML) are sufficient to trigger this inflammatory HSPC response, both in vitro and in vivo. Altogether, our studies indicate that HSPCs are an unrecognized component of the inflammatory adaptation of the BM by leukemic cells. The pro-inflammatory conversion and long-lived presence of HSPCs in the BM along with their regenerative re-expansion during remission may impact clonal selection and disease evolution.
Collapse
Affiliation(s)
- Ding-Wen Chen
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jian-Meng Fan
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie M Schrey
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dana V Mitchell
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seul K Jung
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie N Hurwitz
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Martin Carroll
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Azoulay E, Maertens J, Lemiale V. How I manage acute respiratory failure in patients with hematological malignancies. Blood 2024; 143:971-982. [PMID: 38232056 DOI: 10.1182/blood.2023021414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
ABSTRACT Acute respiratory failure (ARF) is common in patients with hematological malignancies notably those with acute leukemia, myelodysplastic syndrome, or allogeneic stem cell transplantation. ARF is the leading reason for intensive care unit (ICU) admission, with a 35% case fatality rate. Failure to identify the ARF cause is associated with mortality. A prompt, well-designed diagnostic workup is crucial. The investigations are chosen according to pretest diagnostic probabilities, estimated by the DIRECT approach: D stands for delay, or time since diagnosis; I for pattern of immune deficiency; R and T for radiological evaluation; E refers to clinical experience, and C to the clinical picture. Thorough familiarity with rapid diagnostic tests helps to decrease the use of bronchoscopy with bronchoalveolar lavage, which can cause respiratory status deterioration in those patients with hypoxemia. A prompt etiological diagnosis shortens the time on unnecessary empirical treatments, decreasing iatrogenic harm and costs. High-quality collaboration between intensivists and hematologists and all crossdisciplinary health care workers is paramount. All oxygen delivery systems should be considered to minimize invasive mechanical ventilation. Treatment of the malignancy is started or continued in the ICU under the guidance of the hematologists. The goal is to use the ICU as a bridge to recovery, with the patient returning to the hematology ward in sufficiently good clinical condition to receive optimal anticancer treatment.
Collapse
Affiliation(s)
- Elie Azoulay
- Intensive Care Department, Saint-Louis University Hospital, Paris-Cité University, Paris, France
| | - Johan Maertens
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Virginie Lemiale
- Intensive Care Department, Saint-Louis University Hospital, Paris-Cité University, Paris, France
| |
Collapse
|
11
|
Zhang Z, Shi J, Wu Q, Zhang Z, Liu X, Ren A, Zhao G, Dong G, Wu H, Zhao J, Zhao Y, Hu J, Li H, Zhang T, Zhou F, Zhu H. JUN mediates glucocorticoid resistance by stabilizing HIF1a in T cell acute lymphoblastic leukemia. iScience 2023; 26:108242. [PMID: 38026210 PMCID: PMC10661119 DOI: 10.1016/j.isci.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Dexamethasone (Dex) plays a critical role in T-ALL treatment, but the mechanisms of Dex resistance are poorly understood. Here, we demonstrated that the expression of JUN was regulated in Dex-resistant T-ALL cell lines and patient samples. JUN knockdown increased the sensitivity to Dex. Moreover, the survival data showed that high expression of JUN related to poor prognosis of T-ALL patients. Then, we generated dexamethasone-resistant clones and conducted RNA-seq and ATAC-seq. We demonstrated that the upregulation of JUN was most significant and regulated by JNK pathway in Dex-resistant cells. High-throughput screening showed that HIF1α inhibitors synergized with Dex could enhance Dex resistance cells death in vitro and in vivo. Additionally, JUN combined and stabilized HIF1α in Dex resistance cells. These results reveal a new mechanism of Dex resistance in T-ALL and provide experimental evidence for the potential therapeutic benefit of targeting the JNK-JUN-HIF1α axis for T-ALL treatment.
Collapse
Affiliation(s)
- Zhijie Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiangzhou Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qifang Wu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Anqi Ren
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Guanlin Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ge Dong
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Han Wu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiaxuan Zhao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jia Hu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hui Li
- Tianyou Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430064, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
12
|
Bansal D, Davidson A, Supriyadi E, Njuguna F, Ribeiro RC, Kaspers GJL. SIOP PODC adapted risk stratification and treatment guidelines: Recommendations for acute myeloid leukemia in resource-limited settings. Pediatr Blood Cancer 2023; 70:e28087. [PMID: 31774234 DOI: 10.1002/pbc.28087] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023]
Abstract
In low- and middle-income countries (LMICs), limited resources, suboptimal risk stratification, and disproportionate patient-to-infrastructure ratio result in low survival of patients with acute myeloid leukemia (AML). A high incidence of relapse, inherent to the biology, renders management arduous. The challenge of treating AML in LMICs is of balancing the intensity of myelosuppressive chemotherapy, which appears necessary for cure, with available supportive care, which influences treatment-related mortality. The recommendations outlined in this paper are based on published evidence and expert opinion. The principle of this adapted protocol is to tailor treatment to available resources, reduce preventable toxic death, and direct limited resources toward those children who are most likely to be cured.
Collapse
Affiliation(s)
- Deepak Bansal
- Department of Pediatrics, Hematology-Oncology Unit, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alan Davidson
- Haematology-Oncology Service, Red Cross Children's Hospital, Cape Town, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Eddy Supriyadi
- Pediatric Hematology-Oncology Division, Department of Pediatrics, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Festus Njuguna
- Department of Child Health and Paediatrics, Moi University, Eldoret, Kenya
| | - Raul C Ribeiro
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
13
|
Nguyen D, Kantarjian HM, Short NJ, Qiao W, Ning J, Cuglievan B, Daver N, DiNardo CD, Jabbour E, Kadia T, Borthakur G, Garcia-Manero G, Konopleva M, Andreeff M, Ravandi F, Sasaki K, Issa GC. Early mortality in acute myeloid leukemia with KMT2A rearrangement is associated with high risk of bleeding and disseminated intravascular coagulation. Cancer 2023; 129:1856-1865. [PMID: 36892949 PMCID: PMC12013980 DOI: 10.1002/cncr.34728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 03/10/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) with rearrangement of lysine methyltransferase 2a gene (KMT2Ar) is characterized by chemotherapy resistance and high rates of relapse. However, additional causes of treatment failure or early mortality have not been well-defined in this entity. METHODS In a retrospective analysis, causes and rates of early mortality following induction treatment were compared between a cohort of adults with KMT2Ar AML (N = 172) and an age-matched cohort of patients with normal karyotype AML (N = 522). RESULTS The 60-day mortality in patients with KMT2Ar AML was 15% compared with 7% with normal karyotype (p = .04). We found a significantly higher occurrence of major bleeding events (p = .005) and total bleeding events (p = .001) in KMT2Ar AML compared with diploid AML. Among evaluable patients with KMT2Ar AML, 93% exhibited overt disseminated intravascular coagulopathy compared with 54% of patients with a normal karyotype before death (p = .03). In a multivariate analysis, KMT2Ar and a monocytic phenotypic were the only independent predictors of any bleeding event in patients who died within 60 days (odds ratio, 3.5; 95% CI, 1.4-10.4; p = .03; odds ratio, 3.2; 95% CI, 1-1-9.4; p = .04, respectively). CONCLUSION In conclusion, early recognition and aggressive management of disseminated intravascular coagulopathy and coagulopathy are important considerations that could mitigate the risk of death during induction treatment in KMT2Ar AML. PLAIN LANGUAGE SUMMARY Acute myeloid leukemia (AML) with rearrangement of KMT2A is characterized by chemotherapy resistance and high rates of relapse. However, additional causes of treatment failure or early mortality have not been well-defined in this entity. In this article, that KMT2A-rearranged AML is demonstrably associated with higher early mortality and an increased risk of bleeding and coagulopathy, specifically, disseminated intravascular coagulation, compared with normal karyotype AML. These findings emphasize the importance of monitoring and mitigating coagulopathy in KMT2A-rearranged leukemia similar to what is done in acute promyelocytic leukemia.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J. Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Wang H, Zhou J, Ma X, Jiao C, Chen E, Wu Z, Zhang Y, Pan M, Cui J, Luan C, Ge J. Dexamethasone enhances venetoclax-induced apoptosis in acute myeloid leukemia cells. Med Oncol 2023; 40:193. [PMID: 37261571 DOI: 10.1007/s12032-023-02056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) therapies have been significantly improved by the development of medicines that can target BCL-2. On the other hand, non-recurrent alterations in oncogenic pathways and gene expression patterns have already been linked to therapeutic resistance to venetoclax therapy. Bone marrow mesenchymal stromal cells (BM-MSCs) support leukemic cells in preventing chemotherapy-induced apoptosis by mitochondrial transfer in leukemic microenvironment. In this study, we investigated the enhancement of the antitumor effect of BCL-2 inhibitor venetoclax by dexamethasone. In particular, dexamethasone had no significant effect on the viability of AML cells, but dexamethasone combined with venetoclax could significantly increase the apoptosis of AML cells induced by venetoclax. When AML cells were co-cultured with BM-MSCs, dexamethasone combined with venetoclax showed additional anti-tumor effect compared to venetoclax alone. Venetoclax increased reactive oxygen species level in co-cultured AML cells, contributed to transfer more mitochondria from BM-MSCs to AML cells and protect AML cells from apoptosis. Dexamethasone combined with venetoclax induced more apoptosis, but dexamethasone reduced the venetoclax-induced reactive oxygen species level in AML cells and reduced the transfer of mitochondria from BM-MSCs to AML cells. This may lead to a diminished protective effect of BM-MSCs on AML cells. Together, our findings indicated that venetoclax in combination with dexamethasone could be a promising therapy in AML.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Junjie Zhou
