1
|
Zheng L, Adili R, Wu Z, Zhang Q, Zhu G, Lei X, Liu Z, Neves MAD, Ma W, Slavkovic S, Xu XR, Ni H, Zheng XL. Preventative and therapeutic effects of a novel humanized anti-glycoprotein Ibα fragment of antigen-binding region in a murine model of thrombotic thrombocytopenic purpura. J Thromb Haemost 2025; 23:1596-1607. [PMID: 39956431 DOI: 10.1016/j.jtha.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Thrombotic thrombocytopenic purpura (TTP) is a potentially fatal blood disorder resulting from severe deficiency of plasma ADAMTS-13 activity. Current treatment for immune-mediated TTP includes daily therapeutic plasma exchange plus caplacizumab and immunosuppressives. For hereditary TTP resulting from mutations of ADAMTS-13, plasma infusion or recombinant ADAMTS-13 is the treatment of choice. However, there are still unmet needs for an effective alternative therapy for TTP. OBJECTIVES The present study aimed to evaluate the therapeutic efficacy of a novel humanized antibody fragment of antigen binding against platelet glycoprotein Ibα (CA1001) in a murine model of TTP. METHODS Platelet agglutination profiles, microfluidic shear-based assay, intravital microscopy thrombosis model, and lysine histone-induced murine "TTP-like" model were employed. RESULTS CA1001 exhibited potent inhibition of botrocetin-induced murine platelet agglutination in a dose- and time-dependent manner. CA1001 also significantly inhibited shear-dependent adhesion and aggregation of murine platelets to endothelial von Willebrand factor (VWF) released from calcium ionophore-activated cremaster venules in Adamts-13 null mice and blocked the formation of platelet-VWF rich thrombosis. More importantly, CA1001 appeared to be efficacious in preventing and treating a histone-induced "TTP-like" syndrome in Adamts-13 null mice, demonstrated by the alleviation of thrombocytopenia, prerenal injury, and formation of microvascular thrombosis in major organ tissues. CONCLUSION CA1001 can effectively inhibit VWF-platelet interaction and thrombus formation under various (patho)physiological conditions. Thus, CA1001 may be a potential candidate for further development as a novel therapeutic for immune-mediated and hereditary TTP and perhaps for other inflammatory thrombotic disorders such as ischemic stroke.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA; Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Reheman Adili
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Bloodworks Research Institute, Seattle, Washington, USA
| | - Zhijian Wu
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangheng Zhu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada
| | - Zhenze Liu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Miguel A D Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Wenjing Ma
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sladjana Slavkovic
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA; Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
2
|
Zheng L, Wu Z, Yada N, Liu S, Lin C, Bignotti A, Zhao X, Zheng XL. Modeling ANKRD26 5'-UTR mutation-related thrombocytopenia. Dis Model Mech 2025; 18:dmm052222. [PMID: 40170493 DOI: 10.1242/dmm.052222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
Mutations in the 5'-untranslated region (5'-UTR) of ankyrin repeat domain-containing protein 26 (ANKRD26) are associated with hereditary thrombocytopenia 2 (THC2). However, the causative role of these mutations and the mechanisms underlying THC2 are not fully established. Here, we report, for the first time, that zebrafish carrying a deletion of two nucleotides (Δ2) in the 5'-UTR of ankrd26 recapitulate some of the key laboratory features of THC2. ankrd26ku6 (homozygous for the Δ2 deletion in the 5'-UTR) fish larvae exhibited significantly increased expression of ankrd26 mRNA and protein. Adult ankrd26ku6 fish exhibited spontaneous thrombocytopenia. Furthermore, the thrombocytes from ankrd26ku6 fish showed enhanced ability to adhere and aggregate on a collagen surface under flow. Proteomic profiling demonstrated marked upregulation of Ninjurin 1 in young thrombocytes from ankrd26ku6 fish compared with those from wild-type controls. The ankrd26ku6 fish with a homozygous nacre allele developed myelodysplastic syndrome at old age. ANKRD26 protein levels were also significantly increased in platelets and plasma from patients with immune thrombotic thrombocytopenic purpura compared with those from unaffected controls. We conclude that ANKRD26 overexpression, resulting from either hereditary or acquired mechanisms, contributes to thrombocytopenia, thrombosis and hematologic malignancies.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Zhijian Wu
