1
|
Lum SH, Albert MH, Gilbert P, Sirait T, Algeri M, Muratori R, Fournier B, Laberko A, Karakukcu M, Unal E, Ayas M, Yadav SP, Fisgin T, Elfeky R, Fernandes J, Faraci M, Cole T, Schulz A, Meisel R, Zecca M, Ifversen M, Biffi A, Diana JS, Vallée T, Giardino S, Ersoy GZ, Moshous D, Gennery AR, Balashov D, Bonfim C, Locatelli F, Lankester A, Neven B, Slatter M. Outcomes of HLA-mismatched HSCT with TCRαβ/CD19 depletion or post-HSCT cyclophosphamide for inborn errors of immunity. Blood 2024; 144:565-580. [PMID: 38669631 DOI: 10.1182/blood.2024024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
ABSTRACT HLA-mismatched transplants with either in vitro depletion of CD3+ T-cell receptor (TCR)αβ/CD19 (TCRαβ) cells or in vivo T-cell depletion using posttransplant cyclophosphamide (PTCY) have been increasingly used for patients with inborn errors of immunity (IEIs). We performed a retrospective multicenter study via the EBMT registry on 306 children with IEIs undergoing their first transplant between 2010 and 2019 from an HLA-mismatched donor using TCRαβ (n = 167) or PTCY (n = 139). The median age for hematopoietic stem cell transplantation (HSCT) was 1.2 years (range, 0.03-19.6 years). The 3-year overall survival (OS) was 78% (95% confidence interval (CI), 71-84) after TCRαβ and 66% (57-74) after PTCY (P = .013). Pre-HSCT morbidity score (hazard ratio [HR], 2.27; 1.07-4.80, P = .032) and non-busulfan/treosulfan conditioning (HR, 3.12; 1.98-4.92, P < .001) were the only independent predictors of unfavorable OS. The 3-year event-free survival (EFS) was 58% (50%-66%) after TCRαβ and 57% (48%-66%) after PTCY (P = .804). The cumulative incidence of severe acute graft-versus-host disease (GvHD) was higher after PTCY (15%, 9%-21%) than TCRαβ (6%, 2%-9%, P = .007), with no difference in chronic GvHD (PTCY, 11%, 6%-17%; TCRαβ, 7%, 3%-11%, P = .173). The 3-year GvHD-free EFS was 53% (44%-61%) after TCRαβ and 41% (32%-50%) after PTCY (P = .080). PTCY had significantly higher rates of veno-occlusive disease (14.4% vs TCRαβ 4.9%, P = .009), acute kidney injury (12.7% vs 4.6%, P = .032), and pulmonary complications (38.2% vs 24.1%, P = .017). Adenoviremia (18.3% vs PTCY 8.0%, P = .015), primary graft failure (10% vs 5%, P = .048), and second HSCT (17.4% vs 7.9%, P = .023) were significantly higher in TCRαβ. In conclusion, this study demonstrates that both approaches are suitable options in patients with IEIs, although they are characterized by different advantages and outcomes.
Collapse
Affiliation(s)
- Su Han Lum
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Paediatric Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Mattia Algeri
- Department of Paediatric Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Magna Graecia University, Catanzaro, Italy
| | - Rafaella Muratori
- Pediatric Hematology and Transplantation Unit, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| | - Benjamin Fournier
- Pediatric Immunology, Hematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alexandra Laberko
- Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Musa Karakukcu
- Erciyes University, KANKA Pediatric Hematology/Oncology and BMT Hospital, Kayseri, Turkey
| | - Elrem Unal
- Hasan KALYONCU University and Medicalpoint Hospital, Gaziantep, Turkey
| | - Mouhab Ayas
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Tunc Fisgin
- Pediatric Hematology/Oncology and BMT Unit, Altinbas University Faculty of Medicine Medical Park Bahcelievler Hospital, Istanbul, Turkey
| | - Reem Elfeky
- Department of Paediatric Immunology, Great Ormand Street Children's Hospital, London, United Kingdom
| | - Juliana Fernandes
- Stem Cell Transplantation Unit, ITACI-Instituto da Criança-Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
- Hematology and Stem Cell Transplantation Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Hematology and Stem Cell Transplantation Unit, Hospital 9 de Julho, São Paulo, Brazil
| | | | - Theresa Cole
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Marco Zecca
- Paediatric Haematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women and Child Health Department, University of Padua and Padua University Hospital, Padua, Italy
| | - Jean-Sebastien Diana
- Pediatric Immunology, Hematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Tanja Vallée
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Gizem Zengin Ersoy
- Pediatric Hematology/Oncology and BMT Unit, Altinbas University Faculty of Medicine Medical Park Bahcelievler Hospital, Istanbul, Turkey
| | - Despina Moshous
- Pediatric Immunology, Hematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Paediatric Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Dmitry Balashov
- Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Carmem Bonfim
- Instituto de Pesquisa Pele Pequeno Príncipe/Faculdades Pequeno Príncipe, Pediatric Blood and Marrow Transplantation Service Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Franco Locatelli
- Department of Paediatric Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Arjan Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bénédicte Neven
- Pediatric Immunology, Hematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mary Slatter
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Paediatric Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Goebel GA, de Assis CS, Cunha LAO, Minafra FG, Pinto JA. Survival After Hematopoietic Stem Cell Transplantation in Severe Combined Immunodeficiency (SCID): A Worldwide Review of the Prognostic Variables. Clin Rev Allergy Immunol 2024; 66:192-209. [PMID: 38689103 DOI: 10.1007/s12016-024-08993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
This study aims to perform an extensive review of the literature that evaluates various factors that affect the survival rates of patients with severe combined immunodeficiency (SCID) after hematopoietic stem cell transplantation (HSCT) in developed and developing countries. An extensive search of the literature was made in four different databases (PubMed, Embase, Scopus, and Web of Science). The search was carried out in December 2022 and updated in July 2023, and the terms such as "hematopoietic stem cell transplantation," "bone marrow transplant," "mortality," "opportunistic infections," and "survival" associated with "severe combined immunodeficiency" were sought based on the MeSH terms. The language of the articles was "English," and only articles published from 2000 onwards were selected. Twenty-three articles fulfilled the inclusion criteria for review and data extraction. The data collected corroborates that early HSCT, but above all, HSCT in patients without active infections, is related to better overall survival. The universal implementation of newborn screening for SCID will be a fundamental pillar for enabling most transplants to be carried out in this "ideal scenario" at an early age and free from infection. HSCT with an HLA-identical sibling donor is also associated with better survival rates, but this is the least common scenario. For this reason, transplantation with matched unrelated donors (MUD) and mismatched related donors (mMRD/Haploidentical) appear as alternatives. The results obtained with MUD are improving and show survival rates similar to those of MSD, as well as they do not require manipulation of the graft with expensive technologies. However, they still have high rates of complications after HSCT. Transplants with mMRD/Haplo are performed just in a few large centers because of the high costs of the technology to perform CD3/CD19 depletion and TCRαβ/CD19 depletion or CD34 + selection techniques in vitro. The new possibility of in vivo T cell depletion using post-transplant cyclophosphamide could also be a viable alternative for performing mMRD transplants in centers that do not have this technology, especially in developing countries.