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoyu Ma
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Changqing Jiao
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Enbo Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhonghui Wu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yan Zhang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mengya Pan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jianling Cui
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Chengxin Luan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
15
|
Cerrano M, Chevret S, Raffoux E, Rabian F, Sébert M, Valade S, Itzykson R, Lemiale V, Adès L, Boissel N, Dombret H, Azoulay E, Lengliné E. Benefits of dexamethasone on early outcomes in patients with acute myeloid leukemia with hyperleukocytosis: a propensity score matched analysis. Ann Hematol 2023; 102:761-768. [PMID: 36773040 PMCID: PMC9919741 DOI: 10.1007/s00277-023-05119-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Hyperleukocytosis is associated with a significant early mortality rate in patients with acute myeloid leukemia (AML). To date, no controlled trial has ever evaluated a strategy to reduce this risk, and the initial management of these patients remains heterogeneous worldwide. The aim of the present study was to evaluate the influence of a short course of intravenous dexamethasone on the early outcomes of patients with hyperleukocytic AML with white blood cell (WBC) count above 50 × 109/L. Clinical and biological data of all consecutive patients (1997-2017) eligible for intensive chemotherapy from a single center were retrospectively collected. A total of 251 patients with a median age of 51 years and a median WBC count of 120 × 109/L were included, 95 of whom received dexamethasone. Patients treated with dexamethasone had higher WBC count and a more severe disease compared with those who did not, and they presented more often with leukostasis and hypoxemia, resulting in a more frequent need for life-sustaining therapies (p < 0.001). To account for these imbalances, patients were compared after adjusting for a propensity score, which included all variables with a prognostic influence in the overall cohort. In the matched cohort, dexamethasone was associated with lower early death (OR = 0.34, p = 0.0026) and induction failure rate (OR = 0.44, p = 0.02) and better overall survival (HR = 0.60, p = 0.011), with no impact on relapse risk (cHR = 0.73, p = 0.39). The overall survival benefit was confirmed among all tested subgroups. This study suggests that dexamethasone administration is safe and associated with a lower risk of induction mortality in patients with hyperleukocytic AML and deserves prospective evaluation.
Collapse
Affiliation(s)
- Marco Cerrano
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France.,Department of Oncology, Division of Haematology, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Sylvie Chevret
- Service de Biostatistique Et Information Médicale, Hôpital Saint-Louis, Paris, France
| | - Emmanuel Raffoux
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France
| | - Florence Rabian
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France
| | - Marie Sébert
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France.,INSERM U944, Université de Paris, Paris, France
| | - Sandrine Valade
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Raphael Itzykson
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France.,INSERM U944, Université de Paris, Paris, France
| | - Virginie Lemiale
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Lionel Adès
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France.,INSERM U944, Université de Paris, Paris, France
| | - Nicolas Boissel
- Hématologie Adolescents Et Jeunes Adultes, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Hervé Dombret
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France.,INSERM U944, Université de Paris, Paris, France
| | - Elie Azoulay
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Etienne Lengliné
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, 1 Avenue Claude Vellefaux 75010, Paris, France.
| |
Collapse
|
16
|
Cytarabine and dexamethasone-PAMAM dendrimer di-conjugate sensitizes human acute myeloid leukemia cells to apoptotic cell death. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
18
|
Cotorogea-Simion M, Pavel B, Isac S, Telecan T, Matache IM, Bobirca A, Bobirca FT, Rababoc R, Droc G. What Is Different in Acute Hematologic Malignancy-Associated ARDS? An Overview of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091215. [PMID: 36143892 PMCID: PMC9503421 DOI: 10.3390/medicina58091215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Acute hematologic malignancies are a group of heterogeneous blood diseases with a high mortality rate, mostly due to acute respiratory failure (ARF). Acute respiratory distress syndrome (ARDS) is one form of ARF which represents a challenging clinical condition. The paper aims to review current knowledge regarding the variable pathogenic mechanisms, as well as therapeutic options for ARDS in acute hematologic malignancy patients. Data collection: We provide an overview of ARDS in patients with acute hematologic malignancy, from an etiologic perspective. We searched databases such as PubMed or Google Scholar, including articles published until June 2022, using the following keywords: ARDS in hematologic malignancy, pneumonia in hematologic malignancy, drug-induced ARDS, leukostasis, pulmonary leukemic infiltration, pulmonary lysis syndrome, engraftment syndrome, diffuse alveolar hemorrhage, TRALI in hematologic malignancy, hematopoietic stem cell transplant ARDS, radiation pneumonitis. We included relevant research articles, case reports, and reviews published in the last 18 years. Results: The main causes of ARDS in acute hematologic malignancy are: pneumonia-associated ARDS, leukostasis, leukemic infiltration of the lung, pulmonary lysis syndrome, drug-induced ARDS, radiotherapy-induced ARDS, diffuse alveolar hemorrhage, peri-engraftment respiratory distress syndrome, hematopoietic stem cell transplantation-related ARDS, transfusion-related acute lung injury. Conclusions: The short-term prognosis of ARDS in acute hematologic malignancy relies on prompt diagnosis and treatment. Due to its etiological heterogeneity, precision-based strategies should be used to improve overall survival. Future studies should focus on identifying the relevance of such etiologic-based diagnostic strategies in ARDS secondary to acute hematologic malignancy.
Collapse
Affiliation(s)
- Mihail Cotorogea-Simion
- Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Bogdan Pavel
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sebastian Isac
- Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence:
| | - Teodora Telecan
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Urology, Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Irina-Mihaela Matache
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Anca Bobirca
- Department of Rheumatology, Dr. I. Cantacuzino Hospital, 073206 Bucharest, Romania
| | - Florin-Teodor Bobirca
- Department of General Surgery, Dr. I. Cantacuzino Hospital, 073206 Bucharest, Romania
| | - Razvan Rababoc
- Department of Internal Medicine II, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Gabriela Droc
- Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
19
|
Fodil S, Chevret S, Rouzaud C, Valade S, Rabian F, Mariotte E, Raffoux E, Itzykson R, Boissel N, Sébert M, Adès L, Zafrani L, Azoulay E, Lengliné E. Post-remission outcomes in AML patients with high hyperleukocytosis and inaugural life-threatening complications. PLoS One 2022; 17:e0270744. [PMID: 35797337 PMCID: PMC9262217 DOI: 10.1371/journal.pone.0270744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Patients with hyperleukocytic (HL) acute myeloid leukemia (AML) are at higher risk of early death. Initial management of these patients is challenging, not fully codified and heterogenous. Retrospective studies showed that several symptomatic measures might decrease early death rate but long-term data are scarce. We aimed to analyze whether the therapeutic measures carried out urgently at diagnosis may influence the outcome among HL AML patients having achieved who survived inaugural complications. Methods We retrospectively reviewed all medical charts from patients admitted to Saint-Louis Hospital between January, 1st 1997 and December, 31st 2018 with newly diagnosed AML and white blood cell (WBC) count above 50x109/L. Outcome measures were cumulative incidence of relapse (CIR), treatment-related mortality (TRM) defined as relapse-free death, and overall survival. Univariate and multivariate analyses were performed using Cox proportional hazards models. Results A total of 184 patients with HL AML in complete remission (CR) were included in this study. At 2 years after CR. 62.5% of patients were alive, at 5 years, cumulated incidence of relapse was 55.8%. We found that every therapeutic measure, including life-sustaining therapies carried out in the initial phase of the disease, did not increase the relapse risk. The use of hydroxyurea for more than 4 days was associated with a higher risk of relapse. At the end of the study, 94 patients (51.1%) were still alive including 23 patients out of 44 aged less than 60 yo that were able to return to work. Conclusion We show that the use of emergency measures including life sustaining therapies does not come at the expense of a higher risk of relapse or mortality, except in the case of prolonged use of hydroxyurea. Patients with HL AML should be able to benefit from all available techniques, regardless of their initial severity.
