1
|
Driessen A, Unger S, Nguyen AP, Ries RE, Meshinchi S, Kreutmair S, Alberti C, Sumazin P, Aplenc R, Redell MS, Becher B, Rodríguez Martínez M. Identification of single-cell blasts in pediatric acute myeloid leukemia using an autoencoder. Life Sci Alliance 2024; 7:e202402674. [PMID: 39191488 PMCID: PMC11358707 DOI: 10.26508/lsa.202402674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Pediatric acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis and high relapse rate. Current challenges in the identification of immunotherapy targets arise from patient-specific blast immunophenotypes and their change during disease progression. To overcome this, we present a new computational research tool to rapidly identify malignant cells. We generated single-cell flow cytometry profiles of 21 pediatric AML patients with matched samples at diagnosis, remission, and relapse. We coupled a classifier to an autoencoder for anomaly detection and classified malignant blasts with 90% accuracy. Moreover, our method assigns a developmental stage to blasts at the single-cell level, improving current classification approaches based on differentiation of the dominant phenotype. We observed major immunophenotype and developmental stage alterations between diagnosis and relapse. Patients with KMT2A rearrangement had more profound changes in their blast immunophenotypes at relapse compared to patients with other molecular features. Our method provides new insights into the immunophenotypic composition of AML blasts in an unbiased fashion and can help to define immunotherapy targets that might improve personalized AML treatment.
Collapse
Affiliation(s)
- Alice Driessen
- Data and AI Research, IBM Research Europe, Zürich, Switzerland
- ETH Zürich, Zürich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - An-Phi Nguyen
- Data and AI Research, IBM Research Europe, Zürich, Switzerland
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Chiara Alberti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Richard Aplenc
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michele S Redell
- Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Jo T, Arai Y, Oshima S, Kondo T, Harada K, Uchida N, Doki N, Fukuda T, Tanaka M, Ozawa Y, Kuriyama T, Ikegame K, Katayama Y, Ota S, Ara T, Kawakita T, Onizuka M, Ichinohe T, Atsuta Y, Yanada M. Prognostic impact of complex and/or monosomal karyotypes in post-transplant poor cytogenetic acute myeloid leukaemia: A quantitative approach. Br J Haematol 2023. [PMID: 37211753 DOI: 10.1111/bjh.18855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
To evaluate the prognostic impact of complex karyotype (CK) and/or monosomal karyotype (MK) in combination with various clinical factors on allogeneic stem cell transplantation (HSCT) outcomes of patients with acute myeloid leukaemia (AML), we analysed the registry database of adult AML patients who underwent allogeneic HSCT between 2000 and 2019 in Japan. Among 16 094 patients, those with poor cytogenetic risk (N = 3345) showed poor overall survival (OS) after HSCT (25.3% at 5 years). Multivariate analyses revealed that CK and/or MK (hazard ratio [HR], 1.31 for CK without MK; 1.27 for MK without CK; and 1.73 for both), age at HSCT ≥50 years (HR, 1.58), male sex (HR, 1.40), performance status ≥2 (HR, 1.89), HCT-CI score ≥3 (HR, 1.23), non-remission status at HSCT (HR, 2.49), and time from diagnosis to HSCT ≥3 months (HR, 1.24) independently reduced post-HSCT OS among patients with poor cytogenetic risk AML. A risk scoring system based on the multivariate analysis successfully stratified patients into five distinct groups for OS. This study confirms the negative effects of CK and MK on post-HSCT outcomes, and offers a powerful risk scoring system for predicting prognoses after HSCT among AML patients with unfavourable cytogenetics.
Collapse
Affiliation(s)
- Tomoyasu Jo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Shinichiro Oshima
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaito Harada
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Takuro Kuriyama
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Kazuhiro Ikegame
- Department of Hematology, Hyogo Medical University Hospital, Hyogo, Japan
| | - Yuta Katayama
- Department of Hematology, Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Toshiro Kawakita
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masamitsu Yanada
- Department of Hematology and Cell Therapy, Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
3
|
Shi Y, Xue Y, Wang C, Yu L. Nucleophosmin 1: from its pathogenic role to a tantalizing therapeutic target in acute myeloid leukemia. Hematology 2022; 27:609-619. [PMID: 35621728 DOI: 10.1080/16078454.2022.2067939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nucleophosmin 1 (NPM1, also known as B23) is a multifunctional protein involved in a variety of cellular processes, including ribosomal maturation, centrosome replication, maintenance of genomic stability, cell cycle control, and apoptosis. NPM1 is the most commonly mutated gene in adult acute myeloid leukemia (AML) and is present in approximately 40% of all AML cases. The underlying mechanisms of mutant NPM1 (NPM1mut) in leukemogenesis remain unclear. This review summarizes the structure and physiological function of NPM1, mechanisms underlying the pathogenesis of NPM1-mutated AML, and the potential role of NPM1 as a therapeutic target. It is reported that dysfunctional NPM1 might cause AML pathogenesis via its role as a protein chaperone, inhibiting differentiation of leukemia stem cells and regulation of non-coding RNAs. Besides conventional chemotherapies, NPM1 is a promising therapeutic target against AML that warrants further investigation. NPM1-based therapeutic strategies include inducing nucleolar relocalisation of NPM1 mutants, interfering with NPM1 oligomerization, and NPM1 as an immune response target.
Collapse
Affiliation(s)
- Yuye Shi
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yuhao Xue
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
4
|
The Role of Nucleophosmin 1 ( NPM1) Mutation in the Diagnosis and Management of Myeloid Neoplasms. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010109. [PMID: 35054502 PMCID: PMC8780493 DOI: 10.3390/life12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1) is a multifunctional protein with both proliferative and growth-suppressive roles in the cell. In humans, NPM1 is involved in tumorigenesis via chromosomal translocations, deletions, or mutation. Acute myeloid leukemia (AML) with mutated NPM1, a distinct diagnostic entity by the current WHO Classification of myeloid neoplasm, represents the most common diagnostic subtype in AML and is associated with a favorable prognosis. The persistence of NPM1 mutation in AML at relapse makes this mutation an ideal target for minimal measurable disease (MRD) detection. The clinical implication of this is far-reaching because NPM1-mutated AML is currently classified as being of standard risk, with the best treatment strategy (transplantation versus chemotherapy) yet undefined. Myeloid neoplasms with NPM1 mutations and <20% blasts are characterized by an aggressive clinical course and a rapid progression to AML. The pathological classification of these cases remains controversial. Future studies will determine whether NPM1 gene mutation may be sufficient for diagnosing NPM1-mutated AML independent of the blast count. This review aims to summarize the role of NPM1 in normal cells and in human cancer and discusses its current role in clinical management of AML and related myeloid neoplasms.
Collapse
|
5
|
Allogeneic transplant can abrogate the risk of relapse in the patients of first remission acute myeloid leukemia with detectable measurable residual disease by next-generation sequencing. Bone Marrow Transplant 2020; 56:1159-1170. [PMID: 33279940 DOI: 10.1038/s41409-020-01165-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 11/09/2022]
Abstract
In patients with acute myeloid leukemia (AML) consolidation treatment options are between allogeneic hematopoietic stem cell transplantation (HCT) and chemotherapy, based on disease risk at the time of initial presentation and age. Measurable residual disease (MRD) following induction chemotherapy could be incorporated as a useful parameter for treatment decisions. The present study evaluated treatment outcomes according to the next-generation sequencing (NGS)-based MRD status and the type of consolidation therapy in patients with normal karyotype (NK)-AML. By sequencing 278 paired samples collected at diagnosis and first remission (CR1), we identified 361 mutations in 124 patients at diagnosis and tracked these at CR1. After excluding mutations associated with age-related clonal hematopoiesis, 82 mutations in 50 of the 124 patients (40.3%) were detected at CR1. Survival benefit was observed in favor of allogeneic HCT over chemotherapy consolidation in the MRDpos subgroup with respect to overall survival (HR 0.294, p = 0.003), relapse-free survival (HR 0.376, p = 0.015) and cumulative incidence of relapse (HR 0.279, p = 0.004) in multivariate analysis, but not in the MRDneg subgroup. In summary, these data support allogeneic HCT in NK-AML patients with detectable MRD by NGS in CR1. Randomized clinical trials will be required to confirm this observation.