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Szumam Liu
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Cindy Lin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Xinyang Zhao
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| |
Collapse
|
3
|
Wu Z, Chen SY, Zheng L. Sulforaphane Attenuates Ethanol-Induced Teratogenesis and Dysangiogenesis in Zebrafish Embryos. Int J Mol Sci 2024; 25:11529. [PMID: 39519082 PMCID: PMC11546994 DOI: 10.3390/ijms252111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Prenatal ethanol exposure can cause a broad range of abnormalities in newborns known as Fetal Alcohol Spectrum Disorder (FASD). Despite significant progress in understanding the disease mechanisms of FASD, there remains a strong global need for effective therapies. To evaluate the therapeutic potential of sulforaphane (SFN), an active compound extracted from cruciferous vegetables, in preventing FASD, ethanol-exposed zebrafish embryos were pretreated, co-treated, or post-treated with various concentrations of SFN. The FASD-like morphological features, survival rate, hatching rate, and vascular development were then assessed in the zebrafish embryos. It was found that pretreatment with 2 μM SFN during 3-24 hpf had no noticeable protective effects against teratogenicity induced by subsequent 1.5% ethanol exposure during 24-48 hpf. In contrast, co-treatment with 2 μM SFN and 1.5% ethanol during 3-24 hpf significantly alleviated a range of ethanol-induced malformations, including reduced body length, small eyes, reduced brain size, small otic vesicle, small jaw, and pericardial edema. Post-treatment with 3 μM SFN for 4 days following 1.5% ethanol exposure during 3-24 hpf also significantly reduced the characteristic features of FASD, decreasing the mortality rate and restoring body length, eye size, brain size, and otic vesicle circumference. Moreover, we found that ethanol, even at a low dose (0.5%), causes vascular development deficit in the zebrafish embryos, which were also largely rescued by SFN treatment. These data indicated that SFN has great potential to be used in the prevention and treatment of FASD.
Collapse
Affiliation(s)
- Zhijian Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| |
Collapse
|
4
|
Richter CE, Raghunath A, Griffin MS, Yaman M, Arruda VR, Samelson-Jones BJ, Shavit JA. Loss of factor VIII in zebrafish rebalances antithrombin deficiency but has a limited bleeding diathesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582609. [PMID: 39896458 PMCID: PMC11785011 DOI: 10.1101/2024.02.28.582609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Deficiencies in coagulation factor VIII (FVIII, F8) result in the bleeding disorder hemophilia A. An emerging novel therapeutic strategy for bleeding disorders is to enhance hemostasis by limiting natural anticoagulants, such as antithrombin (AT3). To study pro/anticoagulant hemostatic balance in an in vivo model, we used genome editing to create null alleles for f8 and von Willebrand factor (vwf) in zebrafish, a model organism with a high degree of homology to the mammalian hemostatic system and unique attributes, including external development and optical transparency. f8 homozygous mutant larvae surprisingly formed normal thrombi when subjected to laser-mediated endothelial injury, had no overt signs of hemorrhage, but had a modest increase in mortality. We have previously shown that at3 -/- larvae develop disseminated intravascular coagulation (DIC), with spontaneous thrombosis and fibrinogen consumption, resulting in bleeding phenotype marked by secondary lack of induced thrombus formation upon endothelial injury. We found that with loss of FVIII (f8 -/-;at3 -/-), larvae no longer developed spontaneous fibrin thrombi and did produce clots in response to endothelial injury. However, homozygous loss of zebrafish Vwf failed to rescue the at3 DIC phenotype. These studies demonstrate an altered balance of natural anticoagulants that mitigates FVIII deficiency in zebrafish, similar to human clinical pipeline products. The data also suggest that zebrafish FVIII might circulate independently of Vwf. Further study of this unique balance could provide new insights for management of hemophilia A and von Willebrand disease.
Collapse
Affiliation(s)
- Catherine E. Richter
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Azhwar Raghunath
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Megan S. Griffin
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Murat Yaman
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Valder R. Arruda
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Benjamin J. Samelson-Jones
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Mousavi A, Rahimnejad M, Azimzadeh M, Akbari M, Savoji H. Recent advances in smart wearable sensors as electronic skin. J Mater Chem B 2023; 11:10332-10354. [PMID: 37909384 DOI: 10.1039/d3tb01373a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Flexible and multifunctional electronic devices and soft robots inspired by human organs, such as skin, have many applications. However, the emergence of electronic skins (e-skins) or textiles in biomedical engineering has made a great revolution in a myriad of people's lives who suffer from different types of diseases and problems in which their skin and muscles lose their appropriate functions. In this review, recent advances in the sensory function of the e-skins are described. Furthermore, we have categorized them from the sensory function perspective and highlighted their advantages and limitations. The categories are tactile sensors (including capacitive, piezoresistive, piezoelectric, triboelectric, and optical), temperature, and multi-sensors. In addition, we summarized the most recent advancements in sensors and their particular features. The role of material selection and structure in sensory function and other features of the e-skins are also discussed. Finally, current challenges and future prospects of these systems towards advanced biomedical applications are elaborated.
Collapse
Affiliation(s)
- Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Research Center, Sainte-Justine University Hospital, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mostafa Azimzadeh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Research Center, Sainte-Justine University Hospital, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
6
|
Zheng L, Zheng XL. Animal models for thrombotic thrombocytopenic purpura: a narrative review. ANNALS OF BLOOD 2023; 8:23. [PMID: 39148951 PMCID: PMC11326488 DOI: 10.21037/aob-22-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background and Objective Thrombotic thrombocytopenic purpura (TTP) is a potentially fatal blood disorder, resulting from severe deficiency of plasma ADAMTS13 (A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats, 13) activity. ADAMTS13 is crucial for normal hemostasis through proteolytic cleavage of ultra large von Willebrand factor (VWF). Since the discovery of ADAMTS13 in 2001, several animal models for TTP have been established. In this narrative review, we summarize the creation and characterization of the established animal models for TTP to date. Methods We performed a literature search through PubMed from 1969 to 2022 using free text: TTP and animal model. We found 67 peer-reviewed articles but only 33 articles were included for review and 34 articles that did not discuss TTP were excluded. Key Content and Findings There were genetically modified or antibody-mediated TTP models being established and fully characterized in mouse, rat, baboon, and zebrafish. However, we are still in urgent need of a true autoimmune TTP animal model. Conclusions These animal models allowed researchers to further evaluate the contribution of various potential environmental factors and/or genetic modifiers to the pathogenesis, progression, and outcome of TTP; and to help assess the efficacy and safety of novel approaches for prevention and treatment of both hereditary and acquired TTP.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
7
|
Falter T, Rossmann H, de Waele L, Dekimpe C, von Auer C, Müller-Calleja N, Häuser F, Degreif A, Marandiuc D, Messmer X, Sprinzl M, Lackner KJ, Jurk K, Vanhoorelbeke K, Lämmle B. A novel von Willebrand factor multimer ratio as marker of disease activity in thrombotic thrombocytopenic purpura. Blood Adv 2023; 7:5091-5102. [PMID: 37399489 PMCID: PMC10471935 DOI: 10.1182/bloodadvances.2023010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/05/2023] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP), an autoantibody-mediated severe ADAMTS13 deficiency, is caused by insufficient proteolytic processing of von Willebrand factor (VWF) multimers (MMs) and microvascular thrombi. Recurrence of acute iTTP is associated with persistence or reappearance of ADAMTS13 deficiency. Some patients remain in remission despite recurring or persisting severe ADAMTS13 deficiency. In a prospective 2-year observational study, we investigated VWF MM patterns and ADAMTS13 in patients with iTTP in remission and at acute episodes. Of the 83 patients with iTTP, 16 suffered 22 acute episodes whereas 67 remained in clinical remission during follow-up, including 13 with ADAMTS13 <10% and 54 with ADAMTS13 ≥10%. High -molecular weight to low-molecular weight VWF MM ratio based on sodium dodecyl sulfate-agarose gel electrophoresis was compared with ADAMTS13 activity. VWF MM ratio was significantly higher in patients in remission with <10% compared with ≥10% ADAMTS13 activity. Fourteen samples obtained from 13 to 50 days (interquartile range; median, 39) before acute iTTP onset (ADAMTS13 <10% in 9 patients and 10%-26% in 5) showed VWF MM ratios significantly higher than those from 13 patients remaining in remission with ADAMTS13 <10%. At acute iTTP onset, VWF MM ratio decreased significantly and was low in all patients despite <10% ADAMTS13. The VWF MM ratio does not depend exclusively on ADAMTS13 activity. The disappearance of high molecular weight VWF MMs resulting in low VWF MM ratio at iTTP onset may be explained by consumption of larger VWF MMs in the microcirculation. The very high VWF MM ratio preceding acute iTTP recurrence suggests that VWF processing is hampered more than in patients remaining in remission.
Collapse
Affiliation(s)
- Tanja Falter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Laure de Waele
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility, KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility, KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Charis von Auer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Department of Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nadine Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Adriana Degreif
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dana Marandiuc
- Transfusion Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Xavier Messmer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Martin Sprinzl
- Medical Department I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility, KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Bernhard Lämmle
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- University Clinic of Hematology & Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Cauchois R, Muller R, Lagarde M, Dignat-George F, Tellier E, Kaplanski G. Is Endothelial Activation a Critical Event in Thrombotic Thrombocytopenic Purpura? J Clin Med 2023; 12:jcm12030758. [PMID: 36769407 PMCID: PMC9918301 DOI: 10.3390/jcm12030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a severe thrombotic microangiopathy. The current pathophysiologic paradigm suggests that the ADAMTS13 deficiency leads to Ultra Large-Von Willebrand Factor multimers accumulation with generation of disseminated microthrombi. Nevertheless, the role of endothelial cells in this pathology remains an issue. In this review, we discuss the various clinical, in vitro and in vivo experimental data that support the important role of the endothelium in this pathology, suggesting that ADAMTS13 deficiency may be a necessary but not sufficient condition to induce TTP. The "second hit" model suggests that in TTP, in addition to ADAMTS13 deficiency, endogenous or exogenous factors induce endothelial activation affecting mainly microvascular cells. This leads to Weibel-Palade bodies degranulation, resulting in UL-VWF accumulation in microcirculation. This endothelial activation seems to be worsened by various amplification loops, such as the complement system, nucleosomes and free heme.
Collapse
Affiliation(s)
- Raphael Cauchois
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, INSERM, INRAE, C2VN, CHU Conception, Internal Medicine and Clinical Immunology, 13005 Marseille, France
- French Reference Center for Thrombotic Microangiopathies, 75571 Paris, France
- Correspondence:
| | - Romain Muller
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, INSERM, INRAE, C2VN, CHU Conception, Internal Medicine and Clinical Immunology, 13005 Marseille, France
| | - Marie Lagarde
- French Reference Center for Thrombotic Microangiopathies, 75571 Paris, France
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Françoise Dignat-George
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, INSERM, INRAE, C2VN, CHU Conception, Hematology Laboratory, 13005 Marseille, France
| | - Edwige Tellier
- French Reference Center for Thrombotic Microangiopathies, 75571 Paris, France
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Gilles Kaplanski
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, INSERM, INRAE, C2VN, CHU Conception, Internal Medicine and Clinical Immunology, 13005 Marseille, France
- French Reference Center for Thrombotic Microangiopathies, 75571 Paris, France
| |
Collapse
|
9
|
Gómez-Seguí I, Pascual Izquierdo C, Mingot Castellano ME, de la Rubia Comos J. An update on the pathogenesis and diagnosis of thrombotic thrombocytopenic purpura. Expert Rev Hematol 2023; 16:17-32. [PMID: 36537217 DOI: 10.1080/17474086.2023.2159803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Severe ADAMTS13 deficiency defines thrombotic thrombocytopenic purpura (TTP). ADAMTS13 is responsible for VWF cleavage. In the absence of this enzyme, widespread thrombi formation occurs, causing microangiopathic anemia and thrombocytopenia and leading to ischemic organ injury. Understanding ADAMTS13 function is crucial to diagnose and manage TTP, both in the immune and hereditary forms. AREAS COVERED The role of ADAMTS13 in coagulation homeostasis and the consequences of its deficiency are detailed. Other factors that modulate the consequences of ADAMTS13 deficiency are explained, such as complement system activation, genetic predisposition, or the presence of an inflammatory status. Clinical suspicion of TTP is crucial to start prompt treatment and avoid mortality and sequelae. Available techniques to diagnose this deficiency and detect autoantibodies or gene mutations are presented, as they have become faster and more available in recent years. EXPERT OPINION A better knowledge of TTP pathophysiology is leading to an improvement in diagnosis and follow-up, as well as a customized treatment in patients with TTP. This scenario is necessary to define the role of new targeted therapies already available or coming soon and the need to better diagnose and monitor at the molecular level the evolution of the disease.
Collapse
Affiliation(s)
- Inés Gómez-Seguí
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe, Avda, Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Cristina Pascual Izquierdo
- Servicio de Hematología y Hemoterapia, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Gregorio Marañón, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
| | - María Eva Mingot Castellano
- Servicio de Hematología, Área de Banco de Sangre y Establecimiento de Tejidos, Hospital Universitario Virgen del Rocío, Calle Manuel Siurot s/n, 41013, Sevilla, Spain
| | - Javier de la Rubia Comos
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe, Avda, Fernando Abril Martorell, 106, 46026, Valencia, Spain.,School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| |
Collapse
|
10
|
Zheng L, Cao L, Zheng XL. ADAMTS13 protease or lack of von Willebrand factor protects irradiation and melanoma-induced thrombotic microangiopathy in zebrafish. J Thromb Haemost 2022; 20:2270-2283. [PMID: 35894519 PMCID: PMC9641623 DOI: 10.1111/jth.15820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Severe deficiency of plasma ADAMTS13 activity may result in potentially fatal thrombotic thrombocytopenic purpura and relative deficiency of plasma ADAMTS13 activity may be associated with adverse outcomes of certain malignancies. Here, we report the role of ADAMTS13 or lack of von Willebrand factor (VWF) in reducing irradiation and melanoma-induced thrombotic microangiopathy (TMA) and mortality in zebrafish. METHODS Zebrafish melanoma cell line (ZMEL) was injected subcutaneously into wild-type (wt), adamts13-/- (a13-/- ), von Willebrand factor (vwf-/- ), and a13-/- vwf-/- zebrafish following total body irradiation; the tumor growth, its gene expression pattern, the resulting thrombocytopenia, and the mortality were determined. RESULTS Total body irradiation at 30 Gy alone resulted in a transient thrombocytopenia in both wt and a13-/- zebrafish. However, thrombocytopenia occurred earlier and more profound in a13-/- than in wt zebrafish, which was resolved 2 weeks following irradiation alone. An inoculation of ZMEL following the irradiation resulted in more severe and persistent thrombocytopenia, as well as earlier death in a13-/- than in wt zebrafish. The vwf-/- or a13-/- vwf-/- zebrafish were protected from developing severe thrombocytopenia following the same maneuvers. RNA-sequencing revealed significant differentially expressed genes associated with oxidation-reduction, metabolism, lipid, fatty acid and cholesterol metabolic processes, steroid synthesis, and phospholipid efflux in the melanoma explanted from a13-/- zebrafish compared with that from the wt controls. CONCLUSIONS Our results indicated that plasma ADAMTS13 or lack of VWF may offer a significant protection against the development of irradiation- and/or melanoma-induced TMA. Such a microenvironment may directly affect melanoma cell phenotypes via alternation in the oxidation-reduction and lipid metabolic pathways.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Liyun Cao
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
11
|
Zheng L, Hill J, Zheng L, Rumi MK, Zheng XL. A Simple, Robust, and Cost-effective Method for Genotyping Small-scale Mutations. JOURNAL OF CLINICAL AND TRANSLATIONAL PATHOLOGY 2022; 2:108-115. [PMID: 36276172 PMCID: PMC9585490 DOI: 10.14218/jctp.2022.00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background and objectives Genotyping is an important tool for studying gene functions in animals or detecting genetic variants in humans. Various methods using low to high concentrations of agarose or polyacrylamide gel electrophoresis have been developed for genotyping. These methods rely on the detection of large-size differences (20-2,000 bp) of targeted PCR products between a wild-type gene and a mutant gene. Endonuclease digestion was introduced to identify heterozygous mutations, but it was not possible to differentiate the wild-type from the homozygous mutants with the same or similar size. This study thus developed a novel, simple, and reliable test for genotyping animals or cells following genetic modifications. Methods We developed an improved and simple method that used 2% agarose gel electrophoresis following T7E1 or Surveyor endonuclease digestion to firstly separate the heterozygous mutations from the wild-type or homozygous mutations. By adding a wild-type PCR product to a potentially homozygous product, which would form heteroduplexes, we could then separate the wild-type from a homozygous mutation with a nearly identical size or only a single base pair substitution without Sanger sequencing. Results We verified this method in genotyping zebrafish mutants with a 2-8-bp deletion or insertion and mouse mutants with a 1- or 8-bp substitution. The wild-type, heterozygous, and homozygous mutations ranged 1-8 bp were clearly differentiated on agarose gel. Sanger sequencing also confirmed our genotyping results. Conclusions This novel and improved genotyping method may have a broad application in many clinical and research laboratories for rapid and economical genotyping of patients and animals with a small area deletion or single base pair substitution, particularly in the era of gene editing or in those with naturally occurring mutations.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Jake Hill
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Lucy Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - M.A. Karim Rumi
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS, USA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Yang L, Wu L, Meng P, Zhang X, Zhao D, Lin Q, Zhang Y. Generation of a thrombopoietin-deficient thrombocytopenia model in zebrafish. J Thromb Haemost 2022; 20:1900-1909. [PMID: 35622056 DOI: 10.1111/jth.15772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The production of platelets is tightly regulated by thrombopoietin (THPO). Mutations in the THPO gene cause thrombocytopenia. Although mice lacking Thpo present with thrombocytopenia, predicting phenotypes and pathogenicity of novel THPO mutations in mice is limited. Zebrafish can be a powerful tool for fast validation and study of candidate genes of human hematological diseases and have already been used as a model of human thrombocytopenia. OBJECTIVES We aim to investigate the role of Thpo in zebrafish thrombopoiesis and to establish a Thpo-deficient zebrafish model. The model could be applied for illustrating the clinically discovered human THPO variants of which the clinical significance is not known and to evaluate the effect of THPO receptor agonists (THPO-Ras), as well as a screening platform for new drugs. METHODS We generated a thpo loss-of-function zebrafish model using CRISPR/Cas9. After disruption of zebrafish thpo, thposzy6 zebrafish presented with a significant reduction of thpo expression and developed thrombocytopenia. Furthermore, we performed in vivo studies with zebrafish with the thposzy6 mutation and found two human clinical point mutations (c.091C > T and c.112C > T) that were responsible for the thrombocytopenia phenotype. In addition, effects of THPO-RAs used as therapeutics against thrombocytopenia were evaluated in the Tg(mpl:eGFP);thposzy6 line. RESULTS AND CONCLUSIONS Zebrafish with the mutation thposzy6 presented with a significant reduction of thpo expression and developed thrombocytopenia. Thpo loss-of-function zebrafish model can serve as a valuable preclinical model for thrombocytopenia caused by thpo-deficiency, as well as a tool to study human clinical THPO variants and evaluate the effect of THPO-RAs.
Collapse
Affiliation(s)
- Lian Yang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liangliang Wu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Panpan Meng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xuebing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dejian Zhao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Qing Lin
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Raghunath A, Ferguson AC, Shavit JA. Fishing for answers to hemostatic and thrombotic disease: Genome editing in zebrafish. Res Pract Thromb Haemost 2022; 6:e12759. [PMID: 35949884 PMCID: PMC9354590 DOI: 10.1002/rth2.12759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 01/22/2023] Open
Abstract
Over the past two decades, the teleost vertebrate Danio rerio (zebrafish) has emerged as a model for hemostasis and thrombosis. At genomic and functional levels, there is a high degree of conservation of the hemostatic system with that of mammals. Numerous features of the fish model offer unique advantages for investigating hemostasis and thrombosis. These include high fecundity, rapid and external development, optical transparency, and extensive functional homology with mammalian hemostasis and thrombosis. Zebrafish are particularly suited to genome-wide mutagenesis experiments for the study of modifier genes. They are also amenable to whole-organism small-molecule screens, a feature that is exceptionally relevant to hemostasis and thrombosis. Zebrafish coagulation factor knockouts that are in utero or neonatal lethal in mammals survive into adulthood before succumbing to hemorrhage or thrombosis, enabling studies not possible in mammals. In this illustrated review, we outline how zebrafish have been employed for the study of hemostasis and thrombosis using modern genome editing techniques, coagulation assays in larvae, and in vivo evaluation of patient-specific variants to infer causality and demonstrate pathogenicity. Zebrafish hemostasis and thrombosis models will continue to serve as a clinically directed basic research tool and powerful alternative to mammals for the development of new diagnostic markers and novel therapeutics for coagulation disorders through high-throughput genetic and small-molecule studies.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Department of PediatricsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| | - Allison C. Ferguson
- Department of PediatricsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| | - Jordan A. Shavit
- Department of PediatricsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
- Department of Human GeneticsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| |
Collapse
|
14
|
Graça NAG, Joly BS, Voorberg J, Vanhoorelbeke K, Béranger N, Veyradier A, Coppo P. TTP: From empiricism for an enigmatic disease to targeted molecular therapies. Br J Haematol 2022; 197:156-170. [PMID: 35146746 PMCID: PMC9304236 DOI: 10.1111/bjh.18040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
The 100th anniversary of the first description of Thrombotic Thrombocytopenic Purpura (TTP) as a disease by Dr. Eli Moschcowitz approaches. For many decades, TTP remained mostly a mysterious fatal condition, where diagnosis was often post-mortem. Initially a pentad of symptoms was identified, a pattern that later revealed to be fallible. Sporadic observations led to empiric interventions that allowed for the first impactful breakthrough in TTP treatment, almost 70 years after its first description: the introduction of plasma exchange and infusions as treatments. The main body of knowledge within the field was gathered in the latest three decades: patient registries were set and proved crucial for advancements; the general mechanisms of disease have been described; the diagnosis was refined; new treatments and biomarkers with improvements on prognosis and management were introduced. Further changes and improvements are expected in the upcoming decades. In this review, we provide a brief historic overview of TTP, as an illustrative example of the success of translational medicine enabling to rapidly shift from a management largely based on empiricism to targeted therapies and personalized medicine, for the benefit of patients. Current management options and present and future perspectives in this still evolving field are summarized.
Collapse
Affiliation(s)
- Nuno A. G. Graça
- Department of Molecular Hematology, Sanquin‐Academic Medical CenterLandsteiner LaboratoryAmsterdamThe Netherlands
| | - Bérangère S. Joly
- Service d'hématologie biologique and EA3518‐ Institut universitaire d'hématologieGroupe Hospitalier Saint Louis‐Lariboisière, AP‐HP, Université Paris DiderotParisFrance
- Centre de Référence des Microangiopathies ThrombotiquesHôpital Saint‐Antoine, AP‐HPParisFrance
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin‐Academic Medical CenterLandsteiner LaboratoryAmsterdamThe Netherlands
- Department of Experimental Vascular MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life SciencesKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | - Nicolas Béranger
- Service d'hématologie biologique and EA3518‐ Institut universitaire d'hématologieGroupe Hospitalier Saint Louis‐Lariboisière, AP‐HP, Université Paris DiderotParisFrance
- Centre de Référence des Microangiopathies ThrombotiquesHôpital Saint‐Antoine, AP‐HPParisFrance
| | - Agnès Veyradier
- Service d'hématologie biologique and EA3518‐ Institut universitaire d'hématologieGroupe Hospitalier Saint Louis‐Lariboisière, AP‐HP, Université Paris DiderotParisFrance
- Centre de Référence des Microangiopathies ThrombotiquesHôpital Saint‐Antoine, AP‐HPParisFrance
| | - Paul Coppo
- Centre de Référence des Microangiopathies ThrombotiquesHôpital Saint‐Antoine, AP‐HPParisFrance
- Service d'HématologieHôpital Saint‐Antoine, AP‐HPParisFrance
- Sorbonne UniversitéUPMC Univ ParisParisFrance
| |
Collapse
|
15
|
Lu R, Zheng XL. Plasma Levels of Big Endothelin-1 Are Associated with Renal Insufficiency and In-Hospital Mortality of Immune Thrombotic Thrombocytopenic Purpura. Thromb Haemost 2022; 122:344-352. [PMID: 33984867 PMCID: PMC9514555 DOI: 10.1055/a-1508-8347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Immune thrombotic thrombocytopenic purpura (iTTP) is caused by severe deficiency of plasma ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity. Despite advances in early diagnosis and management, the mortality rate of acute iTTP remains high in a large part of world where access to some of the most novel therapies is limited. To determine the role of plasma big endothelin-1 (bigET-1) or its bioactive product ET-1 as a biomarker and/or a pathogenic factor in acute iTTP, plasma levels of bigET-1 were determined using an immunoassay in patients with iTTP on admission and during remission, as well as in healthy controls; moreover, the biological effect of ET-1 in thrombus formation was determined by a microfluidic assay. We show that plasma levels of bigET-1 were dramatically increased in patients with acute iTTP on admission, which was significantly decreased during clinical response/remission; elevated admission levels of plasma bigET-1 were associated with low estimated glomerular filtration rate, the need for intensive care unit admission or intubation, and in-hospital mortality. Moreover, an addition of a bioactive product ET-1 to cultured endothelial cells in a microfluidic channel significantly accelerated the rate of thrombus formation under arterial flow. Our results demonstrate for the first time a potential role of measuring plasma bigET-1 in patients with acute iTTP in assessing the disease severity and risk of in-hospital mortality, which may help stratify patients for a more aggressive monitoring and therapeutic strategy; also, the bioactive ET-1, derived from bigET-1, may result in acute renal injury in TTP patient, likely through its vasoconstriction and prothrombotic properties.
Collapse
Affiliation(s)
- Ruinan Lu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A.,Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A.,Correspondence should be sent to: X. Long Zheng, M.D., Ph.D., Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 4000 Cambridge Street, MS 3045, Kansas City, KS 66160, Tel. +1 913-588-7124, or
| |
Collapse
|
16
|
Bécel G, Faict S, Picod A, Bouzid R, Veyradier A, Coppo P. Thrombotic Thrombocytopenic Purpura: When Basic Science Meets Clinical Research. Hamostaseologie 2021; 41:283-293. [PMID: 33607665 DOI: 10.1055/a-1332-3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The therapeutic landscape of thrombotic thrombocytopenic purpura (TTP) is rapidly changing with the recent availability of new targeted therapies. This progressive shift from empiricism to pathophysiology-based treatments reflects an intensive interaction between the continuous findings in the field of basic science and an efficient collaborative clinical research and represents a convincing example of the strength of translational medicine. Despite the rarity of TTP, national and international efforts could circumvent this limitation and shed light on the epidemiology, clinical presentation, prognosis, and long-term outcome of this disease. Importantly, they also provided high-quality results and practice changing studies for the benefit of patients. We report here the most recent therapeutic findings that allowed progressively improving the prognostic of TTP, both at the acute phase and through long-term outcome.
Collapse
Affiliation(s)
- Gaëlle Bécel
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'hématologie, Hôpital Saint-Antoine, AP-HP - Sorbonne Université, Paris, France
| | - Sylvia Faict
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'hématologie, