1
|
Liu YF, Li F, Xu CY, Chen Y, Tu WP, Huang C. SETDB1 recruits CBX3 to regulate the SIRT4/PTEN axis, inhibiting autophagy and promoting ischemia-reperfusion-induced kidney injury. FASEB J 2025; 39:e70509. [PMID: 40197868 DOI: 10.1096/fj.202403024r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Ischemia-reperfusion (I/R) injury is a significant factor in the development of acute kidney injury (AKI), particularly in clinical scenarios, such as kidney transplantation, cardiac surgery, and severe hypotension. Autophagy, a critical process that eliminates damaged cellular components, has been shown to mitigate I/R injury by reducing oxidative stress and enhancing cell survival. However, when autophagy is disrupted, it can exacerbate kidney damage. Elucidating the role of autophagy in I/R injury is essential for uncovering the molecular mechanisms driving AKI and could facilitate the development of autophagy-based therapies. Protein expression levels were analyzed through western blot, immunohistochemistry (IHC), and immunofluorescence (IF) staining techniques. Interactions between SIRT4, SETDB1, and CBX3 were explored using chromatin immunoprecipitation (ChIP), sequential ChIP (ChIP-reChIP), and co-immunoprecipitation (Co-IP) assays. The association between SIRT4 and PTEN was also examined via Co-IP. Transmission electron microscopy (TEM) was employed to visualize autophagosomes. Furthermore, an in vivo rat model of I/R injury was developed for validation of the findings. Sirtuin 4 (SIRT4) expression was reduced, and autophagy was impaired during I/R injury. Moreover, SIRT4 interacted with phosphatase and tensin homolog (PTEN) to regulate its expression. Furthermore, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) mediated histone H3 lysine 9 trimethylation (H3K9me3) modifications and recruited chromobox protein homolog 3 (CBX3) to the SIRT4 promoter, leading to the repression of SIRT4 expression in kidney proximal tubular cells. Importantly, SETDB1 knockdown upregulated SIRT4, decreased PTEN expression, promoted autophagy, and protected rats against I/R injury in vivo. SETDB1 recruits CBX3 to regulate the SIRT4/PTEN axis, inhibiting autophagy and promoting I/R-induced kidney injury. These results suggest that targeting the SETDB1-SIRT4 axis could offer a novel therapeutic strategy to mitigate renal damage in I/R-induced AKI.
Collapse
Affiliation(s)
- Yuan-Fei Liu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fan Li
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Cheng-Yun Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei-Ping Tu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Chong Huang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Pan BS, Lin CY, Lee GA, Lin HK. Targeting SETDB1 in cancer and immune regulation: Potential therapeutic strategies in cancer. Kaohsiung J Med Sci 2025; 41:e12933. [PMID: 39764697 DOI: 10.1002/kjm2.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 03/12/2025] Open
Abstract
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion. This is achieved through the repression of anti-tumor immune cell production, ERV silencing, and interference with the type I interferon pathway leading to inhibiting immune checkpoint blockade (ICB) efficacy. Beyond its immunological implications, SETDB1 overexpression fosters tumor growth and metastasis via transcriptional silencing of tumor suppressor genes through histone regulation and activating oncogenic signaling by non-histone regulation. These multifaceted roles make SETDB1 an attractive epigenetic target for novel cancer therapies. This review explores SETDB1's dual function in immune regulation and tumor progression, emphasizing its potential in the development of innovative cancer treatments targeting epigenetic dysregulation and oncogenic signaling.
Collapse
Affiliation(s)
- Bo-Syong Pan
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Cheng-Yu Lin
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Gilbert Aaron Lee
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hui-Kuan Lin
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Huang G, Cai X, Li D. Significance of targeting DNMT3A mutations in AML. Ann Hematol 2025; 104:1399-1414. [PMID: 39078434 PMCID: PMC12031811 DOI: 10.1007/s00277-024-05885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of leukemia among adults, characterized by aggressive behavior and significant genetic diversity. Despite decades of reliance on conventional chemotherapy as the mainstay treatment, patients often struggle with achieving remission, experience rapid relapses, and have limited survival prospects. While intensified induction chemotherapy and allogeneic stem cell transplantation have enhanced patient outcomes, these benefits are largely confined to younger AML patients capable of tolerating intensive treatments. DNMT3A, a crucial enzyme responsible for establishing de novo DNA methylation, plays a pivotal role in maintaining the delicate balance between hematopoietic stem cell differentiation and self-renewal, thereby influencing gene expression programs through epigenetic regulation. DNMT3A mutations are the most frequently observed genetic abnormalities in AML, predominantly in older patients, occurring in approximately 20-30% of adult AML cases and over 30% of AML with a normal karyotype. Consequently, the molecular underpinnings and potential therapeutic targets of DNMT3A mutations in AML are currently being thoroughly investigated. This article provides a comprehensive summary and the latest insights into the structure and function of DNMT3A, examines the impact of DNMT3A mutations on the progression and prognosis of AML, and explores potential therapeutic approaches for AML patients harboring DNMT3A mutations.
