1
|
Guglielmelli P, Szuber N, Gangat N, Capecchi G, Maccari C, Harnois M, Karrar O, Abdelmagid M, Balliu M, Nacca E, Atanasio A, Sestini I, Désilets A, Loscocco GG, Rotunno G, Busque L, Tefferi A, Vannucchi AM. CALR mutation burden in essential thrombocythemia and disease outcome. Blood 2024; 143:1310-1314. [PMID: 38252902 DOI: 10.1182/blood.2023023428] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
ABSTRACT Among 281 patients with essential thrombocythemia and calreticulin (CALR) mutation, we found a variant allele frequency of ≥60% to be associated with significantly shortened myelofibrosis-free survival, mostly apparent with CALR type-1 and CALR type-indeterminate mutations.
Collapse
Affiliation(s)
- Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Natasha Szuber
- University of Montreal, Montreal, QC, Canada
- Quebec CML-MPN Research Group, Montreal, QC, Canada
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | | | - Giulio Capecchi
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Chiara Maccari
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | | | - Omer Karrar
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Manjola Balliu
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Elena Nacca
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Alessandro Atanasio
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Ilaria Sestini
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | | | - Giuseppe Gaetano Loscocco
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Giada Rotunno
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Lambert Busque
- University of Montreal, Montreal, QC, Canada
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | | | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| |
Collapse
|
2
|
Andrews C, Conneally E, Langabeer SE. Molecular diagnostic criteria of myeloproliferative neoplasms. Expert Rev Mol Diagn 2023; 23:1077-1090. [PMID: 37999991 DOI: 10.1080/14737159.2023.2277370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell neoplasms characterized by the driver mutations JAK2, CALR, and MPL. These mutations cause constitutive activation of JAK-STAT signaling, which is central to pathogenesis of MPNs. Next-generation sequencing has further expanded the molecular landscape allowing for improved diagnostics, prognostication, and targeted therapy. AREAS COVERED This review aims to address current understanding of the molecular diagnosis of MPN not only through improved awareness of the driver mutations but also the disease modifying mutations. In addition, other genetic factors such as clonal hematopoiesis of indeterminate potential (CHIP), order of mutation, and mutation co-occurrence are discussed and how these factors influence disease initiation and ultimately progression. How this molecular information is incorporated into risk stratification models allowing for earlier intervention and targeted therapy in the future will be addressed further. EXPERT OPINION The genomic landscape of the MPN has evolved in the last 15 years with integration of next-generation sequencing becoming the gold standard of MPN management. Although diagnostics and prognostication have become more personalized, additional studies are required to translate these molecular findings into targeted therapy therefore improving patient outcomes.
Collapse
Affiliation(s)
- Claire Andrews
- Department of Haematology, St. Vincent's University Hospital, Dublin, Ireland
| | | | | |
Collapse
|
3
|
Guglielmelli P, Maccari C, Sordi B, Balliu M, Atanasio A, Mannarelli C, Capecchi G, Sestini I, Coltro G, Loscocco GG, Rotunno G, Angori E, Borri FC, Tefferi A, Vannucchi AM. Phenotypic correlations of CALR mutation variant allele frequency in patients with myelofibrosis. Blood Cancer J 2023; 13:21. [PMID: 36710362 PMCID: PMC9884661 DOI: 10.1038/s41408-023-00786-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Affiliation(s)
- Paola Guglielmelli
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Chiara Maccari
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Benedetta Sordi
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Manjola Balliu
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Alessandro Atanasio
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Carmela Mannarelli
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Giulio Capecchi
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Ilaria Sestini
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Giacomo Coltro
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Giuseppe Gaetano Loscocco
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy ,grid.9024.f0000 0004 1757 4641Doctorate School GenOMec, University of Siena, Siena, Italy
| | - Giada Rotunno
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Eva Angori
- grid.8404.80000 0004 1757 2304University of Florence, Florence, Italy
| | - Filippo C. Borri
- grid.8404.80000 0004 1757 2304University of Florence, Florence, Italy
| | - Ayalew Tefferi
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, Rochester, MN USA
| | - Alessandro M. Vannucchi
- grid.24704.350000 0004 1759 9494CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| |
Collapse
|
4
|
Calreticulin mutations affect its chaperone function and perturb the glycoproteome. Cell Rep 2022; 41:111689. [DOI: 10.1016/j.celrep.2022.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/17/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
