1
|
Xin X, Wu D, Zhao P, Li Y, Qin H, Dai J, Zhou Y, Lyu Y, Yang Y, Zhu Y, Shi H, Yang L, Yin L. Catch-to-Amplify Nanoparticles with Bacteria Surface for Sequential Mucosal Immune Activation for Acute Myeloid Leukemia Therapy. ACS NANO 2025; 19:14661-14679. [PMID: 40202129 DOI: 10.1021/acsnano.4c08515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Mucosal-mediated immune deficiency is associated with immune evasion and poor clinical outcomes in acute myeloid leukemia (AML). Here, we describe the elicitation of mucosal and systemic immune response by oral delivery of MDP-modified PEG-lipid (MDP-PEG-DSPE) and polylactic acid-polyhistidine (PLA-PHis) copolymer constructed nanosystem (mPOD) into Peyer's patches. To protect against gastrointestinal degradation, enteric-soluble capsules are utilized for encapsulating mPOD to promote penetration across intestinal mucus and engender robust Peyer's patch targeting initiated by MDP-PEG-DSPE. Compared with intravenous and intramuscular administration, the oral delivery of MDP-PEG-DSPE and 5'-triphosphate-modified RNA (ppp-RNA) into gut-associated lymphoid tissues reinforces dendritic cell maturation and migration, amplifies mucosal immune response, and boosts the production of secretory immunoglobulin A via retinoic acid-inducible gene I/nucleotide-binding oligomerization domain 2 (RIG-I/NOD2) signaling activation. In the AML murine model, the provoked mucosal immunity positively regulates the systemic cytotoxic immune reactions, which, in turn, eradicate disseminated malignant leukemic cells and provide defense against leukemia attacks.
Collapse
MESH Headings
- Animals
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Nanoparticles/chemistry
- Mice
- Immunity, Mucosal/drug effects
- Humans
- Mice, Inbred C57BL
- Polyethylene Glycols/chemistry
Collapse
Affiliation(s)
- Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Pengbo Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Huanyu Qin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinyu Dai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hang Shi
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Naji NS, Sathish M, Karantanos T. Inflammation and Related Signaling Pathways in Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3974. [PMID: 39682161 DOI: 10.3390/cancers16233974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, and inflammatory signaling is involved in its pathogenesis. Cytokines exert a robust effect on the progression of AML and affect survival outcomes. The dysregulation in the cytokine network may foster a pro-tumorigenic microenvironment, increasing leukemic cell proliferation, decreasing survival and driving drug resistance. The dominance of pro-inflammatory mediators such as IL-11β, TNF-α and IL-6 over anti-inflammatory mediators such as TGF-β and IL-10 has been implicated in tumor progression. Additionally, inflammatory cytokines have favored certain populations of hematopoietic stem and progenitor cells with mutated clonal hematopoiesis genes. This article summarizes current knowledge about inflammatory cytokines and signaling pathways in AML, their modes of action and the implications for immune tolerance and clonal hematopoiesis, with the aim of finding potential therapeutic interventions to improve clinical outcomes in AML patients.
Collapse
Affiliation(s)
- Nour Sabiha Naji
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mrudula Sathish
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Theodoros Karantanos
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
El Hussein S, Wang W. Flow Cytometry Profiling of Plasmacytoid Dendritic Cell Neoplasms. Cancers (Basel) 2024; 16:2118. [PMID: 38893237 PMCID: PMC11171351 DOI: 10.3390/cancers16112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
In this review, we aim to provide a summary of the diverse immunophenotypic presentations of distinct entities associated with plasmacytoid dendritic cell (pDC) proliferation. These entities include the following: (1) blastic plasmacytoid dendritic cell neoplasm (BPDCN); (2) mature pDC proliferation (MPDCP), most commonly seen in chronic myelomonocytic leukemia (CMML); and (3) myeloid neoplasms with pDC differentiation, in which pDCs show a spectrum of maturation from early immature pDCs to mature forms, most commonly seen in acute myeloid leukemia (pDC-AML). Our aim is to provide a flow cytometry diagnostic approach to these distinct and sometimes challenging entities and to clarify the immunophenotypic spectrum of neoplastic pDCs in different disease presentations. In this review, we also cover the strategies in the evaluation of residual disease, as well as the challenges and pitfalls we face in the setting of immune and targeted therapy. The differential diagnosis will also be discussed, as blasts in some AML cases can have a pDC-like immunophenotype, mimicking pDCs.