Collapse
Affiliation(s)
- Sofiane Fodil
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
- Sorbonne Université, Paris, France
| | - Sylvie Chevret
- Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, Paris, France
| | - Camille Rouzaud
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Sandrine Valade
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Florence Rabian
- Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Eric Mariotte
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Emmanuel Raffoux
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Raphael Itzykson
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Nicolas Boissel
- Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Marie Sébert
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
- Université de Paris and INSERM U944, Paris, France
| | - Lionel Adès
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
- Université de Paris and INSERM U944, Paris, France
| | - Lara Zafrani
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Elie Azoulay
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Etienne Lengliné
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Sun H, Liu X, Wang L, Cui B, Mu W, Xia Y, Liu S, Liu X, Jiao Y, Zhao Y. Dexamethasone Sensitizes Acute Monocytic Leukemia Cells to Ara-C by Upregulating FKBP51. Front Oncol 2022; 12:888695. [PMID: 35860568 PMCID: PMC9290766 DOI: 10.3389/fonc.2022.888695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we demonstrated that the expression of FK506 binding protein 51 (FKBP51) is upregulated in acute monocytic leukemia (AML-M5) cells by dexamethasone and aimed to investigate the possible effects of FKBP51 on the growth and cytarabine sensitivity of AML-M5 cells. THP-1 and U937cells were used to establish AML-M5 cell models with FKBP51 overexpression and knockdown, respectively. Cell proliferation, apoptosis and response to cytarabine were investigated by cell cycle, CCK-8 and Flow cytometry analyses. The mice experiment was conducted to detect the role of FKBP51 on AML-M5 cells proliferation and antileukemia effect of Ara-C/Dexamethasone co-therapy in vivo. Western blots were employed to determine protein expression levels. FKBP51 upregulation significantly attenuated THP-1 cell proliferation and sensitized the cells to cytarabine treatment which was further enhanced by dexamethasone. These effects were indicated by decreases in cell viability, S-G2/M phase cell cycle distribution, cytarabine 50% inhibitory concentration (IC50) values and increases in apoptosis and were supported by decreased phosphorylation levels of AKT, GSK3β and FOXO1A and decreased levels of BCL-2 and increased levels of P21 and P27. In contrast, FKBP51 knockdown led to excessive U937 cell proliferation and cytarabine resistance, as indicated by increased cell viability and S-G2/M phase cell cycle distribution, decreased apoptosis, increased phosphorylation levels of AKT, GSK3β and FOXO1A, and increased BCL-2 and decreased P21 and P27 expression. In addition, an AKT inhibitor blocked cell cycle progression and reduced cell viability in all groups of cells. Furthermore, SAFit2, a specific FKBP51 inhibitor, increased U937 cell viability and cytarabine resistance as well as AKT phosphorylation. In conclusion, FKBP51 decelerates proliferation and improves the cytarabine sensitivity of AML-M5 cells by inhibiting AKT pathways, and dexamethasone in combination with Ara-C improves the chemosensitivity of AML-M5.
Collapse
Affiliation(s)
- Huanxin Sun
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaowen Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Laicheng Wang
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Bin Cui
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Wenli Mu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yu Xia
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuang Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xin Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulian Jiao
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Yulian Jiao, ; Yueran Zhao,
| | - Yueran Zhao
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- *Correspondence: Yulian Jiao, ; Yueran Zhao,
| |
Collapse
|
21
|
Macaron W, Sargsyan Z, Short NJ. Hyperleukocytosis and leukostasis in acute and chronic leukemias. Leuk Lymphoma 2022; 63:1780-1791. [DOI: 10.1080/10428194.2022.2056178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Walid Macaron
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zaven Sargsyan
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nicholas J. Short
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Tomaz V, Griesi-Oliveira K, Puga RD, Conti BJ, Santos FPS, Hamerschlak N, Campregher PV. Molecular Characterization of a First-in-Human Clinical Response to Nimesulide in Acute Myeloid Leukemia. Front Oncol 2022; 12:874168. [PMID: 35756679 PMCID: PMC9215211 DOI: 10.3389/fonc.2022.874168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy associated with high morbidity and mortality. Here we describe a case of a patient with AML who presented a partial response after utilization of the non-steroidal anti-inflammatory drug nimesulide. The response was characterized by complete clearance of peripheral blood blasts and an 82% decrease of bone marrow blasts associated with myeloblast differentiation. We have then shown that nimesulide induces in vitro cell death and cell cycle arrest in all AML cell lines (HL-60, THP-1, OCI-AML2, and OCI-AML3). Weighted Correlation Network Analysis (WGCNA) of serial whole-transcriptome data of cell lines treated with nimesulide revealed that the sets of genes upregulated after treatment with nimesulide were enriched for genes associated with autophagy and apoptosis, and on the other hand, the sets of downregulated genes were associated with cell cycle and RNA splicing. Serial transcriptome of bone marrow patient sample confirmed the upregulation of genes associated with autophagy after the response to nimesulide. Lastly, we demonstrated that nimesulide potentiates the cytotoxic in vitro effect of several Food and Drug Administration (FDA)-approved chemotherapy drugs used in AML, including cytarabine.
Collapse
Affiliation(s)
- Victória Tomaz
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Renato D Puga
- Medicina Personalizada, Grupo Pardini, São Paulo, Brazil
| | - Bruno J Conti
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Fabio P S Santos
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nelson Hamerschlak
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Paulo V Campregher
- Centro de Hematologia e Oncologia Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
23
|
Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2606928. [PMID: 35799889 PMCID: PMC9256443 DOI: 10.1155/2022/2606928] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
According to numerous animal studies, adverse environmental stimuli, including physical, chemical, and biological factors, can cause low-grade chronic inflammation and subsequent tumor development. Human epidemiological evidence has confirmed the close relationship between chronic inflammation and tumorigenesis. However, the mechanisms driving the development of persistent inflammation toward tumorigenesis remain unclear. In this study, we assess the potential role of reactive oxygen species (ROS) and associated mechanisms in modulating inflammation-induced tumorigenesis. Recent reports have emphasized the cross-talk between oxidative stress and inflammation in many pathological processes. Exposure to carcinogenic environmental hazards may lead to oxidative damage, which further stimulates the infiltration of various types of inflammatory cells. In turn, increased cytokine and chemokine release from inflammatory cells promotes ROS production in chronic lesions, even in the absence of hazardous stimuli. Moreover, ROS not only cause DNA damage but also participate in cell proliferation, differentiation, and apoptosis by modulating several transcription factors and signaling pathways. We summarize how changes in the redox state can trigger the development of chronic inflammatory lesions into tumors. Generally, cancer cells require an appropriate inflammatory microenvironment to support their growth, spread, and metastasis, and ROS may provide the necessary catalyst for inflammation-driven cancer. In conclusion, ROS bridge the gap between chronic inflammation and tumor development; therefore, targeting ROS and inflammation represents a new avenue for the prevention and treatment of cancer.