5
|
Secondary chronic myeloid leukemia in a patient with CALR and ASXL1-mutated primary myelofibrosis. Int J Hematol 2022; 116:442-445. [DOI: 10.1007/s12185-022-03331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
6
|
Olschok K, Han L, de Toledo MAS, Böhnke J, Graßhoff M, Costa IG, Theocharides A, Maurer A, Schüler HM, Buhl EM, Pannen K, Baumeister J, Kalmer M, Gupta S, Boor P, Gezer D, Brümmendorf TH, Zenke M, Chatain N, Koschmieder S. CALR frameshift mutations in MPN patient-derived iPSCs accelerate maturation of megakaryocytes. Stem Cell Reports 2021; 16:2768-2783. [PMID: 34678208 PMCID: PMC8581168 DOI: 10.1016/j.stemcr.2021.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Calreticulin (CALR) mutations are driver mutations in myeloproliferative neoplasms (MPNs), leading to activation of the thrombopoietin receptor and causing abnormal megakaryopoiesis. Here, we generated patient-derived CALRins5- or CALRdel52-positive induced pluripotent stem cells (iPSCs) to establish an MPN disease model for molecular and mechanistic studies. We demonstrated myeloperoxidase deficiency in granulocytic cells derived from homozygous CALR mutant iPSCs, rescued by repairing the mutation using CRISPR/Cas9. iPSC-derived megakaryocytes showed characteristics of primary megakaryocytes such as formation of demarcation membrane system and cytoplasmic pro-platelet protrusions. Importantly, CALR mutations led to enhanced megakaryopoiesis and accelerated megakaryocytic development in a thrombopoietin-independent manner. Mechanistically, our study identified differentially regulated pathways in mutated versus unmutated megakaryocytes, such as hypoxia signaling, which represents a potential target for therapeutic intervention. Altogether, we demonstrate key aspects of mutated CALR-driven pathogenesis dependent on its zygosity, and found novel therapeutic targets, making our model a valuable tool for clinical drug screening in MPNs. CALR-mutated iPSCs allow efficient modeling of human MPN disease CRISPR-mediated repair of CALR mutations rescues normal iPSC function Megakaryopoiesis in CALR-mutated iPSCs is hyperplastic and accelerated Transcriptome screen of mutated megakaryocytes identifies novel therapeutic options
Collapse
Affiliation(s)
- Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Lijuan Han
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marcelo A S de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Janik Böhnke
- Institute for Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Graßhoff
- Institute for Computational Genomics Joint Research Center for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics Joint Research Center for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alexandre Theocharides
- Division of Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Herdit M Schüler
- Institute for Human Genetics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Institute for Pathology, Electron Microscopy Facility, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Kristina Pannen
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Siddharth Gupta
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Peter Boor
- Institute for Pathology, Electron Microscopy Facility, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
7
|
Benlabiod C, Cacemiro MDC, Nédélec A, Edmond V, Muller D, Rameau P, Touchard L, Gonin P, Constantinescu SN, Raslova H, Villeval JL, Vainchenker W, Plo I, Marty C. Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN. Nat Commun 2020; 11:4886. [PMID: 32985500 PMCID: PMC7522233 DOI: 10.1038/s41467-020-18691-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Somatic mutations in the calreticulin (CALR) gene are associated with approximately 30% of essential thrombocythemia (ET) and primary myelofibrosis (PMF). CALR mutations, including the two most frequent 52 bp deletion (del52) and 5 bp insertion (ins5), induce a frameshift to the same alternative reading frame generating new C-terminal tails. In patients, del52 and ins5 induce two phenotypically distinct myeloproliferative neoplasms (MPNs). They are equally found in ET, but del52 is more frequent in PMF. We generated heterozygous and homozygous conditional inducible knock-in (KI) mice expressing a chimeric murine CALR del52 or ins5 with the human mutated C-terminal tail to investigate their pathogenic effects on hematopoiesis. Del52 induces greater phenotypic changes than ins5 including thrombocytosis, leukocytosis, splenomegaly, bone marrow hypocellularity, megakaryocytic lineage amplification, expansion and competitive advantage of the hematopoietic stem cell compartment. Homozygosity amplifies these features, suggesting a distinct contribution of homozygous clones to human MPNs. Moreover, homozygous del52 KI mice display features of a penetrant myelofibrosis-like disorder with extramedullary hematopoiesis linked to splenomegaly, megakaryocyte hyperplasia and the presence of reticulin fibers. Overall, modeling del52 and ins5 mutations in mice successfully recapitulates the differences in phenotypes observed in patients. Calreticulin del52 and ins5 mutations induce two phenotypically distinct myeloproliferative neoplasms in patients. Here the authors show that modeling these mutations in knock-in mice recapitulate the two diseases and highlight how they impact the different hematopoietic compartments.