Collapse
Affiliation(s)
- Siba El Hussein
- Department of Pathology, University of Vermont Larner College of Medicine, 111 Colchester Avenue, Burlington, VT 05401, USA
| | - Wei Wang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
4
|
Peng J, He S, Yang X, Huang L, Wei J. Plasmacytoid dendritic cell expansion in myeloid neoplasms: A novel distinct subset of myeloid neoplasm? Crit Rev Oncol Hematol 2023; 192:104186. [PMID: 37863402 DOI: 10.1016/j.critrevonc.2023.104186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific dendritic cell type stemming from the myeloid lineage. Clinically and pathologically, neoplasms associated with pDCs are classified as blastic plasmacytoid dendritic cell neoplasm (BPDCN), mature plasmacytoid dendritic myeloid neoplasm (MPDMN) and pDC expansion in myeloid neoplasms (MNs). BPDCN was considered a rare and aggressive neoplasm in the 2016 World Health Organization (WHO) classification. MPDMN, known as mature pDC-derived neoplasm, is closely related to MNs and was first recognized in the latest 2022 WHO classification, proposing a new concept that acute myeloid leukemia cases could show clonally expanded pDCs (pDC-AML). With the advances in detection techniques, an increasing number of pDC expansion in MNs have been reported, but whether the pathogenesis is similar to that of MPDMN remains unclear. This review focuses on patient characteristics, diagnosis and treatment of pDC expansion in MNs to gain further insight into this novel and unique provisional subtype.
Collapse
Affiliation(s)
- Juan Peng
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Shaolong He
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032 Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
El Hussein S, Loghavi S. Clinical Flow Cytometry Analysis in the Setting of Chronic Myeloid Neoplasms and Clonal Hematopoiesis. Clin Lab Med 2023; 43:411-426. [PMID: 37481320 DOI: 10.1016/j.cll.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The utility of flow cytometry analysis in the evaluation of chronic myeloid neoplasms, such as myelodysplastic neoplasms and chronic myeloproliferative neoplasms, continues to be emphasized and explored. Recently flow cytometry analysis has been also proven to be able to distinguish persistent clonal hematopoiesis from measurable residual disease in patients with acute myeloid leukemia (AML), a finding with potential critical treatment impact in the management of patients with AML.
Collapse
Affiliation(s)
- Siba El Hussein
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Chan A, Kumar P, Gao Q, Baik J, Sigler A, Londono D, Liu Y, Arcila ME, Dogan A, Zhang Y, Roshal M, Xiao W. Abnormal B-lymphoblasts in myelodysplastic syndromes and myeloproliferative neoplasms other than chronic myeloid leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:243-252. [PMID: 34897961 PMCID: PMC10520891 DOI: 10.1002/cyto.b.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Lineage infidelity is characteristic of mixed phenotype acute leukemia and is also seen in blast phase of chronic myeloid leukemia (CML), myeloid/lymphoid neoplasia with eosinophilia and gene rearrangements, and subtypes of acute myeloid leukemia. Driver genetic events often occur in multipotent progenitor cells in myeloid neoplasms, suggesting that multilineage output may be more common than appreciated. This phenomenon is not well studied in myelodysplastic syndrome (MDS) and non-CML myeloproliferative neoplasms (MPN). METHODS We systematically evaluated phenotypic lineage infidelity by reviewing bone marrow pathology and flow cytometry (FC) studies of 1262 consecutive patients with a diagnosis of MDS and/or non-CML MPN. We assessed B- and T-cells in these patients by FC. When abnormal B-lymphoblast (ABLB) populations were detected, we additionally evaluated immature B-cells using a high sensitivity FC assay for B-lymphoblastic leukemia/lymphoma (B-ALL). RESULTS We identified 9 patients (7 MDS, 7/713, 1%; 2 non-CML MPN, 2/312, 0.6%; 0 in MDS/MPN) with low-level ABLB populations (0.012%-3.6% of WBCs in marrow) with abnormal immunophenotypes. Genetic studies on flow sorted cell populations confirmed that some ABLB populations were clonally related to myeloid blasts (4/6, 67%). On follow-up, ABLB populations in 8/9 patients remained stable or disappeared. Only 1 case progressed to B-ALL. CONCLUSIONS These findings demonstrate that phenotypically detectable abnormal immature B lineage output occurs in MDS and non-CML MPN, albeit rarely. While presence of ABLB does not necessarily reflect blast crisis, the underlying disease biology of our findings may ultimately be relevant to patient management and warrants further investigation.