Collapse
MESH Headings
- Humans
- DNA Methyltransferase 3A
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/drug therapy
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Mutation
- DNA Methylation
- Epigenesis, Genetic
- Molecular Targeted Therapy
- Gene Expression Regulation, Leukemic
- Prognosis
Collapse
Affiliation(s)
- Guiqin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoya Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
de Groot AP, Nguyen H, Pouw JS, Weersing E, Dethmers-Ausema A, de Haan G. CBX7 inhibitors affect H3K9 methyltransferase-regulated gene repression in leukemic cells. Exp Hematol 2025; 142:104691. [PMID: 39613290 DOI: 10.1016/j.exphem.2024.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The epigenome of leukemic cells is dysregulated, and genes required for cell cycle arrest and differentiation may become repressed, which contributes to the accumulation of undifferentiated malignant blood cells. Here, we show that the Polycomb group protein CBX7 can interact with H3K9 methyltransferases EHMT1/2 and SETDB1. We aimed to assess whether combined interfering with these H3K9 methyltransferases and CBX7 could derepress target genes and thereby induce growth arrest of leukemic cells. We found that pharmacologic inhibition of CBX7 abolishes the interaction of CBX7 with EHMT1/2 and SETDB1 and subsequently reduces H3K9 methylation levels which reactivates target gene expression. Reversely, upon pharmacologic inhibition of H3K9 methyltransferases, CBX7 can take over gene repression. Finally, we found that combined inhibition of CBX7 and EHMT1/2 or SETDB1 had additive effects on reducing cell growth and inducing differentiation. However, we did not detect changes in epigenetic modifications, nor target gene derepression, after combination treatment. In contrast, CBX7 inhibitors alone did affect both Polycomb-associated H2Aub-mediated gene repression as well as H3K9 methyltransferase activity. Therefore, we suggest that CBX7 is a promising therapeutic target in leukemia, as its inhibition can reactivate Polycomb and H3K9 methyltransferase target gene expression.
Collapse
Affiliation(s)
- Anne P de Groot
- European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, The Netherlands; Sanquin Research, Amsterdam, the Netherlands
| | - Huong Nguyen
- European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, The Netherlands
| | | | - Ellen Weersing
- European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, The Netherlands
| | - Albertina Dethmers-Ausema
- European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, The Netherlands
| | - Gerald de Haan
- European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, The Netherlands; Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
de Groot AP, de Haan G. How CBX proteins regulate normal and leukemic blood cells. FEBS Lett 2024; 598:2788-2806. [PMID: 38426219 PMCID: PMC11586599 DOI: 10.1002/1873-3468.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Hematopoietic stem cell (HSC) fate decisions are dictated by epigenetic landscapes. The Polycomb Repressive Complex 1 (PRC1) represses genes that induce differentiation, thereby maintaining HSC self-renewal. Depending on which chromobox (CBX) protein (CBX2, CBX4, CBX6, CBX7, or CBX8) is part of the PRC1 complex, HSC fate decisions differ. Here, we review how this occurs. We describe how CBX proteins dictate age-related changes in HSCs and stimulate oncogenic HSC fate decisions, either as canonical PRC1 members or by alternative interactions, including non-epigenetic regulation. CBX2, CBX7, and CBX8 enhance leukemia progression. To target, reprogram, and kill leukemic cells, we suggest and describe multiple therapeutic strategies to interfere with the epigenetic functions of oncogenic CBX proteins. Future studies should clarify to what extent the non-epigenetic function of cytoplasmic CBX proteins is important for normal, aged, and leukemic blood cells.
Collapse
Affiliation(s)
- Anne P. de Groot
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
| | - Gerald de Haan
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
- Department of Hematology, Amsterdam UMCUniversity of AmsterdamThe Netherlands
| |
Collapse
|
6
|
Gold S, Shilatifard A. Epigenetic therapies targeting histone lysine methylation: complex mechanisms and clinical challenges. J Clin Invest 2024; 134:e183391. [PMID: 39403928 PMCID: PMC11473148 DOI: 10.1172/jci183391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
As epigenetic therapies continue to gain ground as potential treatment strategies for cancer and other diseases, compounds that target histone lysine methylation and the enzyme complexes represent a major frontier for therapeutic development. Clinically viable therapies targeting the activities of histone lysine methyltransferases (HKMT) and demethylases (HKDMs) have only recently begun to emerge following FDA approval of the EZH2 inhibitor tazemetostat in 2020 and remain limited to compounds targeting the well-studied SET domain-containing HKMTs and their opposing HKDMs. These include the H3K27 methyltransferases EZH2/EZH1, the singular H3K79 methyltransferase DOT1L, and the H3K4 methyltransferase MLL1/COMPASS as well as H3K9 and H3K36 methyltransferases. They additionally include the H3K4/9-preferential demethylase LSD1 and the H3K4-, H3K27-, and H3K36-preferential KDM5, KDM6, and KDM2 demethylase subfamilies, respectively. This Review discusses the results of recent clinical and preclinical studies relevant to all of these existing and potential therapies. It provides an update on advancements in therapeutic development, as well as more basic molecular understanding, within the past 5 years approximately. It also offers a perspective on histone lysine methylation that departs from the long-predominant "histone code" metaphor, emphasizing complex-disrupting inhibitors and proximity-based approaches rather than catalytic domain inhibitors in the outlook for future therapeutic development.