Collapse
|
24
|
Fodil S, Arnaud M, Vaganay C, Puissant A, Lengline E, Mooney N, Itzykson R, Zafrani L. Endothelial cells: major players in acute myeloid leukaemia. Blood Rev 2022; 54:100932. [DOI: 10.1016/j.blre.2022.100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
|
25
|
|
26
|
Zheng X, Li C, Gao X. Overexpression of miR‑375 reverses the effects of dexamethasone on the viability, migration, invasion and apoptosis of human airway epithelial cells by targeting DUSP6. Int J Mol Med 2022; 49:26. [PMID: 35014672 PMCID: PMC8788922 DOI: 10.3892/ijmm.2022.5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Airway epithelial cell (AEC) dysfunction has been proven to be involved in the pathogenesis of asthma, which may be induced by the use of dexamethasone (Dex). The altered expression of microRNAs (miRNAs/miRs) has been found in asthma. However, the detailed mechanisms responsible for the effects of miR-375 on Dex-induced AEC dysfunction remain elusive. Thus, the present study aimed to elucidate these mechanisms. Following treatment with Dex for 0, 6, 12 and 24 h, AEC viability, migration, invasion and apoptosis were examined using Cell Counting Kit-8 (CCK-8), wound healing and Transwell assays, and flow cytometry, respectively. The expression levels of miR-375, dual specificity phosphatase 6 (DUSP6) and apoptosis-related proteins (Bcl-2, Bax, cleaved caspase-3) were measured using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The target genes and potential binding sites of miR-375 and DUSP6 were predicted using TargetScan and confirmed using dual-luciferase reporter assay. The viability, migration, invasion and apoptosis of Dex-treated AECs were further assessed with or without miR-375 and DUSP6. In the AECs (9HTE cells), Dex treatment suppressed cell viability and miR-375 expression, whereas it promoted cell apoptosis and the expression of DUSP6, the target gene of miR-375. The overexpression of miR-375 reversed the effects of Dex treatment on miR-375 expression, cell viability, migration and invasion, and apoptosis-related protein expression; in turn, these effects were reversed by the overexpression of DUSP6, with the exception of miR-375 expression. On the whole, the present study demonstrates that the overexpression of miR-375 counteracts the effects of Dex treatment on AEC viability, migration, invasion and apoptosis by targeting DUSP6. Thus, it was suggested that the downregulated expression of miR-375 may be a therapeutic target for AEC dysfunction.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Chunlian Li
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiang Gao
- Department of Cardiology, Fangzi District People's Hospital, Weifang, Shandong 261206, P.R. China
| |
Collapse
|
27
|
Genomic landscape of hyperleukocytic acute myeloid leukemia. Blood Cancer J 2022; 12:4. [PMID: 34987148 PMCID: PMC8733030 DOI: 10.1038/s41408-021-00601-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
|
28
|
Hyperleukocytic Acute Leukemia Circulating Exosomes Regulate HSCs and BM-MSCs. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9457070. [PMID: 34840706 PMCID: PMC8626181 DOI: 10.1155/2021/9457070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
Hyperleukocytic acute leukemia (HLAL) circulating exosomes are delivered to hematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BM-MSCs), thereby inhibiting the normal hematopoietic process. In this paper, we have evaluated and explored the effects of miR-125b, which is carried by HLAL-derived exosomes, on the hematopoietic function of HSCs and BM-MSCs. For this purpose, we have isolated exosomes from the peripheral blood of HLAL patients and healthy volunteers. Then, we measured the level of miR-125b in exosomes cocultured exosomes with HSCs and BM-MSCs. Moreover, we have used miR-125b inhibitors/mimic for intervention and then measured miR-125b expression and colony forming unit (CFU). Apart from it, HSC and BM-MSC hematopoietic-related factors α-globulin, γ-globulin, CSF2, CRTX4 and CXCL12, SCF, IGF1, and DKK1 expression were measured. Evaluation of the miR-125b and BAK1 targeting relationship, level of miR-125b, and expression of hematopoietic-related genes was performed after patients are treated with miR-125b mimic and si-BAK1. We have observed that miR-125b was upregulated in HLAL-derived exosomes. After HLAL-exosome acts on HSCs, the level of miR-125b is upregulated, reducing CFU and affecting the expression of α-globulin, γ-globulin, CSF2, and CRCX4. For BM-MSCs, after the action of HLAL-exo, the level of miR-125b is upregulated and affected the expression of CXCL12, SCF, IGF1, and DKK1. Exosomes derived from HLAL carry miR-125b to target and regulate BAK1. Further study confirmed that miR-125b and BAK1mimic reduced the expression of miR-125b and reversed the effect of miR-125b mimic on hematopoietic-related genes. These results demonstrated that HLAL-derived exosomes carrying miR-125b inhibit the hematopoietic differentiation of HSC and hematopoietic support function of BM-MSC through BAK1.
Collapse
|
29
|
Ahmed HMM, Nimmagadda SC, Al-Matary YS, Fiori M, May T, Frank D, Patnana PK, Récher C, Schliemann C, Mikesch JH, Koenig T, Rosenbauer F, Hartmann W, Tuckermann J, Dührsen U, Lanying W, Dugas M, Opalka B, Lenz G, Khandanpour C. Dexamethasone-mediated inhibition of Notch signalling blocks the interaction of leukaemia and mesenchymal stromal cells. Br J Haematol 2021; 196:995-1006. [PMID: 34792186 DOI: 10.1111/bjh.17940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Acute myeloid leukaemia (AML) is a haematological malignancy characterized by a poor prognosis. Bone marrow mesenchymal stromal cells (BM MSCs) support leukaemic cells in preventing chemotherapy-induced apoptosis. This encouraged us to investigate leukaemia-BM niche-associated signalling and to identify signalling cascades supporting the interaction of leukaemic cells and BM MSC. Our study demonstrated functional differences between MSCs originating from leukaemic (AML MSCs) and healthy donors (HD MSCs). The direct interaction of leukaemic and AML MSCs was indispensable in influencing AML cell proliferation. We further identified an important role for Notch expression and its activation in AML MSCs contributing to the enhanced proliferation of AML cells. Supporting this observation, overexpression of the intracellular Notch domain (Notch ICN) in AML MSCs enhanced AML cells' proliferation. From a therapeutic point of view, dexamethasone treatment impeded Notch signalling in AML MSCs resulting in reduced AML cell proliferation. Concurrent with our data, Notch inhibitors had only a marginal effect on leukaemic cells alone but strongly influenced Notch signalling in AML MSCs and abrogated their cytoprotective function on AML cells. In vivo, dexamethasone treatment impeded Notch signalling in AML MSCs leading to a reduced number of AML MSCs and improved survival of leukaemic mice. In summary, targeting the interaction of leukaemic cells and AML MSCs using dexamethasone or Notch inhibitors might further improve treatment outcomes in AML patients.
Collapse
Affiliation(s)
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Yahya S Al-Matary
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.,Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maren Fiori
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.,Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.,Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.,Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Récher
- CHU de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Jan-Henrik Mikesch
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Thorsten Koenig
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wei Lanying
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.,Institute of Medical Informatics, University Hospital Muenster, Muenster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Muenster, Muenster, Germany.,Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
30
|
Liu JM, Li M, Luo W, Sun HB. Curcumin attenuates Adriamycin-resistance of acute myeloid leukemia by inhibiting the lncRNA HOTAIR/miR-20a-5p/WT1 axis. J Transl Med 2021; 101:1308-1317. [PMID: 34282279 DOI: 10.1038/s41374-021-00640-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a common subtype of leukemia, and a large proportion of patients with AML eventually develop drug resistance. Curcumin exerts cancer suppressive effects and increases sensitivity to chemotherapy in several diseases. This study aimed to investigate the mechanism by which curcumin affects the resistance of AML to Adriamycin by regulating HOX transcript antisense RNA (HOTAIR) expression. Cell viability, colony-formation, flow cytometry, and Transwell assays were used to assess cell proliferation, apoptosis, and migration. A dual-luciferase reporter assay was used to verify the interaction between microRNA (miR)-20a-5p and HOTAIR or Wilms' tumor 1 (WT1). RT-qPCR and Western blotting assays were performed to detect gene and protein expression. The results showed that curcumin suppressed the resistance to Adriamycin, inhibited the expression of HOTAIR and WT1, and promoted the expression of miR-20a-5p in human acute leukemia cells (HL-60) or Adriamycin-resistant HL-60 cells (HL-60/ADR). Furthermore, curcumin suppressed proliferation and promoted apoptosis of HL-60/ADR cells. Overexpression of HOTAIR reversed the regulatory effect of curcumin on apoptosis and migration and restored the effect of curcumin on inducing the expression of cleaved caspase3, Bax, and P27. In addition, HOTAIR upregulated WT1 expression by targeting miR-20a-5p, and inhibition of miR-20a-5p reversed the regulation of Adriamycin resistance by curcumin in AML cells. Finally, curcumin inhibited Adriamycin resistance by suppressing the HOTAIR/miR-20a-5p/WT1 pathway in vivo. In short, curcumin suppressed the proliferation and migration, blocked the cell cycle progression of AML cells, and sensitized AML cells to Adriamycin by regulating the HOTAIR/miR-20a-5p/WT1 axis. These findings suggest a potential role of curcumin and HOTAIR in AML treatment.