Collapse
Affiliation(s)
- Alexander Chan
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
| | - Priyadarshini Kumar
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
| | - Qi Gao
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
| | - Jeeyeon Baik
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
| | - Allison Sigler
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
| | - Dory Londono
- Department of Pathology, Cytogenetics Laboratory, Memorial
Sloan Kettering Cancer Center
| | - Ying Liu
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
- Department of Pathology, Molecular Diagnostic Laboratory,
Memorial Sloan Kettering Cancer Center
| | - Maria E. Arcila
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
- Department of Pathology, Molecular Diagnostic Laboratory,
Memorial Sloan Kettering Cancer Center
| | - Ahmet Dogan
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
| | - Yanming Zhang
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
- Department of Pathology, Cytogenetics Laboratory, Memorial
Sloan Kettering Cancer Center
| | - Mikhail Roshal
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
| | - Wenbin Xiao
- Department of Pathology, Hematopathology Service, Memorial
Sloan Kettering Cancer Center
| |
Collapse
|
7
|
El Hussein S, Wang W. Plasmacytoid dendritic cells in the setting of myeloid neoplasms: Diagnostic guide to challenging pathologic presentations. Br J Haematol 2023; 200:545-555. [PMID: 36606610 DOI: 10.1111/bjh.18632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
In this article, we describe three broad pathologic presentations of plasmacytoid dendritic cells (pDCs) that may be encountered in clinical practice, in which an association between pDCs and myeloid neoplasms is identified: (1) myeloid neoplasms with mature pDC expansion, most commonly seen in chronic myelomonocytic leukaemia (CMML); (2) myeloid neoplasms with pDC differentiation, in which pDCs show a spectrum of maturation from early immature pDCs to mature forms, most commonly seen in acute myeloid leukaemia (AML); (3) myeloid neoplasms associated with blastic plasmacytoid dendritic cell neoplasm (BPDCN), either stemming from the same precursor or representing an independent clonal process. Additionally, we also discuss AML with pDC-like phenotype, in which myeloblasts show immunophenotypic features that may mimic those seen in pDCs. Using these presentations, we provide a diagnostic algorithm for appropriate pathologic classification, while attempting to clarify and homogenize nomenclatures pertaining to different biologic states of pDCs.
Collapse
Affiliation(s)
- Siba El Hussein
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Chen H, Wu M, Xia H, Du S, Zhou G, Long G, Zhu Y, Huang X, Yang D. FLT3LG and IFITM3P6 consolidate T cell activity in the bone marrow microenvironment and are prognostic factors in acute myelocytic leukemia. Front Immunol 2022; 13:980911. [PMID: 36081495 PMCID: PMC9445253 DOI: 10.3389/fimmu.2022.980911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Acute myelocytic leukemia (AML) is a malignancy of the stem cell precursors of the myeloid lineage. CD4+ and CD8+ T cells play pivotal roles in influencing AML progression but are functionally suppressed in the bone marrow microenvironment. We aimed to find hub genes related to T cell exhaustion and suppression, thereby providing evidence for immunotherapy. In this study, gene transcriptome expression data from TCGA and TARGET databases were utilized to find key genes. Firstly, CIBERSORT immune cell infiltration algorithm and WGCNA method were used to identify CD4+ and CD8+ T cells-related genes. Univariate and multivariate cox regression analyses were then introduced to construct the overall survival prognosis model and included hub genes. The ESTIMATE and ssGSEA scoring methods were used to analyze the correlation between the hub genes and immune activity. Single-cell transcriptome analysis was applied to detect the immune cells expressing hub genes, hence, to detect exact mechanisms. Consequently, FLT3LG and IFITM3P6 were determined to be positively correlated with patients’ overall survival and microenvironment immune activity. Further study suggested FLT3-FLT3LG and IFITM3P6-miR-6748-3p-CBX7 signaling axes were involved in CD4+ and CD8+ T cells activation. This may be one of the mechanisms of T cells suppression in AML.