Collapse
Affiliation(s)
- Gabriela Assunção Goebel
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Minas Gerais, Brazil.
| | - Cíntia Silva de Assis
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana Araújo Oliveira Cunha
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Gontijo Minafra
- Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Andrade Pinto
- Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Slatter MA, Maschan MA, Gennery AR. T-lymphocyte depleted transplants for inborn errors of immunity. Expert Rev Clin Immunol 2023; 19:1315-1324. [PMID: 37554030 DOI: 10.1080/1744666x.2023.2245146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation is a curative treatment for many inborn errors of immunity (IEI). Incremental improvements and advances in care have led to high rates of >85% survival and cure in many of these diseases. Improvements in HLA-classification and matching have led to increased survival using HLA-matched donors, but survival using T-lymphocyte-depleted mismatched grafts remained significantly worse until fairly recently. Advances in T-lymphocyte depletion methods and graft engineering, although not specific to IEI, have been widely adopted and instrumental in changing the landscape of donor selection, such that a donor should now be possible for every patient. AREAS COVERED A literature review focusing on T-lymphocyte depletion methodologies and treatment results was performed. The importance of early T-lymphocyte immunoreconstitution to protect against viral infection is reviewed. Two main platforms now dominate the field - immune-magnetic selection of specific cell types and post-transplant chemotherapeutic targeting of rapidly proliferating allo-reactive T-lymphocytes - the emerging literature on these reports, focusing on IEI, is explored, as well as the impact of serotherapy on early immunoreconstitution. EXPERT OPINION Pharmacokinetic monitoring of serotherapy agents, and use of co-stimulatory molecule blockade are likely to become more widespread. Post-transplant cyclophosphamide or TCR depletion strategies are likely to become the dominant methods of transplantation for nonmalignant diseases.
Collapse
Affiliation(s)
- M A Slatter
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - M A Maschan
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Department of Hematology, Oncology and Radiation Therapy, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Inam Z, Tisdale JF, Leonard A. Outcomes and long-term effects of hematopoietic stem cell transplant in sickle cell disease. Expert Rev Hematol 2023; 16:879-903. [PMID: 37800996 DOI: 10.1080/17474086.2023.2268271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplant (HSCT) is the only readily available curative option for sickle cell disease (SCD). Cure rates following human leukocyte antigen (HLA)-matched related donor HSCT with myeloablative or non-myeloablative conditioning are >90%. Alternative donor sources, including haploidentical donor and autologous with gene therapy, expand donor options but are limited by inferior outcomes, limited data, and/or shorter follow-up and therefore remain experimental. AREAS COVERED Outcomes are improving with time, with donor type and conditioning regimens having the greatest impact on long-term complications. Patients with stable donor engraftment do not experience SCD-related symptoms and have stabilization or improvement of end-organ pathology; however, the long-term effects of curative strategies remain to be fully established and have significant implications in a patient's decision to seek therapy. This review covers currently published literature on HSCT outcomes, including organ-specific outcomes implicated in SCD, as well as long-term effects. EXPERT OPINION HSCT, both allogeneic and autologous gene therapy, in the SCD population reverses the sickle phenotype, prevents further organ damage, can resolve prior organ dysfunction in both pediatric and adult patients. Data support greater success with HSCT at a younger age, thus, curative therapies should be discussed early in the patient's life.
Collapse
Affiliation(s)
- Zaina Inam
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Slatter M, Lum SH. Personalized hematopoietic stem cell transplantation for inborn errors of immunity. Front Immunol 2023; 14:1162605. [PMID: 37090739 PMCID: PMC10113466 DOI: 10.3389/fimmu.2023.1162605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Patients with inborn errors of immunity (IEI) have been transplanted for more than 50 years. Many long-term survivors have ongoing medical issues showing the need for further improvements in how hematopoietic stem cell transplantation (HSCT) is performed if patients in the future are to have a normal quality of life. Precise genetic diagnosis enables early treatment before recurrent infection, autoimmunity and organ impairment occur. Newborn screening for severe combined immunodeficiency (SCID) is established in many countries. For newly described disorders the decision to transplant is not straight-forward. Specific biologic therapies are effective for some diseases and can be used as a bridge to HSCT to improve outcome. Developments in reduced toxicity conditioning and methods of T-cell depletion for mismatched donors have made transplant an option for all eligible patients. Further refinements in conditioning plus precise graft composition and additional cellular therapy are emerging as techniques to personalize the approach to HSCT for each patient.
Collapse
Affiliation(s)
- Mary Slatter
- Paediatric Immunology and HSCT, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Su Han Lum
- Paediatric Immunology and HSCT, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Laberko A, Mukhinа A, Machneva E, Pashchenko O, Bykova T, Vahonina L, Bronin G, Skvortsova Y, Skorobogatova E, Kondratenko I, Fechina L, Shcherbina A, Zubarovskaya L, Balashov D, Rumiantsev A. Allogeneic Hematopoietic Stem Cell Transplantation Activity in Inborn Errors of Immunity in Russian Federation. J Clin Immunol 2023:10.1007/s10875-023-01476-w. [PMID: 37009957 PMCID: PMC10068234 DOI: 10.1007/s10875-023-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE Allogeneic hematopoietic stem cell transplantation (HSCT) is an established therapy for many inborn errors of immunity (IEI). The indications for HSCT have expanded over the last decade. The study aimed to collect and analyze the data on HSCT activity in IEI in Russia. METHODS The data were collected from the Russian Primary Immunodeficiency Registry and complemented with information from five Russian pediatric transplant centers. Patients diagnosed with IEI by the age of 18 years and who received allogeneic HSCT by the end of 2020 were included. RESULTS From 1997 to 2020, 454 patients with IEI received 514 allogeneic HSCT. The median number of HSCTs per year has risen from 3 in 1997-2009 to 60 in 2015-2020. The most common groups of IEI were immunodeficiency affecting cellular and humoral immunity (26%), combined immunodeficiency with associated/syndromic features (28%), phagocyte defects (21%), and diseases of immune dysregulation (17%). The distribution of IEI diagnosis has changed: before 2012, the majority (65%) had severe combined immunodeficiency (SCID) and hemophagocytic lymphohistiocytosis (HLH), and after 2012, only 24% had SCID and HLH. Of 513 HSCTs, 48.5% were performed from matched-unrelated, 36.5% from mismatched-related (MMRD), and 15% from matched-related donors. In 349 transplants T-cell depletion was used: 325 TCRαβ/CD19+ depletion, 39 post-transplant cyclophosphamide, and 27 other. The proportion of MMRD has risen over the recent years. CONCLUSION The practice of HSCT in IEI has been changing in Russia. Expanding indications to HSCT and SCID newborn screening implementation may necessitate additional transplant beds for IEI in Russia.