Collapse
Affiliation(s)
- Jun-Min Liu
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China.
| | - Min Li
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China
| | - Wei Luo
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China
| | - Hong-Bo Sun
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
31
|
Woods K, Guezguez B. Dynamic Changes of the Bone Marrow Niche: Mesenchymal Stromal Cells and Their Progeny During Aging and Leukemia. Front Cell Dev Biol 2021; 9:714716. [PMID: 34447754 PMCID: PMC8383146 DOI: 10.3389/fcell.2021.714716] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogenous cell population found in a wide range of tissues in the body, known for their nutrient-producing and immunomodulatory functions. In the bone marrow (BM), these MSCs are critical for the regulation of hematopoietic stem cells (HSC) that are responsible for daily blood production and functional immunity throughout an entire organism's lifespan. Alongside other stromal cells, MSCs form a specialized microenvironment BM tissue called "niche" that tightly controls HSC self-renewal and differentiation. In addition, MSCs are crucial players in maintaining bone integrity and supply of hormonal nutrients due to their capacity to differentiate into osteoblasts and adipocytes which also contribute to cellular composition of the BM niche. However, MSCs are known to encompass a large heterogenous cell population that remains elusive and poorly defined. In this review, we focus on deciphering the BM-MSC biology through recent advances in single-cell identification of hierarchical subsets with distinct functionalities and transcriptional profiles. We also discuss the contribution of MSCs and their osteo-adipo progeny in modulating the complex direct cell-to-cell or indirect soluble factors-mediated interactions of the BM HSC niche during homeostasis, aging and myeloid malignancies. Lastly, we examine the therapeutic potential of MSCs for rejuvenation and anti-tumor remedy in clinical settings.
Collapse
Affiliation(s)
- Kevin Woods
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Borhane Guezguez
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Inder WJ, Mohamed A, Keshvari S, Barclay JL, Ruelcke JE, Stoll T, Nolan BJ, Cesana-Nigro N, Hill MM. Ex vivo glucocorticoid-induced secreted proteome approach for discovery of glucocorticoid-responsive proteins in human serum. Proteomics Clin Appl 2021; 15:e2000078. [PMID: 33641263 DOI: 10.1002/prca.202000078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To identify glucocorticoid-responsive proteins measurable in human serum that may have clinical utility in therapeutic drug monitoring and the diagnosis of cortisol excess or deficiency. EXPERIMENTAL DESIGN A phased biomarker discovery strategy was conducted in two cohorts. Secretome from peripheral blood mononuclear cells (PBMC) isolated from six volunteers after ex vivo incubation ± dexamethasone (DEX) 100 ng/mL for 4 h and 24 h was used for candidate discovery and qualification using untargeted proteomics and a custom multiple reaction monitoring mass spectrometry (MRM-MS) assay, respectively. For validation, five candidates were measured by immunoassay in serum from an independent cohort (n = 20), sampled at 1200 h before and after 4 mg oral DEX. RESULTS The discovery secretome proteomics data generated a shortlist of 45 candidates, with 43 measured in the final MRM-MS assay. Differential analysis revealed 16 proteins that were significant in at least one of two time points. In the validation cohort, 3/5 serum proteins were DEX-responsive, two significantly decreased: lysozyme C (p < 0.0001) and nucleophosmin-1 (p < 0.01), while high mobility group box 2 significantly increased (p < 0.01). CONCLUSIONS AND CLINICAL RELEVANCE Using an ex vivo proteomic approach in PBMC, we have identified circulating glucocorticoid-responsive proteins which may have potential as serum biomarkers of glucocorticoid activity.
Collapse
Affiliation(s)
- Warrick J Inder
- Faculty of Medicine, the University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, the University of Queensland, Brisbane, Queensland, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- University of NSW, Sydney, New South Wales, Australia
| | - Jayde E Ruelcke
- Faculty of Medicine, University of Queensland Diamantina Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Brendan J Nolan
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Nicole Cesana-Nigro
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Farrugia M, Cutajar C, Agius JC, Wismayer PS. Steroids-has the time come to extend their use to AML? J Egypt Natl Canc Inst 2021; 33:7. [PMID: 33661420 DOI: 10.1186/s43046-021-00062-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 2018, leukaemia accounted for 2.6% of all new cancers, it being the 13th most common cause of cancer and the 10th most common cause of cancer death. Glucocorticoids are commonly used in lymphoid leukaemia treatment, where they are cytotoxic. The aim of this review is to highlight ongoing research of steroid use in myeloid leukaemias. MAIN TEXT Glucocorticoids increase infection risks in acute myeloid leukaemia, but with adequate antifungal cover, they can help in hyperleucocytic disease. They also show some benefits in sensitising multidrug-resistant AML cell lines to cytotoxic agents, induce differentiation marker expression and can also induce CD38 expression, making AML cells possible targets of daratumumab. Cardiotonic steroids, like digitalis, are being recognised as sensitising AML cells to the chemotherapeutic effects of many cytotoxic agents, primarily by inhibiting efflux pumps, thus minimising AML resistance. Ecdysteroids enhance sensitivity in multidrug-resistant AML, but also in non-resistant AML cell lines, through pathways including the activation of mitochondrial apoptosis. Their anti-apoptotic effects on non-malignant cell lines help their target specificity. Sensitisation is chemotherapy-specific, enhancing the effects of doxorubicin and tubulin inhibitors but increasing resistance to cisplatinum. SHORT CONCLUSION Cardiotonic steroids and ecdysteroids both show chemosensitisation to the cytotoxic effects of chemotherapy on AML cell lines. It is likely time to consider clinical trials to assess whether these, as well as traditional glucocorticoids, can contribute to the AML armamentarium, particularly in chemo-resistant disease.
Collapse
Affiliation(s)
- Mariah Farrugia
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, MDS2080, Malta
| | - Catriona Cutajar
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, MDS2080, Malta
| | - Jean Calleja Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, MDS2080, Malta
| | - Pierre Schembri Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, MDS2080, Malta.
| |
Collapse
|
34
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
35
|
Elbahlawan L, Galdo AM, Ribeiro RC. Pulmonary Manifestations of Hematologic and Oncologic Diseases in Children. Pediatr Clin North Am 2021; 68:61-80. [PMID: 33228943 DOI: 10.1016/j.pcl.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulmonary complications are common in children with hematologic or oncologic diseases, and many experience long-term effects even after the primary disease has been cured. This article reviews pulmonary complications in children with cancer, after hematopoietic stem cell transplant, and caused by sickle cell disease and discusses their management.
Collapse
Affiliation(s)
- Lama Elbahlawan
- Division of Critical Care, Department of Pediatrics, St. Jude Children's Research Hospital, MS 620, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA.
| | - Antonio Moreno Galdo
- Pediatric Pulmonology Section, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul C Ribeiro
- Leukemia/Lymphoma Division, International Outreach Program, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
36
|
Mottal N, Issa N, Dumas PY, Camou F, Sauvezie M, Gros FX, Cazaubiel T, Mourissoux G, Leroy H, Pigneux A, Guisset O, Leguay T. Reduce Mortality and Morbidity in Acute Myeloid Leukemia With Hyperleukocytosis With Early Admission in Intensive Care Unit: A Retrospective Analysis. J Hematol 2020; 9:109-115. [PMID: 33224390 PMCID: PMC7665861 DOI: 10.14740/jh691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 01/25/2023] Open
Abstract
Background Patients presenting with acute myeloid leukemia (AML) at diagnosis are at high risk of severe complications and death, particularly with high white blood cell (WBC) count. In this retrospective study, we evaluate interest of early and systematic support in the intensive care unit (ICU) for AML with hyperleukocytosis (AML-HL) at diagnosis. Methods Patients with AML-HL, defined by WBC > 50 × 109/L, primary referred in ICU (“Early ICU”) without organ failure and before initiating chemotherapy induction were compared to patients first admitted in the Hematology Department who required a secondary transfer in ICU (“Late ICU”) or not (“No ICU”). Primary end point was mortality during the first month, and secondary end points were the use of life-sustaining therapies in ICU and risk factors for ICU transfer and mortality. Results One hundred fifty-four patients were included: 77 (50%) to the group “No ICU”, 18 (12%) to “Late ICU” and 59 (38%) to “Early ICU”. Mortality at day 30 was higher in “Late ICU” than in “Early ICU” and “No ICU”, with 27.8%; 16.9% and 2.6% respectively (P < 0.001). “Late ICU” patients had an increased use of life-sustaining therapy comparing to “Early ICU” patients (56% vs. 29%, P = 0.04). Conclusions Early referral to ICU reduces morbidity and seems an effective strategy to reduce short-term mortality in AML-HL at diagnosis.