Collapse
|
6
|
Catalano G, Niscola P, Banella C, Diverio D, Trawinska MM, Fratoni S, Iazzoni R, De Fabritiis P, Abruzzese E, Noguera NI. NPM1 Mutated, BCR-ABL1 Positive Myeloid Neoplasms: Review of the Literature. Mediterr J Hematol Infect Dis 2020; 12:e2020083. [PMID: 33194157 PMCID: PMC7643801 DOI: 10.4084/mjhid.2020.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Breakpoint cluster region - Abelson (BCR-ABL1) chimeric protein and mutated Nucleophosmin (NPM1) are often present in hematological cancers, but they rarely coexist in the same disease. Both anomalies are considered founder mutations that inhibit differentiation and apoptosis, but BCR-ABL1 could act as a secondary mutation conferring a proliferative advantage to a pre-neoplastic clone. The 2016 World Health Organization (WHO) classification lists the provisional acute myeloid leukemia (AML) with BCR-ABL1, which must be diagnosed differentially from the rare blast phase (BP) onset of chronic myeloid leukemia (CML), mainly because of the different therapeutic approach in the use of tyrosine kinase inhibitors (TKI). Here we review the BCR/ABL1 plus NPMc+ published cases since 1975 and describe a case from our institution in order to discuss the clinical and molecular features of this rare combination, and report the latest acquisition about an occurrence that could pertain either to the rare AML BCR-ABL1 positive or the even rarer CML-BP with mutated NPM1 at the onset. Differential diagnosis is based on careful analysis of genotypic and phenotypic features and anamnestic, clinical evolution, and background data. Therapeutic decisions must consider the broader clinical aspects, the comparatively mild effects of TKI therapy versus the great benefit that might bring to most of the patients, as may be incidentally demonstrated by our case history.
Collapse
Affiliation(s)
- Gianfranco Catalano
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Neuro Oncohematology Unit, Santa Lucia Foundation, IRCCS. Rome, Italy
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Pasquale Niscola
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Cristina Banella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Neuro Oncohematology Unit, Santa Lucia Foundation, IRCCS. Rome, Italy
| | - Daniela Diverio
- Hematology, Department of Precision and Translational Medicine, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
| | | | - Stefano Fratoni
- Department of Pathology (UOSD Anatomia Patologica) A.S.L. Roma2, Sant’ Eugenio Hospital, Rome, Italy
| | - Rita Iazzoni
- Department of Clinical Pathology (U.O.C. Laboratorio) A.S.L. Roma2, Sant’ Eugenio Hospital, Rome, Italy
| | - Paolo De Fabritiis
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Elisabetta Abruzzese
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Neuro Oncohematology Unit, Santa Lucia Foundation, IRCCS. Rome, Italy
| |
Collapse
|
7
|
Yuasa M, Yamamoto H, Mitsuki T, Kageyama K, Kaji D, Taya Y, Nishida A, Ishiwata K, Takagi S, Yamamoto G, Asano-Mori Y, Wake A, Koike Y, Makino S, Uchida N, Taniguchi S. Prognostic Impact of Cytogenetic Evolution on the Outcome of Allogeneic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia in Nonremission: A Single-Institute Analysis of 212 Recipients. Biol Blood Marrow Transplant 2020; 26:2262-2270. [PMID: 32871257 DOI: 10.1016/j.bbmt.2020.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in genetic analysis technology has helped researchers understand the pathogenesis of acute myeloid leukemia (AML). Considering this progress, AML karyotype is still one of the most significant prognostic factors that provides risk-adapted treatment approaches. Karyotype changes during treatment have been observed at times, but their prognostic impact is sparse, especially on allogeneic stem cell transplantation (allo-SCT). Here, we retrospectively investigated the effect of chromosomal changes between diagnosis and pretransplantation on the prognosis of allo-SCT by analyzing the outcomes of 212 consecutive patients who underwent allo-SCT for the first time at Toranomon Hospital, Tokyo, Japan, between 2008 and 2018. Cytogenetic abnormalities at diagnosis and pretransplantation were categorized based on the 2017 European Leukemia Net risk stratification. Genetic abnormalities such as FLT3-ITD and NPM1 were not considered in this study due to lack of genetic information in most patients. We defined cytogenetic evolution as chromosomal changes classified from lower category to higher category. Seventeen patients (8%) had cytogenetic evolution between diagnosis and pretransplantation, and they showed a significantly worse relapse rate than those who were categorized in the intermediate group based on the karyotype at diagnosis (3-year confidence interval [CI] of relapse, 57.4% versus 24.9%; P < .01). In multivariate analysis, cytogenetic evolution before allo-SCT had a significant impact on the CI of relapse (hazard ratio [HR], 3.89; CI, 1.75 to 8.67; P < .01), as well as the high score of the hematopoietic cell transplantation-specific comorbidity index (HR, 0.54; CI, 0.31 to 0.94; P = .03), but had no significant impact on overall survival or nonrelapse mortality. These results indicate that cytogenetic evolution has a significant impact after allo-SCT and should be considered during AML treatment.