Collapse
|
7
|
Lin Z, Cai W, Sun Y, Han B, Hu Y, Huang S, Li J, Chen X. Implications of ITCH-mediated ubiquitination of SIX1 on CDC27-cyclinB1 signaling in nasopharyngeal carcinoma. Sci Rep 2024; 14:24140. [PMID: 39406717 PMCID: PMC11480102 DOI: 10.1038/s41598-024-73239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) presents a significant medical challenge due to its high incidence rate and poor prognosis, which are attributed primarily to tumor metastasis and drug resistance. Sine oculis homeobox homolog 1 (SIX1) has been identified as a crucial target for cancer treatment. However, its role in NPC remains incompletely understood. This study investigated the mechanisms by which the degradation of the SIX1 protein, which is mediated by ubiquitin, affects the malignant characteristics of NPC throughout the cell cycle. Our findings reveal that reduced expression of the itchy E3 ubiquitin ligase E3 (ITCH) in NPC impedes the degradation of the SIX1 protein, leading to enhance oncogenic properties. Knockdown experiments which SIX1 was inhibited demonstrated a decrease in the proliferation, migration, and invasion of NPC cell lines, whereas overexpression of SIX1 yielded the opposite effects. Further experimental validation revealed that SIX1 promotes NPC progression via the cell division cycle 27 (CDC27)/cyclin B1 axis. These findings provide valuable insights into potential therapeutic targets and prognostic indicators for NPC treatment, emphasizing the ITCH/SIX1/CDC27/cyclin B1 axis as a promising target for novel therapies.
Collapse
Affiliation(s)
- Zehua Lin
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Weisong Cai
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuechen Sun
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Baoai Han
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yifan Hu
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Shuo Huang
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Jun Li
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Xiong Chen
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
8
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
9
|
Prashanth S, Radha Maniswami R, Rajajeyabalachandran G, Jegatheesan SK. SETDB1, an H3K9-specific methyltransferase: An attractive epigenetic target to combat cancer. Drug Discov Today 2024; 29:103982. [PMID: 38614159 DOI: 10.1016/j.drudis.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) is an important epigenetic regulator catalyzing histone H3 lysine 9 (H3K9) methylation, specifically di-/tri-methylation. This regulation promotes gene silencing through heterochromatin formation. Aberrant SETDB1 expression, and its oncogenic role is evident in many cancers. Thus, SETDB1 is a valid target with novel therapeutic benefits. In this review, we explore the structural and biochemical features of SETDB1, its regulatory mechanisms, and its role in various cancers. We also discuss recent discoveries in small molecules targeting SETDB1 and provide suggestions for future research.
Collapse
Affiliation(s)
- Seema Prashanth
- Informatics, AI & ML, Jubilant Biosys Ltd., Bangalore, India
| | | | | | | |
Collapse
|
10
|
Ma T, Xu F, Hou Y, Shu Y, Zhao Z, Zhang Y, Bai L, Feng L, Zhong L. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research. Bioorg Chem 2024; 145:107219. [PMID: 38377821 DOI: 10.1016/j.bioorg.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Feifei Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yingying Hou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yongquan Shu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yaru Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
11
|
Luo H, Wu X, Zhu XH, Yi X, Du D, Jiang DS. The functions of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) in biological process and disease. Epigenetics Chromatin 2023; 16:47. [PMID: 38057834 PMCID: PMC10702034 DOI: 10.1186/s13072-023-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023] Open
Abstract
Histone methyltransferase SETDB1 (SET domain bifurcated histone lysine methyltransferase 1, also known as ESET or KMT1E) is known to be involved in the deposition of the di- and tri-methyl marks on H3K9 (H3K9me2 and H3K9me3), which are associated with transcription repression. SETDB1 exerts an essential role in the silencing of endogenous retroviruses (ERVs) in embryonic stem cells (mESCs) by tri-methylating H3K9 (H3K9me3) and interacting with DNA methyltransferases (DNMTs). Additionally, SETDB1 is engaged in regulating multiple biological processes and diseases, such as ageing, tumors, and inflammatory bowel disease (IBD), by methylating both histones and non-histone proteins. In this review, we provide an overview of the complex biology of SETDB1, review the upstream regulatory mechanisms of SETDB1 and its partners, discuss the functions and molecular mechanisms of SETDB1 in cell fate determination and stem cell, as well as in tumors and other diseases. Finally, we discuss the current challenges and prospects of targeting SETDB1 for the treatment of different diseases, and we also suggest some future research directions in the field of SETDB1 research.