Collapse
Affiliation(s)
- Nathan Mottal
- CHU de Bordeaux, Hopital Haut Leveque, Service d'Hematologie Clinique et Therapie Cellulaire, 1 Avenue de Magellan, 33600 Pessac, France
| | - Nahema Issa
- CHU de Bordeaux, Hopital Saint Andre, Service de Reanimation medicale, 1 Rue Jean Burguet, 33000 Bordeaux, France
| | - Pierre-Yves Dumas
- CHU de Bordeaux, Hopital Haut Leveque, Service d'Hematologie Clinique et Therapie Cellulaire, 1 Avenue de Magellan, 33600 Pessac, France
| | - Fabrice Camou
- CHU de Bordeaux, Hopital Saint Andre, Service de Reanimation medicale, 1 Rue Jean Burguet, 33000 Bordeaux, France
| | - Mathieu Sauvezie
- CHU de Bordeaux, Hopital Haut Leveque, Service d'Hematologie Clinique et Therapie Cellulaire, 1 Avenue de Magellan, 33600 Pessac, France
| | - Francois-Xavier Gros
- CHU de Bordeaux, Hopital Haut Leveque, Service d'Hematologie Clinique et Therapie Cellulaire, 1 Avenue de Magellan, 33600 Pessac, France
| | - Titouan Cazaubiel
- CHU de Bordeaux, Hopital Haut Leveque, Service d'Hematologie Clinique et Therapie Cellulaire, 1 Avenue de Magellan, 33600 Pessac, France
| | - Gaelle Mourissoux
- CHU de Bordeaux, Hopital Saint Andre, Service de Reanimation medicale, 1 Rue Jean Burguet, 33000 Bordeaux, France
| | - Harmony Leroy
- CHU de Bordeaux, Hopital Haut Leveque, Service d'Hematologie Clinique et Therapie Cellulaire, 1 Avenue de Magellan, 33600 Pessac, France
| | - Arnaud Pigneux
- CHU de Bordeaux, Hopital Haut Leveque, Service d'Hematologie Clinique et Therapie Cellulaire, 1 Avenue de Magellan, 33600 Pessac, France
| | - Olivier Guisset
- CHU de Bordeaux, Hopital Saint Andre, Service de Reanimation medicale, 1 Rue Jean Burguet, 33000 Bordeaux, France
| | - Thibaut Leguay
- CHU de Bordeaux, Hopital Haut Leveque, Service d'Hematologie Clinique et Therapie Cellulaire, 1 Avenue de Magellan, 33600 Pessac, France
| |
Collapse
|
37
|
Díaz-García C, Herraiz S, Such E, Andrés MDM, Villamón E, Mayordomo-Aranda E, Cervera JV, Sanz MA, Pellicer A. Dexamethasone does not prevent malignant cell reintroduction in leukemia patients undergoing ovarian transplant: risk assessment of leukemic cell transmission by a xenograft model. Hum Reprod 2020; 34:1485-1493. [PMID: 31339993 DOI: 10.1093/humrep/dez115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Indexed: 01/11/2023] Open
Abstract
STUDY QUESTION Does dexamethasone (DXM) incubation avoid the reintroduction of leukemic malignant cells after ovarian tissue retransplantation in vivo? SUMMARY ANSWER DXM incubation prior to retransplantation of ovarian tissue does not prevent reintroduction of leukemic cells. WHAT IS KNOWN ALREADY Retransplantation of cryopreserved ovarian cortex from patients diagnosed with acute lymphoblastic leukemia (ALL) involves a risk of reintroducing malignant cells. DXM treatment is effective at inducing leukemic cell death in vitro. STUDY DESIGN, SIZE, DURATION This was an experimental study where ovarian cortex fragments from patients with ALL were randomly allocated to incubation with or without DXM (n = 11/group) and grafted to 22 immunodeficient mice for 6 months. In a parallel experiment, 22 immunodeficient mice were injected i.p. with varying amounts of RCH-ACV ALL cells (human leukemia cell line) and maintained for 4 months. PARTICIPANTS/MATERIALS, SETTING, METHODS Cryopreserved ovarian fragments from patients with ALL were exposed in vitro to 0.4 μM DXM or basal media (control) prior to xenograft into ovariectomized severe combined immunodeficiency (SCID) mice (experiment 1). After 6 months of monitoring, leukemia cell contamination was assessed in ovarian grafts and mouse organs by histology, PCR (presence of mouse mtDNA and absence of p53 were together considered a negative result for the presence of human cells) and detection of immunoglobulin monoclonality and specific ALL markers if present in the patient.In experiment 2, a series of 22 immunodeficient female mice was injected with specific doses of the leukemia cell line RCH-ACV (103 - 5 × 106, n = 4/group) to assess the engraftment competence of the SCID model. MAIN RESULTS AND THE ROLE OF CHANCE ALL metastatic cells were detected, by PCR, in five DXM-treated and one control human ovarian tissue graft as well as in a control mouse liver, although malignant cell infiltration was not detected by histology in any sample after 6 months. In total, minimal residual disease was present in three DXM-treated and three control mice.RCH-ACV cells were detected in liver and spleen samples after the injection of as little as 103 cells, although only animals receiving 5 × 106 cells developed clinical signs of disease and metastases. LIMITATIONS, REASONS FOR CAUTION This is an experimental study where the malignant potential of leukemic cells contained in human ovarian tissues has been assessed in immunodeficient mice. WIDER IMPLICATIONS OF THE FINDINGS These results indicate that DXM incubation prior to retransplantation of ovarian tissue does not prevent reintroduction of leukemic cells. Therefore, caution should be taken in retransplanting ovarian tissue from patients with leukemia until safer systems are developed, as leukemic cells present in ovarian grafts were able to survive, proliferate and migrate after cryopreservation and xenograft. STUDY FUNDING/COMPETING INTEREST(S) Funded by the Regional Valencian Ministry of Education (PROMETEO/2018/137) and by the Spanish Ministry of Economy and Competitiveness (PI16/FIS PI16/01664 and PTQ-16-08222 for S.H. participation). There are no competing interests.
Collapse
Affiliation(s)
- César Díaz-García
- IVI-RMA London, London, UK.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Sonia Herraiz
- Reproductive Medicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,IVI Foundation, Valencia, Spain
| | - Esperanza Such
- Department of Hematology, La Fe University Hospital, Valencia, Spain
| | - María Del Mar Andrés
- Pediatric Oncology Unit, Child's Health Area, La Fe University Hospital, Valencia, Spain
| | - Eva Villamón
- Department of Hematology, La Fe University Hospital, Valencia, Spain
| | | | - José V Cervera
- Department of Hematology, La Fe University Hospital, Valencia, Spain
| | - Miguel A Sanz
- Department of Hematology, La Fe University Hospital, Valencia, Spain
| | - Antonio Pellicer
- Reproductive Medicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,IVI Foundation, Valencia, Spain.,IVI-RMA Roma, Rome, Italy
| |
Collapse
|
38
|
Villatoro A, Konieczny J, Cuminetti V, Arranz L. Leukemia Stem Cell Release From the Stem Cell Niche to Treat Acute Myeloid Leukemia. Front Cell Dev Biol 2020; 8:607. [PMID: 32754595 PMCID: PMC7367216 DOI: 10.3389/fcell.2020.00607] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, complex, and deadly disease, whose treatment has hardly evolved for decades and grounds on the use of intensive chemotherapy regimens. Chemotherapy helps reduce AML bulk, but promotes relapse in the long-run by selection of chemoresistant leukemia stem cells (LSC). These may diversify and result in progression to more aggressive forms of AML. In vivo models suggest that the bone marrow stem cell niche helps LSC stay dormant and protected from chemotherapy. Here, we summarize relevant changes in stem cell niche homing and adhesion of AML LSC vs. healthy hematopoietic stem cells, and provide an overview of clinical trials aiming at targeting these processes for AML treatment and future directions within this field. Promising results with various non-mutation-targeted novel therapies directed to LSC eradication via interference with their anchoring to the stem cell niche have encouraged on-going or future advanced phase III clinical trials. In the coming years, we may see a shift in the focus of AML treatment to LSC-directed therapies if the prospect of improved cure rates holds true. In the future, AML treatment should lean toward personalized therapies using combinations of these compounds plus mutation-targeted agents and/or targeted delivery of chemotherapy, aiming at LSC eradication with reduced side effects.