Collapse
Affiliation(s)
- Haiyan Chen
- Institute for Cancer Research, School of Basic Medical Science of Xi’an Jiaotong University, Xi’an, China
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Songjie Du
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital & The Affifiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Zhu
- Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xu Huang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Daheng Yang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Daheng Yang,
| |
Collapse
|
9
|
Liao H, Yu J, Liu Y, Zhao S, Zhu H, Xu D, Jiang N, Zheng Q. Early T-cell precursor lymphoblastic leukemia accompanied by prominent blastic plasmacytoid dendritic cell proliferation mimicking blastic plasmacytoid dendritic cell neoplasm: an exceptional case report and literature review. J Cancer Res Clin Oncol 2022; 148:2911-2919. [PMID: 35933443 DOI: 10.1007/s00432-022-04238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE Plasmacytoid dendritic cells (pDCs) are commonly associated with myeloid malignancies. The association between lymphoblastic leukemia and pDCs has been little explored. CASE PRESENTATION Here, we report a novel case of early T-cell precursor lymphoblastic leukemia (ETP-ALL) accompanied by prominent proliferation of blastic pDCs mimicking BPDCN. The diagnosis was established based on a comprehensive analysis of morphology, immunophenotype and clinical implications. We also present a literature review and discussion on the differential expression of reactive and neoplastic pDCs, the functional role of pDCs in lymphoblastic leukemia, and the etiological association of normal pDCs and BPDCN. CONCLUSIONS The current case demonstrates for the first time that prominent pDC proliferation can be associated with lymphoid neoplasms and can exhibit blastic morphology and immunophenotype. The underlying mechanism of the coexistence of these two blastic populations remains unknown. Further genetic profiling may be required to denote the progressive development of tumor stem cells to the lymphoid, myeloid or dendritic cell lineage. Moreover, the prognostic value of pDCs in hematological neoplasms needs further investigation.
Collapse
Affiliation(s)
- Hongyan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No 37, Guoxue Xiang, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jiang Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No 37, Guoxue Xiang, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yu Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No 37, Guoxue Xiang, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Huanling Zhu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongsheng Xu
- Hematopathology Program, CBL Path, Rye Brook, NY, USA
| | - Nenggang Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No 37, Guoxue Xiang, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Qin Zheng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No 37, Guoxue Xiang, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Barakos GP, Hatzimichael E. Microenvironmental Features Driving Immune Evasion in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Diseases 2022; 10:diseases10020033. [PMID: 35735633 PMCID: PMC9221594 DOI: 10.3390/diseases10020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow, besides the known functions of hematopoiesis, is an active organ of the immune system, functioning as a sanctuary for several mature immune cells. Moreover, evidence suggests that hematopoietic stem cells (the bone marrow’s functional unit) are capable of directly sensing and responding to an array of exogenous stimuli. This chronic immune stimulation is harmful to normal hematopoietic stem cells, while essential for the propagation of myeloid diseases, which show a dysregulated immune microenvironment. The bone marrow microenvironment in myelodysplastic syndromes (MDS) is characterized by chronic inflammatory activity and immune dysfunction, that drive excessive cellular death and through immune evasion assist in cancer cell expansion. Acute myeloid leukemia (AML) is another example of immune response failure, with features that augment immune evasion and suppression. In this review, we will outline some of the functions of the bone marrow with immunological significance and describe the alterations in the immune landscape of MDS and AML that drive disease progression.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece
- Correspondence:
| |
Collapse
|
11
|
Reduced Plasmacytoid Dendritic Cell Output Is Associated With High Risk in Low-grade Myelodysplastic Syndrome. Hemasphere 2022; 6:e685. [PMID: 35136856 PMCID: PMC8815631 DOI: 10.1097/hs9.0000000000000685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/09/2022] [Indexed: 11/26/2022] Open
|
12
|
Xiao W, Chan A, Waarts MR, Mishra T, Liu Y, Cai SF, Yao J, Gao Q, Bowman RL, Koche RP, Csete IS, DelGaudio NL, Derkach A, Baik J, Yanis S, Famulare CA, Patel M, Arcila ME, Stahl M, Rampal RK, Tallman MS, Zhang Y, Dogan A, Goldberg AD, Roshal M, Levine RL. Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leukemia. Blood 2021; 137:1377-1391. [PMID: 32871587 PMCID: PMC7955409 DOI: 10.1182/blood.2020007897] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the principal natural type I interferon-producing dendritic cells. Neoplastic expansion of pDCs and pDC precursors leads to blastic plasmacytoid dendritic cell neoplasm (BPDCN), and clonal expansion of mature pDCs has been described in chronic myelomonocytic leukemia. The role of pDC expansion in acute myeloid leukemia (AML) is poorly studied. Here, we characterize patients with AML with pDC expansion (pDC-AML), which we observe in ∼5% of AML cases. pDC-AMLs often possess cross-lineage antigen expression and have adverse risk stratification with poor outcome. RUNX1 mutations are the most common somatic alterations in pDC-AML (>70%) and are much more common than in AML without pDC expansion and BPDCN. We demonstrate that pDCs are clonally related to, as well as originate from, leukemic blasts in pDC-AML. We further demonstrate that leukemic blasts from RUNX1-mutated AML upregulate a pDC transcriptional program, poising the cells toward pDC differentiation and expansion. Finally, tagraxofusp, a targeted therapy directed to CD123, reduces leukemic burden and eliminates pDCs in a patient-derived xenograft model. In conclusion, pDC-AML is characterized by a high frequency of RUNX1 mutations and increased expression of a pDC transcriptional program. CD123 targeting represents a potential treatment approach for pDC-AML.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology, Hematopathology Service
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | | | - Michael R Waarts
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | - Tanmay Mishra
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | - Ying Liu
- Department of Pathology, Hematopathology Service
| | - Sheng F Cai
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
- Department of Medicine, Leukemia Service
| | - Jinjuan Yao
- Department of Pathology, Molecular Diagnostic Laboratory
| | - Qi Gao
- Department of Pathology, Hematopathology Service
| | - Robert L Bowman
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | | | - Isabelle S Csete
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | - Nicole L DelGaudio
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | | | - Jeeyeon Baik
- Department of Pathology, Hematopathology Service
| | - Sophia Yanis
- Department of Pathology, Hematopathology Service
| | | | | | - Maria E Arcila
- Department of Pathology, Hematopathology Service
- Department of Pathology, Molecular Diagnostic Laboratory
| | | | - Raajit K Rampal
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
- Department of Medicine, Leukemia Service
| | | | - Yanming Zhang
- Department of Pathology, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Department of Pathology, Hematopathology Service
| | | | | | - Ross L Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
- Department of Medicine, Leukemia Service
- Center for Epigenetics Research
- Center for Hematologic Malignancies, and
| |
Collapse
|
13
|
Abstract
In spite of the recent approval of new promising targeted therapies, the clinical outcome of patients with acute myeloid leukemia (AML) remains suboptimal, prompting the search for additional and synergistic therapeutic rationales. It is increasingly evident that the bone marrow immune environment of AML patients is profoundly altered, contributing to the severity of the disease but also providing several windows of opportunity to prompt or rewire a proficient antitumor immune surveillance. In this Review, we present current evidence on immune defects in AML, discuss the challenges with selective targeting of AML cells, and summarize the clinical results and immunologic insights from studies that are testing the latest immunotherapy approaches to specifically target AML cells (antibodies, cellular therapies) or more broadly reactivate antileukemia immunity (vaccines, checkpoint blockade). Given the complex interactions between AML cells and the many components of their environment, it is reasonable to surmise that the future of immunotherapy in AML lies in the rational combination of complementary immunotherapeutic strategies with chemotherapeutics or other oncogenic pathway inhibitors. Identifying reliable biomarkers of response to improve patient selection and avoid toxicities will be critical in this process.
Collapse
Affiliation(s)
- Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, and
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ivana Gojo
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Knorr DA, Goldberg AD, Stein EM, Tallman MS. Immunotherapy for acute myeloid leukemia: from allogeneic stem cell transplant to novel therapeutics. Leuk Lymphoma 2019; 60:3350-3362. [PMID: 31335250 PMCID: PMC6928392 DOI: 10.1080/10428194.2019.1639167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 12/18/2022]
Abstract
Immunotherapy in the form of allogeneic stem cell transplantation (SCT) plays an instrumental role in the treatment of acute myeloid leukemia (AML), with non-transplant modalities of immunotherapy including checkpoint blockade now being actively explored. Here, we provide an overview of the graft versus leukemia (GVL) effect in AML as a window into understanding the prospects of AML immunotherapy. We explore the roles of various cell types in orchestrating anti-leukemic immunity, as well as those contributing to the unique immune suppressive state of myeloid diseases. We discuss specific approaches to engage the immune system, while noting the challenges of the AML antigen landscape and the barriers to immune modulation. We review the potential for immunomodulatory agents in combination with cellular therapies, donor lymphocyte infusion, and following SCT. Finally, to address the challenge of minimal residual disease (MRD) following chemotherapy, we propose combination epigenetic and immunotherapy for the eradication of MRD.
Collapse
Affiliation(s)
- David A. Knorr
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Aaron D. Goldberg
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan M. Stein
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin S. Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|