Collapse
Affiliation(s)
- Alexandra Laberko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | - Anna Mukhinа
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Russian National Association of Experts in Primary Immunodeficiency Registry, Moscow, Russia
| | - Elena Machneva
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga Pashchenko
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana Bykova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, St. Petersburg, Russia
| | - Larisa Vahonina
- Sverdlovsk Regional Children's Hospital №1, Institute of Medical Cell Technologies, Yekaterinburg, Russia
| | | | - Yulia Skvortsova
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Skorobogatova
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Irina Kondratenko
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Larisa Fechina
- Sverdlovsk Regional Children's Hospital №1, Institute of Medical Cell Technologies, Yekaterinburg, Russia
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ludmila Zubarovskaya
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, St. Petersburg, Russia
| | - Dmitry Balashov
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander Rumiantsev
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
7
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
8
|
Slatter MA, Gennery AR. Advances in the treatment of severe combined immunodeficiency. Clin Immunol 2022; 242:109084. [DOI: 10.1016/j.clim.2022.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|
9
|
Haploidentical Stem Cell Transplantation for Patients with Sickle Cell Disease: Current Status. Transfus Apher Sci 2022; 61:103534. [DOI: 10.1016/j.transci.2022.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Lima ACM, Bonfim C, Getz J, do Amaral GB, Petterle RR, Loth G, Nabhan SK, de Marco R, Gerbase-DeLima M, Pereira NF, Pasquini R. Untreated Donor-Specific HLA Antibodies Are Associated With Graft Failure and Poor Survival After Haploidentical Transplantation With Post-Transplantation Cyclophosphamide in Pediatric Patients With Nonmalignant Disorders. Transplant Cell Ther 2022; 28:698.e1-698.e11. [DOI: 10.1016/j.jtct.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
|
11
|
Hematopoietic stem cell transplantation for Wiskott-Aldrich syndrome: an EBMT inborn errors working party analysis. Blood 2022; 139:2066-2079. [PMID: 35100336 DOI: 10.1182/blood.2021014687] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment for patients affected by Wiskott-Aldrich syndrome (WAS). Reported HSCT outcomes have improved over time with respect to overall survival, but some studies have identified older age and HSCT from alternative donors as risk factors predicting poorer outcome. We analyzed 197 patients transplanted at EBMT centers between 2006 and 2017, who received conditioning as recommended by the inborn errors working party (IEWP): either busulfan (n=103) or treosulfan (n=94) combined with fludarabine ± thiotepa. After a median follow-up after HSCT of 44.9 months, 176 patients were alive, resulting in a 3-year overall survival of 88.7%, and chronic GVHD-free survival (CRFS; events: death, graft failure, severe chronic GVHD) of 81.7%. Overall survival and CRFS were not significantly impacted by conditioning regimen (busulfan- versus treosulfan-based), donor type (MSD/MFD vs MUD/MMUD vs. MMFD), and period of HSCT (2006-2013 vs. 2014-2017). Patients younger than 5 years at HSCT had a significantly better overall survival. The overall cumulative incidences of grade III-IV acute GVHD and extensive/moderate/severe chronic GVHD were 6.6% and 2.1%, respectively. Patients receiving treosulfan-based conditioning had a higher incidence of graft failure, mixed donor chimerism and more frequently received secondary procedures (2nd HSCT, unconditioned stem cell boost, donor lymphocyte infusion, or splenectomy). In summary, HSCT for WAS with conditioning regimens currently recommended by IEWP results in excellent survival and low rates of GVHD, regardless of donor or stem cell source, but age ≥5 years remains a risk factor for overall survival.
Collapse
|
12
|
Miyamoto S, Umeda K, Kurata M, Yanagimachi M, Iguchi A, Sasahara Y, Okada K, Koike T, Tanoshima R, Ishimura M, Yamada M, Sato M, Takahashi Y, Kajiwara M, Kawaguchi H, Inoue M, Hashii Y, Yabe H, Kato K, Atsuta Y, Imai K, Morio T. Hematopoietic Cell Transplantation for Inborn Errors of Immunity Other than Severe Combined Immunodeficiency in Japan: Retrospective Analysis for 1985-2016. J Clin Immunol 2022; 42:529-545. [PMID: 34981329 DOI: 10.1007/s10875-021-01199-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Hematopoietic cell transplantation (HCT) is a curative therapy for most patients with inborn errors of immunity (IEI). We conducted a nationwide study on HCT for patients with IEI other than severe combined immunodeficiency (non-SCID) in Japan. METHODS Data from the Japanese national database (Transplant Registry Unified Management Program, TRUMP) for 566 patients with non-SCID IEI, who underwent their first HCT between 1985 and 2016, were retrospectively analyzed. RESULTS The 10-year overall survival (OS) and event-free survival (EFS) were 74% and 64%, respectively. The 10-year OS for HCT from unrelated bone marrow (URBM), accounting for 39% of HCTs, was comparable to that for HCT from matched sibling donor (MSD), 79% and 81%, respectively. HCT from unrelated cord blood (URCB), accounting for 28% of HCTs, was also common, with a 10-year OS of 69% but less robust engraftment. The intensity of conditioning was not associated with OS or neutrophil recovery; however, myeloablative conditioning was more frequently associated with infection-related death. Patients who received myeloablative irradiation showed poor OS. Multivariate analyses revealed that HCT in 1985-1995 (hazard ratio [HR], 2.0; P = 0.03), URCB (HR, 2.0; P = 0.01), and related donor other than MSD (ORD) (HR, 2.9; P < 0.001) were associated with poor OS, and URCB (HR, 3.6; P < 0.001) and ORD (HR, 2.7; P = 0.02) showed a higher incidence of retransplantation. CONCLUSIONS We present the 1985-2016 status of HCT for non-SCID IEI in Japan with sufficient statistical power, highlighting the potential of URBM as an alternative donor and the feasibility of reduced intensity conditioning.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
- Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
| | - Katsutsugu Umeda
- Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Mio Kurata
- Japanese Data Center for Hematopoietic Cell Transplantation, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
| | - Masakatsu Yanagimachi
- Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama, Kanagawa, Japan
| | - Akihiro Iguchi
- Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Yoji Sasahara
- Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Keiko Okada
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka, Japan
| | - Takashi Koike
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Maho Sato
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, 840 Murodocho, Izumi, Osaka, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, Japan
| | - Michiko Kajiwara
- Center for Transfusion Medicine and Cell Therapy, Medical Hospital, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Kawaguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Kasumi 1-2-3 Minami-ku, Hiroshima, Japan
| | - Masami Inoue
- Department of Hematology/Oncology, Osaka Women's and Children's Hospital, 840 Murodocho, Izumi, Osaka, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 2-15, Japan
| | - Hiromasa Yabe
- Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Koji Kato
- Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
- Central Japan Cord Blood Bank, 539-3 Minami-Yamaguchi-cho, Aichi Red Cross Blood Center 4F, Seto, Aichi, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, Japan
| | - Kohsuke Imai
- Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan.