Collapse
Affiliation(s)
- Alicia Villatoro
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Joanna Konieczny
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Vincent Cuminetti
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Lorena Arranz
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.,Norwegian Center for Molecular Medicine (NCMM), University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Aroua N, Boet E, Ghisi M, Nicolau-Travers ML, Saland E, Gwilliam R, de Toni F, Hosseini M, Mouchel PL, Farge T, Bosc C, Stuani L, Sabatier M, Mazed F, Larrue C, Jarrou L, Gandarillas S, Bardotti M, Picard M, Syrykh C, Laurent C, Gotanègre M, Bonnefoy N, Bellvert F, Portais JC, Nicot N, Azuaje F, Kaoma T, Joffre C, Tamburini J, Récher C, Vergez F, Sarry JE. Extracellular ATP and CD39 Activate cAMP-Mediated Mitochondrial Stress Response to Promote Cytarabine Resistance in Acute Myeloid Leukemia. Cancer Discov 2020; 10:1544-1565. [PMID: 32641297 DOI: 10.1158/2159-8290.cd-19-1008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 05/09/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
Relapses driven by chemoresistant leukemic cell populations are the main cause of mortality for patients with acute myeloid leukemia (AML). Here, we show that the ectonucleotidase CD39 (ENTPD1) is upregulated in cytarabine-resistant leukemic cells from both AML cell lines and patient samples in vivo and in vitro. CD39 cell-surface expression and activity is increased in patients with AML upon chemotherapy compared with diagnosis, and enrichment in CD39-expressing blasts is a marker of adverse prognosis in the clinics. High CD39 activity promotes cytarabine resistance by enhancing mitochondrial activity and biogenesis through activation of a cAMP-mediated adaptive mitochondrial stress response. Finally, genetic and pharmacologic inhibition of CD39 ecto-ATPase activity blocks the mitochondrial reprogramming triggered by cytarabine treatment and markedly enhances its cytotoxicity in AML cells in vitro and in vivo. Together, these results reveal CD39 as a new residual disease marker and a promising therapeutic target to improve chemotherapy response in AML. SIGNIFICANCE: Extracellular ATP and CD39-P2RY13-cAMP-OxPHOS axis are key regulators of cytarabine resistance, offering a new promising therapeutic strategy in AML.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Nesrine Aroua
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Margherita Ghisi
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Marie-Laure Nicolau-Travers
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Ryan Gwilliam
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Fabienne de Toni
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Mohsen Hosseini
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Pierre-Luc Mouchel
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Fetta Mazed
- Institut Cochin, Département Développement, Reproduction, Cancer, UMR8104-CNRS, U1016-INSERM, Paris.,Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Latifa Jarrou
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Sarah Gandarillas
- Centre Régional d'Exploration Fonctionnelle et Ressources Expérimentales, Service d'Expérimentation Animale, UMS006, Inserm, Toulouse, France
| | - Massimiliano Bardotti
- Centre Régional d'Exploration Fonctionnelle et Ressources Expérimentales, Service d'Expérimentation Animale, UMS006, Inserm, Toulouse, France
| | - Muriel Picard
- University of Toulouse, Toulouse, France.,Intensive Care Unit, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Charlotte Syrykh
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Anatomopathologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Anatomopathologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Mathilde Gotanègre
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Nathalie Bonnefoy
- Institut de Recherche en Cancérologie de Montpellier, U1194, Inserm, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | | | | | - Nathalie Nicot
- LuxGene, Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Francisco Azuaje
- Computational Biomedicine Research Group, Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tony Kaoma
- Computational Biomedicine Research Group, Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Carine Joffre
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France
| | - Jérome Tamburini
- Institut Cochin, Département Développement, Reproduction, Cancer, UMR8104-CNRS, U1016-INSERM, Paris.,Translational Research Centre in Onco-Hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - François Vergez
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France.,University of Toulouse, Toulouse, France.,Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 Inserm/Université Toulouse III-Paul Sabatier, ERL5294 CNRS, Equipe Labellisée LIGUE 2018, Toulouse, France. .,University of Toulouse, Toulouse, France
| |
Collapse
|
40
|
Shallis RM, Stahl M, Bewersdorf JP, Hendrickson JE, Zeidan AM. Leukocytapheresis for patients with acute myeloid leukemia presenting with hyperleukocytosis and leukostasis: a contemporary appraisal of outcomes and benefits. Expert Rev Hematol 2020; 13:489-499. [PMID: 32248712 DOI: 10.1080/17474086.2020.1751609] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hyperleukocytosis, defined as a total white blood cell count (WBC) >50 or more commonly >100 × 109 cells/L, is a presenting feature of acute myeloid leukemia (AML) in about 6-20% of cases and is associated with a higher risk of tumor lysis syndrome (TLS), disseminated intravascular coagulation (DIC), clinical leukostasis with end organ damage, and mortality.Areas covered: In this review, authors discuss the implications of hyperleukocytosis in AML and the current understanding of cytoreductive strategies with a focus on the use of leukocytapheresis.Expert commentary: Efforts to rapidly reduce peripheral myeloblasts have included the use of leukocytapheresis. Early studies demonstrated feasibility in reducing peripheral WBC and blast counts as well as clinically relevant patient outcomes which prompted its common use for many years. However, more recent data have directly challenged the previously touted reports of reduced TLS and DIC incidence as well as survival benefit, even in patients with clinical leukostasis. The use of leukocytapheresis remains highly controversial with wide practice variations among physicians, institutions, and countries given the lack of high-quality data, risks associated with leukocytapheresis itself, associated high costs, resource utilization, and lack of evidence-based clinical guidelines.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| | - Maximilian Stahl
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Philipp Bewersdorf
- Division of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jeanne E Hendrickson
- Departments of Laboratory Medicine and Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Division of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
41
|
Cerrano M, Seegers V, Raffoux E, Rabian F, Sébert M, Itzykson R, Lemiale V, Adès L, Boissel N, Dombret H, Azoulay E, Lengliné E. Predictors and outcomes associated with hydroxyurea sensitivity in acute myeloid leukemia patients with high hyperleukocytosis. Leuk Lymphoma 2019; 61:737-740. [PMID: 31710255 DOI: 10.1080/10428194.2019.1683735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marco Cerrano
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France.,Department of Oncology, Division of Hematology, AOU Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - Valérie Seegers
- Institut de Cancérologie de l'Ouest - Paul Papin, Direction de la Recherche clinique et de l'innovation, Angers, France
| | - Emmanuel Raffoux
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Florence Rabian
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Marie Sébert
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Raphael Itzykson
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Virginie Lemiale
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Lionel Adès
- Hématologie Seniors, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Nicolas Boissel
- Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Hervé Dombret
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Elie Azoulay
- Medical Intensive Care Unit, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| | - Etienne Lengliné
- Hématologie Adulte, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| |
Collapse
|
42
|
Garciaz S, N'guyen Dasi L, Finetti P, Chevalier C, Vernerey J, Poplineau M, Platet N, Audebert S, Pophillat M, Camoin L, Bertucci F, Calmels B, Récher C, Birnbaum D, Chabannon C, Vey N, Duprez E. Epigenetic down-regulation of the HIST1 locus predicts better prognosis in acute myeloid leukemia with NPM1 mutation. Clin Epigenetics 2019; 11:141. [PMID: 31606046 PMCID: PMC6790061 DOI: 10.1186/s13148-019-0738-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The epigenetic machinery is frequently altered in acute myeloid leukemia. Focusing on cytogenetically normal (CN) AML, we previously described an abnormal H3K27me3 enrichment covering 70 kb on the HIST1 cluster (6.p22) in CN-AML patient blasts. Here, we further investigate the molecular, functional, and prognosis significance of this epigenetic alteration named H3K27me3 HIST1 in NPM1-mutated (NPM1mut) CN-AML. RESULTS We found that three quarter of the NPM1mut CN-AML patients were H3K27me3 HIST1high. H3K27me3 HIST1high group of patients was associated with a favorable outcome independently of known molecular risk factors. In gene expression profiling, the H3K27me3 HIST1high mark was associated with lower expression of the histone genes HIST1H1D, HIST1H2BG, HIST1H2AE, and HIST1H3F and an upregulation of genes involved in myelomonocytic differentiation. Mass spectrometry analyses confirmed that the linker histone protein H1d, but not the other histone H1 subtypes, was downregulated in the H3K27me3 HIST1high group of patients. H1d knockdown primed ATRA-mediated differentiation of OCI-AML3 and U937 AML cell lines, as assessed on CD11b/CD11c markers, morphological and gene expression analyses. CONCLUSIONS Our data suggest that NPM1mut AML prognosis depends on the epigenetic silencing of the HIST1 cluster and that, among the H3K27me3 silenced histone genes, HIST1H1D plays a role in AML blast differentiation.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Lia N'guyen Dasi
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, CRCM, Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Christine Chevalier
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.,Institut Pasteur, G5 Chromatin and Infection, Paris, France
| | - Julien Vernerey
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Nadine Platet
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Stéphane Audebert
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Matthieu Pophillat
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, CRCM, Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Boris Calmels
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, Toulouse, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, CRCM, Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Christian Chabannon
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - Norbert Vey
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.