Collapse
Affiliation(s)
| | | | - Takashi Mitsuki
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Kosei Kageyama
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Daisuke Kaji
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Yuki Taya
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Aya Nishida
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Kazuya Ishiwata
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | - Go Yamamoto
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | | | - Atsushi Wake
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Yukako Koike
- Department of Clinical Laboratory, Toranomon Hospital, Tokyo, Japan
| | - Shigeyoshi Makino
- Department of Transfusion Medicine, Toranomon Hospital, Tokyo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan.
| | - Shuichi Taniguchi
- Department of Hematology, Toranomon Hospital, Tokyo, Japan; Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| |
Collapse
|
8
|
Freeman SD, Hourigan CS. MRD evaluation of AML in clinical practice: are we there yet? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:557-569. [PMID: 31808906 PMCID: PMC6913462 DOI: 10.1182/hematology.2019000060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MRD technologies increase our ability to measure response in acute myeloid leukemia (AML) beyond the limitations of morphology. When applied in clinical trials, molecular and immunophenotypic MRD assays have improved prognostic precision, providing a strong rationale for their use to guide treatment, as well as to measure its effectiveness. Initiatives such as those from the European Leukemia Network now provide a collaborative knowledge-based framework for selection and implementation of MRD assays most appropriate for defined genetic subgroups. For patients with mutated-NPM1 AML, quantitative polymerase chain reaction (qPCR) monitoring of mutated-NPM1 transcripts postinduction and sequentially after treatment has emerged as a highly sensitive and specific tool to predict relapse and potential benefit from allogeneic transplant. Flow cytometric MRD after induction is prognostic across genetic risk groups and can identify those patients in the wild-type NPM1 intermediate AML subgroup with a very high risk for relapse. In parallel with these data, advances in genetic profiling have extended understanding of the etiology and the complex dynamic clonal nature of AML, as well as created the opportunity for MRD monitoring using next-generation sequencing (NGS). NGS AML MRD detection can stratify outcomes and has potential utility in the peri-allogeneic transplant setting. However, there remain challenges inherent in the NGS approach of multiplex quantification of mutations to track AML MRD. Although further development of this methodology, together with orthogonal testing, will clarify its relevance for routine clinical use, particularly for patients lacking a qPCR genetic target, established validated MRD assays can already provide information to direct clinical practice.
Collapse
Affiliation(s)
- Sylvie D Freeman
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Minimal/Measurable Residual Disease Monitoring in NPM1-Mutated Acute Myeloid Leukemia: A Clinical Viewpoint and Perspectives. Int J Mol Sci 2018; 19:ijms19113492. [PMID: 30404199 PMCID: PMC6274702 DOI: 10.3390/ijms19113492] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) with NPM1 gene mutations is currently recognized as a distinct entity, due to its unique biological and clinical features. We summarize here the results of published studies investigating the clinical application of minimal/measurable residual disease (MRD) in patients with NPM1-mutated AML, receiving either intensive chemotherapy or hematopoietic stem cell transplantation. Several clinical trials have so far demonstrated a significant independent prognostic impact of molecular MRD monitoring in NPM1-mutated AML and, accordingly, the Consensus Document from the European Leukemia Net MRD Working Party has recently recommended that NPM1-mutated AML patients have MRD assessment at informative clinical timepoints during treatment and follow-up. However, several controversies remain, mainly with regard to the most clinically significant timepoints and the MRD thresholds to be considered, but also with respect to the optimal source to be analyzed, namely bone marrow or peripheral blood samples, and the correlation of MRD with other known prognostic indicators. Moreover, we discuss potential advantages, as well as drawbacks, of newer molecular technologies such as digital droplet PCR and next-generation sequencing in comparison to conventional RQ-PCR to quantify NPM1-mutated MRD. In conclusion, further prospective clinical trials are warranted to standardize MRD monitoring strategies and to optimize MRD-guided therapeutic interventions in NPM1-mutated AML patients.
Collapse
|