- Department of Community Pediatrics, Perinatal, and Maternal Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
- Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, Aichi, Japan
| |
Collapse
|
13
|
Aydin M, Dovern E, Leeflang MMG, de la Fuente J, Kassim AA, Biemond BJ, Nur E. Haploidentical Allogeneic Stem Cell Transplantation in Sickle Cell Disease: A Systematic Review and Meta-Analysis. Transplant Cell Ther 2021; 27:1004.e1-1004.e8. [PMID: 34537420 DOI: 10.1016/j.jtct.2021.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 01/21/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (SCT) is the sole established curative treatment option for patients with sickle cell disease (SCD). However, a lack of HLA-identical sibling donors is a limiting factor. Haploidentical related donors are a promising donor pool, potentially extending SCT as a curative treatment option to a larger group of patients with no other meaningful treatment options for their severe SCD. In the present study, we aimed to systematically review the results of haploidentical SCT in patients with SCD. A comprehensive search was performed in MEDLINE/PubMed and Embase up to May 2021. Data were extracted by 2 reviewers independently, and the Newcastle-Ottawa Quality Assessment Scale was used to assess the quality of the studies. Fourteen studies met our inclusion criteria. To provide an overview of the results of haploidentical SCT, we grouped the studies into myeloablative conditioning versus nonmyeloablative conditioning as well as into in vitro versus in vivo (ie, with post-transplantation cyclophosphamide) T cell depletion with a subgroup meta-analysis of proportions. All the included studies were observational cohort studies. Only 3 of these studies reported data for both matched sibling donor (MSD) SCT and haploidentical SCT. Based on a comparative meta-analysis of the 3 studies that included both haploidentical and MSD transplantation, graft failure was significantly higher in the haploidentical group than in the MSD group (odds ratio, 5.3; 95% confidence interval [CI], 1.0 to 27.6). Overall survival was not significantly different between the groups. A subgroup meta-analysis of the results of haploidentical SCT showed relatively low overall pooled proportions of graft failure (7%; 95% CI, 2% to 20%), acute graft-versus-host disease (GVHD) (4%; 95% CI, 2% to 12%), and chronic GVHD (11%; 95% CI, 7% to 16%). Overall survival (OS) was high in all the included studies (91%; 95% CI, 85% to 94%). Adjustments to the conditioning regimens, robust pretransplantation and post-transplantation T cell depletion, and improved supportive care have resulted in reduced graft failure and improved OS following haploidentical SCT in patients with SCD. We conclude that the safety of haploidentical SCT in SCD patients has improved significantly, and that this should be considered as a curative option in patients with severe SCD.
Collapse
Affiliation(s)
- Mesire Aydin
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elisabeth Dovern
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mariska M G Leeflang
- Department of Public Health, Clinical Epidemiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Josu de la Fuente
- Department of Paediatrics, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom; Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Adetola A Kassim
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bart J Biemond
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands; Department or Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Albert MH, Sirin M, Hoenig M, Hauck F, Schuetz C, Bhattacharyya R, Stepensky P, Jacoby E, Güngör T, Beier R, Schulz A. Salvage HLA-haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide for graft failure in non-malignant disorders. Bone Marrow Transplant 2021; 56:2248-2258. [PMID: 33967276 PMCID: PMC8106764 DOI: 10.1038/s41409-021-01323-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023]
Abstract
Graft failure requires urgent salvage HSCT, but there is no universally accepted approach for this situation. We investigated T-cell replete haploidentical HSCT with post-transplantation cyclophosphamide following serotherapy-based, radiation-free, reduced intensity conditioning in children with non-malignant disorders who had rejected their primary graft. Twelve patients with primary or secondary graft failure received T-cell replete bone marrow grafts from haploidentical donors and post-transplantation cyclophosphamide. The recommended conditioning regimen comprised rituximab 375 mg/m2, alemtuzumab 0.4 mg/kg, fludarabine 150 mg/m2, treosulfan 20-24 g/m2 and cyclophosphamide 29 mg/kg. After a median follow-up of 26 months (7-95), eleven of twelve patients (92%) are alive and well with complete donor chimerism in ten. Neutrophil and platelet engraftment were observed in all patients after a median of 18 days (15-61) and 39 days (15-191), respectively. Acute GVHD grade I was observed in 1/12 patients (8%) and mild chronic GVHD in 1/12 patients (8%). Viral reactivations and disease were frequent complications at 75% and 42%, respectively, but no death from infectious causes occurred. In summary, this retrospective analysis demonstrates that a post-transplantation cyclophosphamide-based HLA-haploidentical salvage HSCT after irradiation-free conditioning results in excellent engraftment and overall survival in children with non-malignant diseases.
Collapse
Affiliation(s)
- Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.
| | - Mehtap Sirin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Manfred Hoenig
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rajat Bhattacharyya
- Haematology Oncology Service, Department of Paediatric subspecialties, KK Women's and Children's Hospital, Bukit Timah, Singapore
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Bone Marrow Transplantation, Hadassah Medical Center, Jerusalem, Israel
| | - Elad Jacoby
- Division of Pediatric Hematology Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tayfun Güngör
- Department of Hematology/Oncology/Immunology, Gene-therapy, and Stem Cell Transplantation, University Children's Hospital Zürich - Eleonore Foundation & Children's Research Center (CRC), Zürich, Switzerland
| | - Rita Beier
- Department of Pediatric Hematology and Oncology, University Duisburg-Essen, Essen, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
15
|
Haploidentical Hematopoietic Cell Transplantation Using Post-transplant Cyclophosphamide for Children with Non-malignant Diseases. J Clin Immunol 2021; 41:1754-1761. [PMID: 34355352 DOI: 10.1007/s10875-021-01113-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
Haploidentical hematopoietic cell transplantation (HCT) is a valuable curative option for children with non-malignant diseases. Haploidentical HCT using post-transplant cyclophosphamide (PTCy) is a readily available option in the absence of an HLA-matched donor. We conducted a retrospective single-center study on the outcome of haploidentical HCT in children with non-malignant diseases. We gathered data from 44 patients underwent HCT in the period 2015 to 2020. The indications for HCT were bone marrow failure, primary immunodeficiency, metabolic disorders, and hemoglobinopathy. Median age at HCT was 4 years (range 0.7-20). The conditioning regimens were myeloablative (n = 17) or reduced intensity (n = 27). After a median follow-up of 20 months (range 4-71), 2-year overall survival was 89% and 2-year GvHD-free relapse-free survival (GRFS) was 66%. Incidence of primary graft failure was 13.6%. Cumulative incidence of grade II-IV acute and moderate/severe chronic GvHD were 20% and 6.4%, respectively. Younger age at HCT (< 4 years) and primary immunodeficiency were significantly associated with better GRFS (p < 0.05). In conclusion, haploidentical HCT using PTCy is feasible and curative in children with non-malignant diseases lacking an HLA-matched donor. Early diagnosis and referral in addition to timely treatment can further improve outcomes.
Collapse
|
16
|
How I Treat: Allogeneic HSCT for adults with Inborn Errors of Immunity. Blood 2021; 138:1666-1676. [PMID: 34077952 DOI: 10.1182/blood.2020008187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Inborn Errors of Immunity (IEI) are rare inherited disorders arising from monogenic germline mutations in genes that regulate the immune system. The majority of IEI are Primary Immunodeficiencies characterised by severe infection often associated with autoimmunity, autoinflammation and/or malignancy. Allogeneic hematopoietic stem cell transplant (HSCT) has been the corrective treatment of choice for many IEI presenting with severe disease in early childhood and experience has made this a successful and comparatively safe treatment in affected children. Early HSCT outcomes in adults were poor, resulting in extremely limited use worldwide. This is changing due to a combination of improved IEI diagnosis to inform patient selection, better understanding of the natural history of specific IEI and improvements in transplant practice. Recently published HSCT outcomes for adults with IEI have been comparable with pediatric data, making HSCT an important option for correction of clinically severe IEI in adulthood. Here we discuss our practice for patient selection, timing of HSCT, donor selection and conditioning, peri- and post HSCT management and our approach to long term follow up. We stress the importance of multidisciplinary involvement in the complex decision-making process that we believe is required for successful outcomes in this rapidly emerging area.