Collapse
Affiliation(s)
- Camélia Benlabiod
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Villejuif, France
| | - Maira da Costa Cacemiro
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Villejuif, France.,Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, São Paulo, Brazil
| | - Audrey Nédélec
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Brussels, Belgium
| | - Valérie Edmond
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Villejuif, France
| | - Delphine Muller
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Villejuif, France
| | - Philippe Rameau
- Integrated Biology Core Facility, Gustave Roussy, Villejuif, France
| | - Laure Touchard
- Preclinical Research Plateform, Unité Mixte de Service AMMICA 3655/US 23, Gustave Roussy, Villejuif, France
| | - Patrick Gonin
- Preclinical Research Plateform, Unité Mixte de Service AMMICA 3655/US 23, Gustave Roussy, Villejuif, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Brussels, Belgium
| | - Hana Raslova
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Villejuif, France
| | - Jean-Luc Villeval
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Villejuif, France
| | - William Vainchenker
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France. .,Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France. .,Gustave Roussy, UMR 1287, Villejuif, France.
| |
Collapse
|
8
|
Skov V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers (Basel) 2020; 12:E2194. [PMID: 32781570 PMCID: PMC7464861 DOI: 10.3390/cancers12082194] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are acquired hematological stem cell neoplasms characterized by driver mutations in JAK2, CALR, or MPL. Additive mutations may appear in predominantly epigenetic regulator, RNA splicing and signaling pathway genes. These molecular mutations are a hallmark of diagnostic, prognostic, and therapeutic assessment in patients with MPNs. Over the past decade, next generation sequencing (NGS) has identified multiple somatic mutations in MPNs and has contributed substantially to our understanding of the disease pathogenesis highlighting the role of clonal evolution in disease progression. In addition, disease prognostication has expanded from encompassing only clinical decision making to include genomics in prognostic scoring systems. Taking into account the decreasing costs and increasing speed and availability of high throughput technologies, the integration of NGS into a diagnostic, prognostic and therapeutic pipeline is within reach. In this review, these aspects will be discussed highlighting their role regarding disease outcome and treatment modalities in patients with MPNs.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, 4000 Roskilde, Denmark
| |
Collapse
|
9
|
Shide K, Kameda T, Kamiunten A, Ozono Y, Tahira Y, Yokomizo-Nakano T, Kubota S, Ono M, Ikeda K, Sekine M, Akizuki K, Nakamura K, Hidaka T, Kubuki Y, Iwakiri H, Hasuike S, Nagata K, Sashida G, Shimoda K. Calreticulin haploinsufficiency augments stem cell activity and is required for onset of myeloproliferative neoplasms in mice. Blood 2020; 136:106-118. [PMID: 32219445 PMCID: PMC7332892 DOI: 10.1182/blood.2019003358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in JAK2, myeloproliferative leukemia virus (MPL), or calreticulin (CALR) occur in hematopoietic stem cells (HSCs) and are detected in more than 80% of patients with myeloproliferative neoplasms (MPNs). They are thought to play a driver role in MPN pathogenesis via autosomal activation of the JAK-STAT signaling cascade. Mutant CALR binds to MPL, activates downstream MPL signaling cascades, and induces essential thrombocythemia in mice. However, embryonic lethality of Calr-deficient mice precludes determination of a role for CALR in hematopoiesis. To clarify the role of CALR in normal hematopoiesis and MPN pathogenesis, we generated hematopoietic cell-specific Calr-deficient mice. CALR deficiency had little effect on the leukocyte count, hemoglobin levels, or platelet