Collapse
Affiliation(s)
- Hanshen Luo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Xingliang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dunfeng Du
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
12
|
She X, Wu Q, Rao Z, Song D, Huang C, Feng S, Liu A, Liu L, Wan K, Li X, Yu C, Qiu C, Luo X, Hu J, Wang G, Xu F, Sun L. SETDB1 Methylates MCT1 Promoting Tumor Progression by Enhancing the Lactate Shuttle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301871. [PMID: 37541664 PMCID: PMC10558670 DOI: 10.1002/advs.202301871] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/07/2023] [Indexed: 08/06/2023]
Abstract
MCT1 is a critical protein found in monocarboxylate transporters that plays a significant role in regulating the lactate shuttle. However, the post-transcriptional modifications that regulate MCT1 are not clearly identified. In this study, it is reported that SETDB1 interacts with MCT1, leading to its stabilization. These findings reveal a novel post-translational modification of MCT1, in which SETDB1 methylation occurs at K473 in vitro and in vivo. This methylation inhibits the interaction between MCT1 and Tollip, which blocks Tollip-mediated autophagic degradation of MCT1. Furthermore, MCT1 K473 tri-methylation promotes tumor glycolysis and M2-like polarization of tumor-associated macrophages in colorectal cancer (CRC), which enhances the lactate shuttle. In clinical studies, MCT1 K473 tri-methylation is found to be upregulated and positively correlated with tumor progression and overall survival in CRC. This discovery suggests that SETDB1-mediated tri-methylation at K473 is a vital regulatory mechanism for lactate shuttle and tumor progression. Additionally, MCT1 K473 methylation may be a potential prognostic biomarker and promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Xiaowei She
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Qi Wu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Zejun Rao
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Da Song
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Changsheng Huang
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Shengjie Feng
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Anyi Liu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Lang Liu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Kairui Wan
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xun Li
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Chengxin Yu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Cheng Qiu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xuelai Luo
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Junbo Hu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Guihua Wang
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
- Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseaseHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
| | - Feng Xu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Li Sun
- Department of OncologyTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
13
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
14
|
Zhao Z, Feng L, Peng X, Ma T, Tong R, Zhong L. Role of histone methyltransferase SETDB1 in regulation of tumourigenesis and immune response. Front Pharmacol 2022; 13:1073713. [PMID: 36582533 PMCID: PMC9793902 DOI: 10.3389/fphar.2022.1073713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic alterations are implicated in tumour immune evasion and immune checkpoint blockade (ICB) resistance. SET domain bifurcated histone methyltransferase 1 (SETDB1) is a histone lysine methyltransferase that catalyses histone H3K9 di- and tri-methylation on euchromatin, and growing evidence indicates that SETDB1 amplification and abnormal activation are significantly correlated with the unfavourable prognosis of multiple malignant tumours and contribute to tumourigenesis and progression, immune evasion and ICB resistance. The main underlying mechanism is H3K9me3 deposition by SETDB1 on tumour-suppressive genes, retrotransposons, and immune genes. SETDB1 targeting is a promising approach to cancer therapy, particularly immunotherapy, because of its regulatory effects on endogenous retroviruses. However, SETDB1-targeted therapy remains challenging due to potential side effects and the lack of antagonists with high selectivity and potency. Here, we review the role of SETDB1 in tumourigenesis and immune regulation and present the current challenges and future perspectives of SETDB1 targeted therapy.
Collapse
Affiliation(s)
- Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xuerun Peng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lei Zhong,
| |
Collapse
|
15
|
Chu S, Avery A, Yoshimoto J, Bryan JN. Genome wide exploration of the methylome in aggressive B-cell lymphoma in Golden Retrievers reveals a conserved hypermethylome. Epigenetics 2022; 17:2022-2038. [PMID: 35912844 PMCID: PMC9665123 DOI: 10.1080/15592294.2022.2105033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few recurrent DNA mutations are seen in aggressive canine B cell lymphomas (cBCL), suggesting other frequent drivers. The methylated island recovery assay (MIRA-seq) or methylated CpG-binding domain sequencing (MBD-seq) was used to define the genome-wide methylation profiles in aggressive cBCL in Golden Retrievers to determine if cBCL can be better defined by epigenetic changes than by DNA mutations. DNA hypermethylation patterns were relatively homogenous within cBCL samples in Golden Retrievers, in different breeds and in geographical regions. Aberrant hypermethylation is thus suspected to be a central and early event in cBCL lymphomagenesis. Distinct subgroups within cBCL in Golden Retrievers were not identified with DNA methylation profiles. In comparison, the methylome profile of human DLBCL (hDLBCL) is relatively heterogeneous. Only moderate similarity between hDLBCL and cBCL was seen and cBCL likely cannot be accurately classified into the subtypes seen in hDLBCL. Genes with hypermethylated regions in the promoter-TSS-first exon of cBCL compared to normal B cells often also had additional hyper- and hypomethylated regions distributed throughout the gene suggesting non-randomized repeat targeting of key genes by epigenetic mechanisms. The prevalence of hypermethylation in transcription factor families in aggressive cBCL may represent a fundamental step in lymphomagenesis.