| |
Collapse
|
43
|
Wang K, Xue Y, Peng Y, Pang X, Zhang Y, Ruiz-Ortega LI, Tian Y, Ngan AHW, Tang B. Elastic modulus and migration capability of drug treated leukemia cells K562. Biochem Biophys Res Commun 2019; 516:177-182. [PMID: 31204049 DOI: 10.1016/j.bbrc.2019.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/05/2019] [Indexed: 01/25/2023]
Abstract
Leukemia is a commonly seen disease caused by abnormal differentiation of hematopoietic stem cells and blasting in bone marrow. Despite drugs are used to treat the disease clinically, the influence of these drugs on leukemia cells' biomechanical properties, which are closely related to complications like leukostasis or infiltration, is still unclear. Due to non-adherent and viscoelastic nature of leukemia cells, accurate measurement of their elastic modulus is still a challenging issue. In this study, we adopted rate-jump method together with optical tweezers indentation to accurately measure elastic modulus of leukemia cells K562 after phorbol 12-myristate 13-acetate (PMA), all-trans retinoic acid (ATRA), Cytoxan (CTX), and Dexamethasone (DEX) treatment, respectively. We found that compared to control sample, K562 cells treated by PMA showed nearly a threefold increase in elastic modulus. Transwell experiment results suggested that the K562 cells treated with PMA have the lowest migration capability. Besides, it was shown that the cytoskeleton protein gene α-tubulin and vimentin have a significant increase in expression after PMA treatment by qPCR. The results indicate that PMA has a significant influence on protein expression, stiffness, and migration ability of the leukemia cell K562, and may also play an important role in the leukostasis in leukemia.
Collapse
Affiliation(s)
- Kui Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Department of Mechanical Engineering, University of Hong Kong, Hong Kong, PR China
| | - Yuntian Xue
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Ying Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Xiangchao Pang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Yuanjun Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - L I Ruiz-Ortega
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Ye Tian
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - A H W Ngan
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, PR China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, PR China.
| |
Collapse
|
44
|
Castelli G, Pelosi E, Testa U. Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers (Basel) 2019; 11:E260. [PMID: 30813354 PMCID: PMC6406361 DOI: 10.3390/cancers11020260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Acute Myelogenous Leukemia (AML) is a malignant disease of the hematopoietic cells, characterized by impaired differentiation and uncontrolled clonal expansion of myeloid progenitors/precursors, resulting in bone marrow failure and impaired normal hematopoiesis. AML comprises a heterogeneous group of malignancies, characterized by a combination of different somatic genetic abnormalities, some of which act as events driving leukemic development. Studies carried out in the last years have shown that AML cells invariably have abnormalities in one or more apoptotic pathways and have identified some components of the apoptotic pathway that can be targeted by specific drugs. Clinical results deriving from studies using B-cell lymphoma 2 (BCL-2) inhibitors in combination with standard AML agents, such as azacytidine, decitabine, low-dose cytarabine, provided promising results and strongly support the use of these agents in the treatment of AML patients, particularly of elderly patients. TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are frequently deregulated in AML patients and their targeting may represent a promising strategy for development of new treatments. Altered mitochondrial metabolism is a common feature of AML cells, as supported through the discovery of mutations in the isocitrate dehydrogenase gene and in mitochondrial electron transport chain and of numerous abnormalities of oxidative metabolism existing in AML subgroups. Overall, these observations strongly support the view that the targeting of mitochondrial apoptotic or metabolic machinery is an appealing new therapeutic perspective in AML.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
45
|
Bertoli S, Paubelle E, Bérard E, Saland E, Thomas X, Tavitian S, Larcher M, Vergez F, Delabesse E, Sarry A, Huguet F, Larrue C, Bosc C, Farge T, Sarry JE, Michallet M, Récher C. Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur J Haematol 2018; 102:131-142. [DOI: 10.1111/ejh.13183] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Emilie Bérard
- Service d'Epidémiologie Centre Hospitalier Universitaire de Toulouse Toulouse France
- UMR 1027 INSERM‐Université de Toulouse III Toulouse France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | | | - François Vergez
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Eric Delabesse
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Jean Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| |
Collapse
|
46
|
Brandwein JM, Seki JT, Atenafu EG, Rostom A, Lutynski A, Rydlewski A, Schimmer AD, Schuh AC, Gupta V, Yee KWL. A phase II open-label study of aprepitant as anti-emetic prophylaxis in patients with acute myeloid leukemia (AML) undergoing induction chemotherapy. Support Care Cancer 2018; 27:2295-2300. [PMID: 30341536 DOI: 10.1007/s00520-018-4515-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
Abstract
Despite the widespread use of 5-HT3 antagonists as anti-emetic prophylaxis in patients with acute myeloid leukemia (AML) receiving induction chemotherapy, nausea and vomiting persist in many cases. We performed a Phase II single-arm study evaluating the use of aprepitant on days 1-5, in combination with a 5-HT antagonist on days 1-3, in AML patients undergoing induction chemotherapy with daunorubicin on days 1-3 plus cytarabine, given as a continuous infusion, on days 1-7. This was compared to a retrospective cohort of AML patients that received the same chemotherapy regimen with a 5-HT antagonist but without aprepitant. The cumulative incidence of vomiting/retching by the end of day 5 was significantly lower in the aprepitant vs. the control group (26.3 vs. 52.8%, p = 0.013). The cumulative incidence of nausea by the end of day 5 was 61% in the aprepitant group vs. 75% in the control group. The total use of supplemental anti-emetics on days 2-5 was also significantly lower in the aprepitant group (p = 0.01). In contrast, the cumulative incidence of vomiting/retching by the end of day 8, the incidence of vomiting/retching on days 6-8, and the use of anti-emetics on days 6-8, were not significantly different between the two groups. The results suggest that the use of aprepitant may be associated with a lower rate of emesis during aprepitant dosing days, but not afterward. However, this requires confirmation in a randomized trial.
Collapse
Affiliation(s)
- Joseph M Brandwein
- Division of Hematology, Department of Medicine, University of Alberta, 11350 - 83 Ave., Suite 4-112 CSB, Edmonton, AB, T6G 2G3, Canada.
| | - Jack T Seki
- Pharmacy Department, Princess Margaret Cancer Centre, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Eshetu G Atenafu
- Biostatistics Department, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Amr Rostom
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Andrzej Lutynski
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Anna Rydlewski
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Aaron D Schimmer
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Andre C Schuh
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Vikas Gupta
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Karen W L Yee
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|