Collapse
|
17
|
Lima ACM, Bonfim C, Getz J, Dornelles LN, do Amaral GB, Petterle RR, Loth G, Nabhan SK, Pereira NF, Pasquini R. The impact of donor-specific anti-human leukocyte antigen antibodies in salvage haploidentical hematopoietic cell transplantation with posttransplant cyclophosphamide in patients with nonmalignant disorders. HLA 2021; 97:493-504. [PMID: 33886161 DOI: 10.1111/tan.14277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022]
Abstract
The presence of donor-specific anti-human leukocyte antigen (HLA) antibodies (DSAs) has been recognized as a major risk factor for graft failure (GF) after haploidentical hematopoietic cell transplantation with posttransplant cyclophosphamide (haplo-PTCy). However, the role of DSAs in salvage haplo-PTCy for rescuing patients with nonmalignant disorders (NMDs) has not yet been reported. The present study retrospectively analyzed 22 patients with NMDs who underwent salvage haplo-PTCy from January 2008 to December 2017. The median age at the time of the rescue haplo-PTCy was 9 years (range, 1-26 years). Median time from the first transplant to second haplo-PTCy was 56 days (range, 37-591 days). Among all patients, six (27.3%) had DSAs, with a median DSA strength (mean fluorescence intensity [MFI]) of 5201 (range, 1412-11,543) in the first DSA testing. In addition, the median DSA MFI was 2672 (range, 832-10,498) before the bone marrow infusion. Overall, GF occurred in 5 (25%) of the 20 assessable patients. Three of four (75%) patients with DSAs experienced GF versus 2 of 16 (12.5%) DSA-negative patients (P = 0.032). The median DSA MFI for patients with GF was 6437 (range, 1412-10,498) versus 1845 (range, 832-2672) for those who engrafted or had early death (P = 0.030). One-year event-free survival was significantly lower in DSA-positive patients than in those without DSAs (16.7% vs. 62.5%, P = 0.002). DSA-negative patients had an acceptable 1-year survival of 62.5%. In conclusion, this study suggests that DSAs may be associated with deleterious outcomes after salvage haplo-PTCy in patients with NMDs.
Collapse
Affiliation(s)
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Complexo Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Joselito Getz
- Immunogenetics Laboratory, Complexo Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Luciana Nasser Dornelles
- Immunogenetics Laboratory, Complexo Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Geovana Borsato do Amaral
- Immunogenetics Laboratory, Complexo Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | | | - Gisele Loth
- Bone Marrow Transplantation Unit, Complexo Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Samir Kanaan Nabhan
- Bone Marrow Transplantation Unit, Complexo Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Noemi Farah Pereira
- Immunogenetics Laboratory, Complexo Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Ricardo Pasquini
- Bone Marrow Transplantation Unit, Complexo Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
18
|
Liszka K, Marschollek P, Gul K, Musial J, Chaber R, Miskiewicz-Bujna J, Mlynarski W, Kalwak K. Successful Salvage Haploidentical Bone Marrow Transplantation in a Child With Hemophagocytic Lymphohistiocytosis, When the Previously Matched Unrelated Donor Tested Positive for SARS-CoV-2 on the Day of Stem Cells Collection. Transplant Proc 2021; 53:2498-2501. [PMID: 34053771 PMCID: PMC8078905 DOI: 10.1016/j.transproceed.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 11/06/2022]
Abstract
The coronavirus disease 2019 pandemic has made us adjust our standards and cope with unpredictable circumstances affecting the whole world, including the medical field. A 2-year-old boy diagnosed with X-linked lymphoproliferative disease type 2 with concomitant positive polymerase chain reaction test for Epstein-Barr virus–DNA was admitted to our transplant ward. His treatment scheme had to be modified at the last moment because of a donor disqualification due to a positive polymerase chain reaction result for severe acute respiratory syndrome coronavirus 2 just before the apheresis. We decided to perform salvage haploidentical bone marrow transplant from the patient's mother because it was the only possible option. Now, in a 5-month observation period after the hematopoietic stem cell transplantation, our patient is in good general condition. His case convinced us to redirect our approach to transplant procedure preparation. Following the European Group of Blood and Marrow Transplantation recommendations, we use cryopreserved apheresis materials to ensure the availability of stem cell products before the start of a conditioning regimen.
Collapse
Affiliation(s)
- Karolina Liszka
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Pawel Marschollek
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Gul
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Jakub Musial
- Department of Pediatric Oncohematology, Medical Faculty University of Rzeszow, Clinical Provincial Hospital No. 2, Rzeszow, Poland
| | - Radoslaw Chaber
- Clinic of Pediatric Oncology and Hematology, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Justyna Miskiewicz-Bujna
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Kalwak
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
19
|
EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant 2021; 56:2052-2062. [PMID: 34226669 PMCID: PMC8410590 DOI: 10.1038/s41409-021-01378-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023]
|
20
|
Abstract
Primary immunodeficiencies (PIDs) are a group of rare inherited disorders of the immune system. Many PIDs are devastating and require a definitive therapy to prevent progressive morbidity and premature mortality. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative for many PIDs, and while advances have resulted in improved outcomes, the procedure still carries a risk of mortality and morbidity from graft failure or graft-versus-host disease (GvHD). Autologous haematopoietic stem cell gene therapy (HSC GT) has the potential to correct genetic defects across haematopoietic lineages without the complications of an allogeneic approach. HSC GT for PID has been in development for the last two decades and the first licensed HSC-GT product for adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is now available. New gene editing technologies have the potential to circumvent some of the problems associated with viral gene-addition. HSC GT for PID shows great promise, but requires a unique approach for each disease and carries risks, notably insertional mutagenesis from gamma-retroviral gene addition approaches and possible off-target toxicities from gene-editing techniques. In this review, we discuss the development of HSC GT for PID and outline the current state of clinical development before discussing future developments in the field.
Collapse
Affiliation(s)
- Thomas A Fox
- University College London (UCL) Institute of Immunity and Transplantation, UCL, London, UK.,Department of Clinical Haematology, UCL Hospitals NHS Foundation Trust, London, UK.,Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK.,Department of Paediatric Immunology, GOS Hospital for Sick Children NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Morris EC. Allogeneic hematopoietic stem cell transplantation in adults with primary immunodeficiency. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:649-660. [PMID: 33275750 PMCID: PMC7727582 DOI: 10.1182/hematology.2020000152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With recent advances in genetic sequencing and its widespread adoption for clinical diagnostics, the identification of a primary immunodeficiency (PID) as the underlying cause of diseases presenting to hematologists including refractory autoimmunity, cytopenias, immune dysregulation, and hematologic malignancy, is increasing, particularly in the adult population. Where the pathogenic genetic variants are restricted to the hematopoietic system, selected patients may benefit from allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although it is generally accepted that early allo-HSCT (ie, in infancy or childhood) for PID is preferable, this is not always possible. The clinical phenotype of non-severe combined immune deficiency forms of PID can be very heterogeneous, in part because of the high number of genetic and functional defects affecting T, B, and natural killer cells, neutrophils, and/or antigen presentation. As a result, some patients have less severe disease manifestations in childhood and/or a later de novo presentation. For others, a delayed diagnosis, lack of a genetic diagnosis, or a previous lack of a suitable donor has precluded prior allo-HSCT. Specific issues which make transplantation for adult PID patients particularly challenging are discussed, including understanding the natural history of rare diseases and predicting outcome with conservative management alone; indications for and optimal timing of transplant; donor selection; conditioning regimens; and PID-specific transplant management. The role of gene therapy approaches as an alternative to allo-HSCT in high-risk monogenic PID is also discussed.