Collapse
Affiliation(s)
- Shirley Chu
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| | - Anne Avery
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| |
Collapse
|
16
|
Lin J, Guo D, Liu H, Zhou W, Wang C, Müller I, Kossenkov AV, Drapkin R, Bitler BG, Helin K, Zhang R. The SETDB1-TRIM28 Complex Suppresses Antitumor Immunity. Cancer Immunol Res 2021; 9:1413-1424. [PMID: 34848497 DOI: 10.1158/2326-6066.cir-21-0754] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
The tumor immune microenvironment is influenced by the epigenetic landscape of the tumor. Here, we have identified the SETDB1-TRIM28 complex as a critical suppressor of antitumor immunity. An epigenetic CRISPR-Cas9 screen of 1,218 chromatin regulators identified TRIM28 as a suppressor of PD-L1 expression. We then revealed that expression of the SETDB1-TRIM28 complex negatively correlated with infiltration of effector CD8+ T cells. Inhibition of SETDB1-TRIM28 simultaneously upregulated PD-L1 and activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway to increase infiltration of CD8+ T cells. Mechanistically, SETDB1-TRIM28 inhibition led to micronuclei formation in the cytoplasm, which is known to activate the cGAS-STING pathway. Thus, SETDB1-TRIM28 inhibition bridges innate and adaptive immunity. Indeed, SETDB1 knockout enhanced the antitumor effects of immune checkpoint blockade with anti-PD-L1 in a mouse model of ovarian cancer in a cGAS-dependent manner. Our findings establish the SETDB1-TRIM28 complex as a regulator of antitumor immunity and demonstrate that its loss activates cGAS-STING innate immunity to boost the antitumor effects of immune checkpoint blockade.
Collapse
Affiliation(s)
- Jianhuang Lin
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dajiang Guo
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Chen Wang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Iris Müller
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Andrew V Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, Colorado
| | - Kristian Helin
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Markouli M, Strepkos D, Piperi C. Structure, Activity and Function of the SETDB1 Protein Methyltransferase. Life (Basel) 2021; 11:life11080817. [PMID: 34440561 PMCID: PMC8397983 DOI: 10.3390/life11080817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) is a prominent member of the Suppressor of Variegation 3–9 (SUV39)-related protein lysine methyltransferases (PKMTs), comprising three isoforms that differ in length and domain composition. SETDB1 is widely expressed in human tissues, methylating Histone 3 lysine 9 (H3K9) residues, promoting chromatin compaction and exerting negative regulation on gene expression. SETDB1 has a central role in normal physiology and nervous system development, having been implicated in the regulation of cell cycle progression, inactivation of the X chromosome, immune cells function, expression of retroelements and formation of promyelocytic leukemia (PML) nuclear bodies (NB). SETDB1 has been frequently deregulated in carcinogenesis, being implicated in the pathogenesis of gliomas, melanomas, as well as in lung, breast, gastrointestinal and ovarian tumors, where it mainly exerts an oncogenic role. Aberrant activity of SETDB1 has also been implicated in several neuropsychiatric, cardiovascular and gastrointestinal diseases, including schizophrenia, Huntington’s disease, congenital heart defects and inflammatory bowel disease. Herein, we provide an update on the unique structural and biochemical features of SETDB1 that contribute to its regulation, as well as its molecular and cellular impact in normal physiology and disease with potential therapeutic options.
Collapse
|
18
|
A KDM4A-PAF1-mediated epigenomic network is essential for acute myeloid leukemia cell self-renewal and survival. Cell Death Dis 2021; 12:573. [PMID: 34083515 PMCID: PMC8175737 DOI: 10.1038/s41419-021-03738-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Epigenomic dysregulation is a common pathological feature in human hematological malignancies. H3K9me3 emerges as an important epigenomic marker in acute myeloid leukemia (AML). Its associated methyltransferases, such as SETDB1, suppress AML leukemogenesis, whilst H3K9me3 demethylases KDM4C is required for mixed-lineage leukemia rearranged AML. However, the specific role and molecular mechanism of action of another member of the KDM4 family, KDM4A has not previously been clearly defined. In this study, we delineated and functionally validated the epigenomic network regulated by KDM4A. We show that selective loss of KDM4A is sufficient to induce apoptosis in a broad spectrum of human AML cells. This detrimental phenotype results from a global accumulation of H3K9me3 and H3K27me3 at KDM4A targeted genomic loci thereby causing downregulation of a KDM4A-PAF1 controlled transcriptional program essential for leukemogenesis, distinct from that of KDM4C. From this regulatory network, we further extracted a KDM4A-9 gene signature enriched with leukemia stem cell activity; the KDM4A-9 score alone or in combination with the known LSC17 score, effectively stratifies high-risk AML patients. Together, these results establish the essential and unique role of KDM4A for AML self-renewal and survival, supporting further investigation of KDM4A and its targets as a potential therapeutic vulnerability in AML.