count in peripheral blood. However, Calr-deficient mice showed some hematopoietic properties of MPN, including decreased erythropoiesis and increased myeloid progenitor cells in the bone marrow and extramedullary hematopoiesis in the spleen. Transplantation experiments revealed that Calr haploinsufficiency promoted the self-renewal capacity of HSCs. We generated CALRdel52 mutant transgenic mice with Calr haploinsufficiency as a model that mimics human MPN patients and found that Calr haploinsufficiency restored the self-renewal capacity of HSCs damaged by CALR mutations. Only recipient mice transplanted with Lineage-Sca1+c-kit+ cells harboring both CALR mutation and Calr haploinsufficiency developed MPN in competitive conditions, showing that CALR haploinsufficiency was necessary for the onset of CALR-mutated MPNs.
Collapse
Affiliation(s)
- Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Takuro Kameda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Ayako Kamiunten
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Yoshinori Ozono
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Yuki Tahira
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan; and
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Japan
| | - Masaaki Sekine
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Keiichi Akizuki
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Kenichi Nakamura
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Tomonori Hidaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Yoko Kubuki
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Hisayoshi Iwakiri
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Satoru Hasuike
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Kenji Nagata
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kazuya Shimoda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki Japan
| |
Collapse
|
10
|
Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun 2020; 11:73. [PMID: 31911629 PMCID: PMC6946829 DOI: 10.1038/s41467-019-13892-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer development is an evolutionary genomic process with parallels to Darwinian selection. It requires acquisition of multiple somatic mutations that collectively cause a malignant phenotype and continuous clonal evolution is often linked to tumor progression. Here, we show the clonal evolution structure in 15 myelofibrosis (MF) patients while receiving treatment with JAK inhibitors (mean follow-up 3.9 years). Whole-exome sequencing at multiple time points reveal acquisition of somatic mutations and copy number aberrations over time. While JAK inhibition therapy does not seem to create a clear evolutionary bottleneck, we observe a more complex clonal architecture over time, and appearance of unrelated clones. Disease progression associates with increased genetic heterogeneity and gain of RAS/RTK pathway mutations. Clonal diversity results in clone-specific expansion within different myeloid cell lineages. Single-cell genotyping of circulating CD34 + progenitor cells allows the reconstruction of MF phylogeny demonstrating loss of heterozygosity and parallel evolution as recurrent events. Myelofibrosis is a myeloproliferative neoplasm. Here, the authors show the clonal evolution of myelofibrosis during JAK inhibitor therapy, revealing how the treatment results in an increase in clonal complexity and a gain of RAS pathway mutations.
Collapse
|
11
|
Cottin L, Riou J, Orvain C, Ianotto JC, Boyer F, Renard M, Truchan‐Graczyk M, Murati A, Jouanneau‐Courville R, Allangba O, Mansier O, Burroni B, Rousselet MC, Quintin‐Roué I, Martin A, Sadot‐Lebouvier S, Delneste Y, Chrétien J, Hunault‐Berger M, Blanchet O, Lippert E, Ugo V, Luque Paz D. Sequential mutational evaluation of CALR ‐mutated myeloproliferative neoplasms with thrombocytosis reveals an association between CALR allele burden evolution and disease progression. Br J Haematol 2019; 188:935-944. [DOI: 10.1111/bjh.16276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022]
|