Collapse
Affiliation(s)
- Emma C Morris
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
22
|
Lum SH, Sobh A, Carruthers K, Nademi Z, Watson H, McNaughton P, Selvarajah S, Deyà-Martínez A, Abinun M, Flood T, Cant A, Hambleton S, Gennery AR, Slatter M. Improved survival and graft function in ex vivo T-cell depleted haploidentical hematopoietic cell transplantation for primary immunodeficiency. Bone Marrow Transplant 2020; 56:1200-1204. [PMID: 33235352 DOI: 10.1038/s41409-020-01152-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Su Han Lum
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK. .,Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Ali Sobh
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kay Carruthers
- Newcastle Cellular Therapies Facility, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Zohreh Nademi
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Watson
- Blood Sciences, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Peter McNaughton
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sabeena Selvarajah
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Angela Deyà-Martínez
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mario Abinun
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Terry Flood
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew Cant
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sophie Hambleton
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mary Slatter
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Gennery AR. The challenges presented by haematopoietic stem cell transplantation in children with primary immunodeficiency. Br Med Bull 2020; 135:4-15. [PMID: 32676650 DOI: 10.1093/bmb/ldaa017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION OR BACKGROUND For many primary immunodeficiencies (PIDs), haematopoietic stem cell transplantation (HSCT) offers treatment to cure disease. However, patients with PID present a unique set of challenges when considering HSCT. SOURCES OF DATA Review of recent literature. AREAS OF AGREEMENT The most significant recent impact on successful outcome is introduction of newborn screening programmes for diagnosis of severe combined immunodeficiency-wider adoption of screening in an increasing number of countries will see further improvements. Other PIDs have better outcomes when treated earlier, before development of co-morbidities-early referral for consideration of HSCT is important. Evolution of conditioning regimens is improving short- and long-term toxicities-targeted busulfan and low-toxicity myeloablative treosulfan regimens deliver good survival with reduced short-term toxicities. AREAS OF CONTROVERSY The most radical development, still in clinical trials, is the use of mono-antibody-based conditioning, which eliminates the requirement for chemotherapy and is likely to become much more important in HSCT for non-malignant disease in the future. GROWING POINTS Multidisciplinary working for optimum care is essential. AREAS TIMELY FOR DEVELOPING RESEARCH International collaborations are important to learn about rare presentations and complications, and to formulate the most effective and safe treatment strategies.
Collapse
Affiliation(s)
- A R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne NE1 4LP, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
24
|
Holzer U, Döring M, Eichholz T, Ebinger M, Queudeville M, Turkiewicz D, Schwarz K, Handgretinger R, Lang P, Toporski J. Matched versus Haploidentical Hematopoietic Stem Cell Transplantation as Treatment Options for Primary Immunodeficiencies in Children. Transplant Cell Ther 2020; 27:71.e1-71.e12. [PMID: 32966882 DOI: 10.1016/j.bbmt.2020.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Primary immunodeficiencies (PIDs) are inherited disorders of the immune system with allogeneic hematopoietic stem cell transplantation (HSCT) as the only curative treatment in some of them. In case an HLA-matched donor is not available, HSCT from a haploidentical family donor may be considered. We compared the outcomes of HSCT from HLA-matched unrelated or related donors (MUDs or MRDs) and mismatched related haploidentical donors (MMRDs) in patients with a variety of PIDs in 2 centers. A total of 44 pediatric patients were evaluated. We reviewed the outcomes of 25 children who underwent transplantation with HLA-matched grafts (MRD, n = 13; MUD, n = 12) and 19 patients receiving haploidentical stem cells. Bone marrow (BM) was transplanted in 85% (MRD) and 75% (MUD) of the matched cohort and peripheral blood stem cells (PBSCs) in 15% (MRD), 25% (MUD), and 100% (MMRD). All but 9 patients (MRD, n = 6; MMRD, n = 3) with severe combined immunodeficiency (SCID) received a chemotherapy-based conditioning regimen. Immune reconstitution of T, B, and natural killer cells was comparable for all groups with an advantage of recipients of MRD grafts in early CD4 reconstitution. However, deaths due to viral infections occurred more often in the haploidentical cohort. The disease-free survival was 91.7% (MRD), 66.7% (MUD), and 62.7% (MMRD), respectively. Grade II to IV acute graft-versus-host disease (GVHD) occurred in 15% (MRD), 8% (MUD), and 21% (MMRD) of the patients. Only 1 patient had severe grade IV GVHD in the MRD group, whereas no grade >II GVHD was observed in the MUD or MMRD cohort. These data indicate that in the absence of a suitable HLA-identical family donor, haploidentical HSCT may be a viable option for patients with life-threatening disease and urgent need of HSCT.
Collapse
Affiliation(s)
- Ursula Holzer
- Children's Hospital, University of Tübingen, Tübingen, Germany.
| | - Michaela Döring
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Thomas Eichholz
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | | | | | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | | | - Peter Lang
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Jacek Toporski
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
25
|
Even-Or E, NaserEddin A, Dinur Schejter Y, Shadur B, Zaidman I, Stepensky P. Haploidentical stem cell transplantation with post-transplant cyclophosphamide for osteopetrosis and other nonmalignant diseases. Bone Marrow Transplant 2020; 56:434-441. [PMID: 32855443 PMCID: PMC7450679 DOI: 10.1038/s41409-020-01040-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is curative for a variety of nonmalignant disorders including osteopetrosis, bone marrow failures, and immune deficiencies. Haploidentical HSCT is a readily available option in the absence of a matched donor, but engraftment failure and other post-transplant complications are a concern. Post-transplant cyclophosphamide (PT-Cy) regimens are gaining popularity and recent reports show promising results. We report our experience with nine pediatric patients with nonmalignant diseases who were transplanted from a haploidentical donor with PT-Cy. From 2015 to 2019, nine children with nonmalignant diseases underwent haploidentical HSCT with PT-Cy, two as a second transplant and seven as primary grafts after upfront serotherapy and busulfan-based myeloablative conditioning. Patient’s diseases included osteopetrosis (n = 5), congenital amegakaryocytic thrombocytopenia (n = 2), hemophagocytic lymphohistiocytosis (n = 1), and Wiskott Aldrich syndrome (n = 1). Two patients failed to engraft following upfront PT-Cy transplants, one was salvaged with a second PT-Cy transplant, and the other with a CD34+ selected graft. None of the patients suffered from graft-versus-host disease. Three patients died from early posttransplant infectious complications and six patients are alive and well. In conclusion, haploidentical HSCT with PT-Cy is a feasible option for pediatric patients with nonmalignant diseases lacking a matched donor.
Collapse
Affiliation(s)
- Ehud Even-Or
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Adeeb NaserEddin
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yael Dinur Schejter
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bella Shadur
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Department of Immunology, Graduate Research School, Garvan Institute of Medical Research and University of New South Wales, Sydney, New South Wales, Australia
| | - Irina Zaidman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
26
|
Lum SH, Slatter MA. Malignancy post-hematopoietic stem cell transplant in patients with primary immunodeficiency. Expert Rev Clin Immunol 2020; 16:493-511. [PMID: 32441164 DOI: 10.1080/1744666x.2020.1763792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Hematopoietic cell transplantation (HCT) is a curative treatment for an expanding number of primary immunodeficiencies (PIDs). Malignancies are more common in patients with PID than in the general population, and this review will discuss whether a successful HCT is expected to abolish or alter this risk. Second malignancy post HCT for a malignant disease is well known to occur, but generally less expected in patients transplanted for PID. AREAS COVERED This article reviews recently published literature focusing on the pattern of malignancy in children with PID, incidence, and risk factors for developing malignancy post-HCT for PID and possible strategies to reduce the risks. EXPERT OPINION Survival post HCT for PID has improved dramatically in the last 20 years and the genomic revolution has led to an expanding number of indications. To improve long-term quality of life attention needs to focus on late effects, including the possibility of malignancy occurring more frequently than expected in the general population, understand the risks and improve the process of transplantation in order to minimize them. Further studies are needed.
Collapse
Affiliation(s)
- Su Han Lum
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne, UK.,Department of Paediatrics, Leiden University Medical Centre , Leiden, The Netherlands
| | - Mary A Slatter
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne, UK.,Translational & Clinical Research Institute, Newcastle University , Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Mallhi KK, Srikanthan MA, Baker KK, Frangoul HA, Torgerson TR, Petrovic A, Geddis AE, Carpenter PA, Baker KS, Sandmaier BM, Thakar MS, Skoda-Smith S, Kiem HP, Storb R, Woolfrey AE, Burroughs LM. HLA-Haploidentical Hematopoietic Cell Transplantation for Treatment of Nonmalignant Diseases Using Nonmyeloablative Conditioning and Post-Transplant Cyclophosphamide. Biol Blood Marrow Transplant 2020; 26:1332-1341. [PMID: 32234377 DOI: 10.1016/j.bbmt.2020.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/25/2023]
Abstract
Allogeneic hematopoietic cell transplant (HCT) is often the only curative therapy for patients with nonmalignant diseases; however, many patients do not have an HLA-matched donor. Historically, poor survival has been seen after HLA-haploidentical HCT because of poor immune reconstitution, increased infections, graft-versus-host disease (GVHD), and graft failure. Encouraging results have been reported using a nonmyeloablative T cell-replete HLA-haploidentical transplant approach in patients with hematologic malignancies. Here we report the outcomes of 23 patients with various nonmalignant diseases using a similar approach. Patients received HLA-haploidentical bone marrow (n = 17) or granulocyte colony-stimulating factor-mobilized peripheral blood stem cell (n = 6) grafts after conditioning with cyclophosphamide 50 mg/kg, fludarabine 150 mg/m2, and 2 or 4 Gy total body irradiation. Postgrafting immunosuppression consisted of cyclophosphamide, mycophenolate mofetil, tacrolimus, ± sirolimus. Median patient age at HCT was 10.8 years. Day 100 transplant-related mortality (TRM) was 0%. Two patients died at later time points, 1 from intracranial hemorrhage/disseminated fungal infection in the setting of graft failure and 1 from infection/GVHD. The estimated probabilities of grades II to IV and III to IV acute GVHD at day 100 and 2-year National Institutes of Health consensus chronic GVHD were 78%, 26%, and 42%, respectively. With a median follow-up of 2.5 years, the 2-year overall and event-free rates of survival were 91% and 78%, respectively. These results are encouraging and demonstrate favorable disease-specific lineage engraftment with low TRM in patients with nonmalignant diseases using nonmyeloablative conditioning followed by T cell-replete HLA-haploidentical grafts. However, additional strategies are needed for GVHD prevention to make this a viable treatment approach for patients with nonmalignant diseases.
Collapse
Affiliation(s)
- Kanwaldeep K Mallhi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, Washington
| | - Meera A Srikanthan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, Washington
| | - Kelsey K Baker
- Clinical Biostatistics, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Haydar A Frangoul
- Children's Hospital at TriStar Centennial and Sarah Cannon Research Institute, Nashville, Tennessee
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Immunology, Seattle Children's Hospital, Seattle, Washington
| | - Aleksandra Petrovic
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Immunology, Seattle Children's Hospital, Seattle, Washington
| | - Amy E Geddis
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, Washington
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, Washington
| | - K Scott Baker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, Washington
| | - Brenda M Sandmaier
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Monica S Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, Washington
| | - Suzanne Skoda-Smith
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Immunology, Seattle Children's Hospital, Seattle, Washington
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Rainer Storb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Ann E Woolfrey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, Washington
| | - Lauri M Burroughs
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, Washington.
| |
Collapse
|
28
|
Gluckman E, Fuente JDL, Cappelli B, Scigliuolo GM, Volt F, Tozatto-Maio K, Rocha V, Tommaso M, O’Boyle F, Smiers F, Cunha-Riehm CBD, Calore E, Bonanomi S, Graphakos S, Paisiou A, Albert MH, Ruggeri A, Zecca M, Lankester AC, Corbacioglu S. The role of HLA matching in unrelated donor hematopoietic stem cell transplantation for sickle cell disease in Europe. Bone Marrow Transplant 2020; 55:1946-1954. [DOI: 10.1038/s41409-020-0847-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
|
29
|
Mismatched related vs matched unrelated donors in TCRαβ/CD19-depleted HSCT for primary immunodeficiencies. Blood 2020; 134:1755-1763. [PMID: 31558465 DOI: 10.1182/blood.2019001757] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/28/2019] [Indexed: 11/20/2022] Open
Abstract
TCRαβ+/CD19+ graft depletion effectively prevents graft-versus-host disease (GVHD). In the current study, we compared the outcomes of hematopoietic stem cell transplantation (HSCT) with TCRαβ+/CD19+ depletion from matched unrelated donors (MUDs) and mismatched related donors (MMRDs) in patients with primary immunodeficiency (PID). A total of 98 pediatric patients with various PIDs underwent HSCT with TCRαβ+/CD19+ graft depletion from MUDs (n = 75) and MMRDs (n = 23). All patients received a fludarabine-/treosulfan-based conditioning regimen, with 73 also receiving a second alkylating agent. For GVHD prophylaxis, all but 2 received serotherapy (antithymocyte globulin) before HSCT and a short course of posttransplant immunosuppression. Neutrophil and platelet engraftment in both the MUD and MMRD groups occurred on days 14 and 13, respectively. The incidence of secondary graft failure was 0.16 and 0.17 (P = .85), respectively. The cumulative incidence of acute GVHD grade 2 to 4 was 0.17 in the MUD group and 0.22 in the MMRD group (P = .7). The incidence of cytomegalovirus (CMV) viremia was 0.5 in the MUD group and 0.6 in the MMRD group (P = .35). The frequency of CMV disease was high (17%), and the most common manifestation was retinitis. The kinetics of immune recovery was similar in both groups. The overall survival was 0.86 in the MUD group and 0.87 in the MMRD group (P = .95). In our experience, there was no difference in the outcomes of HSCT performed from MUD and MMRD. Hence, given the immediate availability of donors, in the absence of HLA-identical siblings, HSCT with TCRαβ+/CD19+ graft depletion from MMRDs can be considered as the first choice in patients with PID.
Collapse
|
30
|
Dimitrova D, Gea-Banacloche J, Steinberg SM, Sadler JL, Hicks SN, Carroll E, Wilder JS, Parta M, Skeffington L, Hughes TE, Blau JE, Broadney MM, Rose JJ, Hsu AP, Fletcher R, Nunes NS, Yan XY, Telford WG, Kapoor V, Cohen JI, Freeman AF, Garabedian E, Holland SM, Lisco A, Malech HL, Notarangelo LD, Sereti I, Shah NN, Uzel G, Zerbe CS, Fowler DH, Gress RE, Kanakry CG, Kanakry JA. Prospective Study of a Novel, Radiation-Free, Reduced-Intensity Bone Marrow Transplantation Platform for Primary Immunodeficiency Diseases. Biol Blood Marrow Transplant 2020; 26:94-106. [PMID: 31493539 PMCID: PMC6942248 DOI: 10.1016/j.bbmt.2019.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Allogeneic blood or marrow transplantation (BMT) is a potentially curative therapy for patients with primary immunodeficiency (PID). Safe and effective reduced-intensity conditioning (RIC) approaches that are associated with low toxicity, use alternative donors, and afford good immune reconstitution are needed to advance the field. Twenty PID patients, ranging in age from 4 to 58 years, were treated on a prospective clinical trial of a novel, radiation-free and serotherapy-free RIC, T-cell-replete BMT approach using pentostatin, low-dose cyclophosphamide, and busulfan for conditioning with post-transplantation cyclophosphamide-based graft-versus-host-disease (GVHD) prophylaxis. This was a high-risk cohort with a median hematopoietic cell transplantation comorbidity index of 3. With median follow-up of survivors of 1.9 years, 1-year overall survival was 90% and grade III to IV acute GVHD-free, graft-failure-free survival was 80% at day +180. Graft failure incidence was 10%. Split chimerism was frequently observed at early post-BMT timepoints, with a lower percentage of donor T cells, which gradually increased by day +60. The cumulative incidences of grade II to IV and grade III to IV acute GVHD (aGVHD) were 15% and 5%, respectively. All aGVHD was steroid responsive. No patients developed chronic GVHD. Few significant organ toxicities were observed. Evidence of phenotype reversal was observed for all engrafted patients, even those with significantly mixed chimerism (n = 2) or with unknown underlying genetic defect (n = 3). All 6 patients with pre-BMT malignancies or lymphoproliferative disorders remain in remission. Most patients have discontinued immunoglobulin replacement. All survivors are off immunosuppression for GVHD prophylaxis or treatment. This novel RIC BMT approach for patients with PID has yielded promising results, even for high-risk patients.
Collapse
Affiliation(s)
- Dimana Dimitrova
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Seth M Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Sadler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie N Hicks
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ellen Carroll
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer S Wilder
- Clinical Research Directorate/Clinical Monitoring Research Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland
| | - Mark Parta
- Clinical Research Directorate/Clinical Monitoring Research Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland
| | - Lauren Skeffington
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas E Hughes
- National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Jenny E Blau
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Miranda M Broadney
- Section on Growth and Obesity, Program in Endocrinology, Metabolism and Genetics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Jeremy J Rose
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Rochelle Fletcher
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalia S Nunes
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xiao-Yi Yan
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William G Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Garabedian
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Daniel H Fowler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christopher G Kanakry
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer A Kanakry
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
31
|
Neven B, Ferrua F. Hematopoietic Stem Cell Transplantation for Combined Immunodeficiencies, on Behalf of IEWP-EBMT. Front Pediatr 2019; 7:552. [PMID: 32039114 PMCID: PMC6992555 DOI: 10.3389/fped.2019.00552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Combined immunodeficiencies (CIDs) are a clinically and genetically heterogeneous group of primary immunodeficiencies (PIDs) that affect T-lymphocyte immunity with abnormal development or function. As compared to severe combined immune deficiencies (SCID), these patients are usually diagnosed later. They display a broad infectious susceptibility; immune dysregulation manifestations and chronic lymphoproliferation are also frequent. These complications and their specific treatments can lead to persistent damage to several organs. Prognosis of CIDs is worse as compared to other PIDs. The curative treatment is usually hematopoietic stem cell transplantation (HSCT), but difficult questions remain regarding the definitive indication of HSCT and its timing; the final decision depends on a conjunction of factors such as immunological parameters, severity of clinical manifestations, and natural history of the disease, when molecular diagnosis is known. CD40L deficiency, a CID caused by mutations in CD40LG gene, well illustrates the dilemma between HSCT vs. long-term supportive treatment. This disease leads to higher risk of developing infections from bacterial and intracellular pathogens, especially Pneumocystis and Cryptosporidium spp. While supportive care allows improved survival during childhood, organ damages may develop with increasing age, mainly chronic lung disease and biliary tract disease (secondary to Cryptosporidium spp. infection) that may evolve later to sclerosing cholangitis, a severe complication associated with increased mortality. Early HSCT before organ damage development is associated with best survival and cure rate, while HSCT remains a risky therapeutic option for older patients, for those with organ damage, especially severe liver disease, and/or for those with limited or no donor availability. Prospective studies are needed to analyze risks of HSCT compared to those of life-long supportive therapy, including quality of life measures.
Collapse
Affiliation(s)
- Benedicte Neven
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1163 and Imagine Institute, Paris, France
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
32
|
Morris EC, Albert MH. Allogeneic HSCT in Adolescents and Young Adults With Primary Immunodeficiencies. Front Pediatr 2019; 7:437. [PMID: 31709207 PMCID: PMC6821713 DOI: 10.3389/fped.2019.00437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/07/2019] [Indexed: 01/20/2023] Open
Abstract
Significant advances in hematopoietic transplantation over the past 20 years, have facilitated the safe transplantation of older adults with higher co-morbidities. In pediatric practice these advances have simultaneously improved outcomes for sicker children with complex, rare diseases including the primary immunodeficiencies, PID. With more widespread adoption of genetic sequencing, older patients with disease-causing mutations restricted to the hematopoietic system can be identified who may benefit from allogeneic hematopoietic stem cell transplantation (Allo-HSCT). Here we discuss the evidence for Allo-HSCT in adolescent and younger adults (AYAs) with PID.
Collapse
Affiliation(s)
- Emma C Morris
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,University College London Hospital and Royal Free London Hospitals, London, United Kingdom
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|