Collapse
|
19
|
Lazaro-Camp VJ, Salari K, Meng X, Yang S. SETDB1 in cancer: overexpression and its therapeutic implications. Am J Cancer Res 2021; 11:1803-1827. [PMID: 34094655 PMCID: PMC8167684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023] Open
Abstract
SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1, ESET, KMT1E) is a H3K9 methyltransferase involved in gene silencing. In recent years, SETDB1 has been implicated as an oncogene in various cancers, highlighting a critical need to better understand the mechanisms underlying SETDB1 amplification, overexpression, and activation. In the following review, we first examine the history of SETDB1, starting from its discovery in 1999 and ending with recent findings. We follow with an outline of the structure and subcellular location of SETDB1, as well as potential mechanisms for regulation of its nuclear transport. Subsequently, we introduce SETDB1's various functions, including its roles in promyelocytic leukemia nuclear body (PML-NB) formation, the methylation and activation of Akt, the silencing of the androgen receptor (AR) gene, retroelement silencing, the inhibition of tumor suppressor p53, and its role in promoting intestinal differentiation and survival. The Cancer Cell Line Encyclopedia (CCLE) screened SETDB1 dependency in 796 cancer cell lines, identifying SETDB1 as a common essential gene in 531 of them, demonstrating that SETDB1 expression is critical for the survival of the majority of cancers. Therefore, we provide a detailed review of the oncogenic effects of SETDB1 overexpression in breast cancer, non-small cell lung cancer, prostate cancer, colorectal cancer, acute myeloid leukemia, glioma, melanoma, pancreatic ductal adenocarcinoma, liver cancer, nasopharyngeal carcinoma, gastric carcinoma, and endometrial cancer. Accordingly, we review several methods that have been used to target SETDB1, such as using Mithramycin A, Mithralog EC-8042, 3'-deazaneplanocin A (DZNep), and paclitaxel. Finally, we conclude by highlighting remaining gaps in knowledge and challenges surrounding SETDB1. Ultimately, our review captures the wide scope of findings on SETDB1's history, function, its implications in cancer, and provides suggestions for future research in the field.
Collapse
Affiliation(s)
- Vanessa J Lazaro-Camp
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
| | - Kiarash Salari
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
| | - Xiangbing Meng
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of IowaIA, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of IowaIA, USA
| |
Collapse
|
20
|
Mitsiogianni M, Anestopoulos I, Kyriakou S, Trafalis DT, Franco R, Pappa A, Panayiotidis MI. Benzyl and phenethyl isothiocyanates as promising epigenetic drug compounds by modulating histone acetylation and methylation marks in malignant melanoma. Invest New Drugs 2021; 39:1460-1468. [PMID: 33963962 DOI: 10.1007/s10637-021-01127-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022]
Abstract
Melanoma is an aggressive skin cancer with increasing incidence rates globally. On the other hand, isothiocyanates are derived from cruciferous vegetables and are known to exert a wide range of anti-cancer activities including, among others, their ability to interact with the epigenome in order to supress cancer progression. The aim of this study was to determine the role of phenethyl and benzyl isothiocyanates in modulating histone acetylation and methylation as a potential epigenetic therapeutic strategy in an in vitro model of malignant melanoma. We report that both isothiocyanates induced cytotoxicity and influenced acetylation and methylation status of specific lysine residues on histones H3 and H4 by modulating the expression of various histone acetyltransferases, deacetylases and methyltransferases in malignant melanoma cells. Our data highlight novel insights on the interaction of isothiocyanates with components of the histone regulatory machinery in order to exert their anti-cancer action in malignant melanoma.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Clinical Pharmacology Unit, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK. .,Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus. .,The Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
21
|
Mosquera Orgueira A, Cid López M, Peleteiro Raíndo A, Díaz Arias JÁ, Antelo Rodríguez B, Bao Pérez L, Alonso Vence N, Bendaña López Á, Abuin Blanco A, Melero Valentín P, Ferreiro Ferro R, Aliste Santos C, Fraga Rodríguez MF, González Pérez MS, Pérez Encinas MM, Bello López JL. Detection of Rare Germline Variants in the Genomes of Patients with B-Cell Neoplasms. Cancers (Basel) 2021; 13:cancers13061340. [PMID: 33809641 PMCID: PMC8001490 DOI: 10.3390/cancers13061340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The global importance of rare variants in tumorigenesis has been addressed by some pan-cancer analysis, revealing significant enrichments in protein-truncating variants affecting genes such as ATM, BRCA1/2, BRIP1, and MSH6. Germline variants can influence treatment response and contribute to the development of treatment-related second neoplasms, especially in childhood leukemia. We aimed to analyze the genomes of patients with B-cell lymphoproliferative disorders for the discovery of genes enriched in rare pathogenic variants. We discovered a significant enrichment for two genes in germline rare and dysfunctional variants. Additionally, we detected rare and likely pathogenic variants associated with disease prognosis and potential druggability, indicating a relevant role of these events in the variability of cancer phenotypes. Abstract There is growing evidence indicating the implication of germline variation in cancer predisposition and prognostication. Here, we describe an analysis of likely disruptive rare variants across the genomes of 726 patients with B-cell lymphoid neoplasms. We discovered a significant enrichment for two genes in rare dysfunctional variants, both of which participate in the regulation of oxidative stress pathways (CHMP6 and GSTA4). Additionally, we detected 1675 likely disrupting variants in genes associated with cancer, of which 44.75% were novel events and 7.88% were protein-truncating variants. Among these, the most frequently affected genes were ATM, BIRC6, CLTCL1A, and TSC2. Homozygous or germline double-hit variants were detected in 28 cases, and coexisting somatic events were observed in 17 patients, some of which affected key lymphoma drivers such as ATM, KMT2D, and MYC. Finally, we observed that variants in six different genes were independently associated with shorter survival in CLL. Our study results support an important role for rare germline variation in the pathogenesis and prognosis of B-cell lymphoid neoplasms.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-981-950-191
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - José Ángel Díaz Arias
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Laura Bao Pérez
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Ángeles Bendaña López
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Aitor Abuin Blanco
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Paula Melero Valentín
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Roi Ferreiro Ferro
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Carlos Aliste Santos
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Máximo Francisco Fraga Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
- Department of Medicine, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Marta Sonia González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
| | - Manuel Mateo Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Pathology, SERGAS, 15706 Santiago de Compostela, Spain;
| | - José Luis Bello López
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.L.); (A.P.R.); (J.Á.D.A.); (B.A.R.); (N.A.V.); (Á.B.L.); (M.F.F.R.); (M.S.G.P.); (M.M.P.E.); (J.L.B.L.)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Department of Hematology, SERGAS, 15706 Santiago de Compostela, Spain; (L.B.P.); (A.A.B.); (P.M.V.); (R.F.F.)
- Department of Medicine, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
22
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
23
|
Abshiru NA, Sikora JW, Camarillo JM, Morris JA, Compton PD, Lee T, Neelamraju Y, Haddox S, Sheridan C, Carroll M, Cripe LD, Tallman MS, Paietta EM, Melnick AM, Thomas PM, Garrett-Bakelman FE, Kelleher NL. Targeted detection and quantitation of histone modifications from 1,000 cells. PLoS One 2020; 15:e0240829. [PMID: 33104722 PMCID: PMC7588077 DOI: 10.1371/journal.pone.0240829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/02/2020] [Indexed: 01/30/2023] Open
Abstract
Histone post-translational modifications (PTMs) create a powerful regulatory mechanism for maintaining chromosomal integrity in cells. Histone acetylation and methylation, the most widely studied histone PTMs, act in concert with chromatin-associated proteins to control access to genetic information during transcription. Alterations in cellular histone PTMs have been linked to disease states and have crucial biomarker and therapeutic potential. Traditional bottom-up mass spectrometry of histones requires large numbers of cells, typically one million or more. However, for some cell subtype-specific studies, it is difficult or impossible to obtain such large numbers of cells and quantification of rare histone PTMs is often unachievable. An established targeted LC-MS/MS method was used to quantify the abundance of histone PTMs from cell lines and primary human specimens. Sample preparation was modified by omitting nuclear isolation and reducing the rounds of histone derivatization to improve detection of histone peptides down to 1,000 cells. In the current study, we developed and validated a quantitative LC-MS/MS approach tailored for a targeted histone assay of 75 histone peptides with as few as 10,000 cells. Furthermore, we were able to detect and quantify 61 histone peptides from just 1,000 primary human stem cells. Detection of 37 histone peptides was possible from 1,000 acute myeloid leukemia patient cells. We anticipate that this revised method can be used in many applications where achieving large cell numbers is challenging, including rare human cell populations.
Collapse
Affiliation(s)
- Nebiyu A. Abshiru
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States of America
| | - Jacek W. Sikora
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States of America
| | - Jeannie M. Camarillo
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States of America
| | - Juliette A. Morris
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States of America
| | - Philip D. Compton
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States of America
| | - Tak Lee
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Yaseswini Neelamraju
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States of America
| | - Samuel Haddox
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States of America
| | - Caroline Sheridan
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Larry D. Cripe
- Indiana University/Melvin and Bren Simon Cancer Center, Indianapolis, IN, United States of America
| | - Martin S. Tallman
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | | | - Ari M. Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Paul M. Thomas
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States of America
| | - Francine E. Garrett-Bakelman
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States of America
- Division of Hematology/Medical Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, United States of America
- * E-mail: (FEGB); (NLK)
| | - Neil L. Kelleher
- Departments of Chemistry, Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States of America
- * E-mail: (FEGB); (NLK)
| |
Collapse
|
24
|
Han S, Zhen W, Guo T, Zou J, Li F. SETDB1 promotes glioblastoma growth via CSF-1-dependent macrophage recruitment by activating the AKT/mTOR signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:218. [PMID: 33059737 PMCID: PMC7560339 DOI: 10.1186/s13046-020-01730-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Background Glioblastoma is a common disease of the central nervous system (CNS), with high morbidity and mortality. In the infiltrate in the tumor microenvironment, tumor-associated macrophages (TAMs) are abundant, which are important factors in glioblastoma progression. However, the exact details of TAMs in glioblastoma progression have yet to be determined. Methods The clinical relevance of SET domain bifurcated 1 (SETDB1) was analyzed by immunohistochemistry, real-time PCR and Western blotting of glioblastoma tissues. SETDB1-induced cell proliferation, migration and invasion were investigated by CCK-8 assay, colony formation assay, wound healing and Transwell assay. The relationship between SETDB1 and colony stimulating factor 1 (CSF-1), as well as TAMs recruitment was examined by Western blotting, real-time PCR and syngeneic mouse model. Results Our findings showed that SETDB1 upregulated in glioblastoma and relative to poor progression. Gain and loss of function approaches showed the SETDB1 overexpression promotes cell proliferation, migration and invasion in glioblastoma cells. However, knockdown SETDB1 exerted opposite effects in vitro. Moreover, SETDB1 promotes AKT/mTOR-dependent CSF-1 induction and secretion, which leads to macrophage recruitment in the tumor, resulted in tumor growth. Conclusion Our research clarified that SETDB1 regulates of tumor microenvironment and hence presents a potential therapeutic target for treating glioblastoma.
Collapse
Affiliation(s)
- Shuai Han
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Zhen
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Tongqi Guo
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Jianjun Zou
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Fuyong Li
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China.
| |
Collapse
|
25
|
SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia. Oncogene 2020; 39:7239-7252. [PMID: 33037410 PMCID: PMC7728597 DOI: 10.1038/s41388-020-01495-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic regulations play crucial roles in leukemogenesis and leukemia progression. SUV39H1 is the dominant H3K9 methyltransferase in the hematopoietic system, and its expression declines with aging. However, the role of SUV39H1 via its-mediated repressive modification H3K9me3 in leukemogenesis/leukemia progression remains to be explored. We found that SUV39H1 was down-regulated in a variety of leukemias, including MLL-r AML, as compared with normal individuals. Decreased levels of Suv39h1 expression and genomic H3K9me3 occupancy were observed in LSCs from MLL-r-induced AML mouse models in comparison with that of hematopoietic stem/progenitor cells. Suv39h1 overexpression increased leukemia latency and decreased the frequency of LSCs in MLL-r AML mouse models, while Suv39h1 knockdown accelerated disease progression with increased number of LSCs. Increased Suv39h1 expression led to the inactivation of Hoxb13 and Six1, as well as reversion of Hoxa9/Meis1 downstream target genes, which in turn decelerated leukemia progression. Interestingly, Hoxb13 expression is up-regulated in MLL-AF9-induced AML cells, while knockdown of Hoxb13 in MLL-AF9 leukemic cells significantly prolonged the survival of leukemic mice with reduced LSC frequencies. Our data revealed that SUV39H1 functions as a tumor suppressor in MLL-AF9-induced AML progression. These findings provide the direct link of SUV39H1 to AML development and progression.
Collapse
|
26
|
Wong NHM, So CWE. Novel therapeutic strategies for MLL-rearranged leukemias. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194584. [PMID: 32534041 DOI: 10.1016/j.bbagrm.2020.194584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/18/2022]
Abstract
MLL rearrangement is one of the key drivers and generally regarded as an independent poor prognostic marker in acute leukemias. The standard of care for MLL-rearranged (MLL-r) leukemias has remained largely unchanged for the past 50 years despite unsatisfying clinical outcomes, so there is an urgent need for novel therapeutic strategies. An increasing body of evidence demonstrates that a vast number of epigenetic regulators are directly or indirectly involved in MLL-r leukemia, and they are responsible for supporting the aberrant gene expression program mediated by MLL-fusions. Unlike genetic mutations, epigenetic modifications can be reversed by pharmacologic targeting of the responsible epigenetic regulators. This leads to significant interest in developing epigenetic therapies for MLL-r leukemia. Intriguingly, many of the epigenetic enzymes also involve in DNA damage response (DDR), which can be potential targets for synthetic lethality-induced therapies. In this review, we will summarize some of the recent advances in the development of epigenetic and DDR therapeutics by targeting epigenetic regulators or protein complexes that mediate MLL-r leukemia gene expression program and key players in DDR that safeguard essential genome integrity. The rationale and molecular mechanisms underpinning the therapeutic effects will also be discussed with a focus on how these treatments can disrupt MLL-fusion mediated transcriptional programs and impair DDR, which may help overcome treatment resistance.
Collapse
Affiliation(s)
- Nok-Hei Mickey Wong
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Chi Wai Eric So
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK.
| |
Collapse
|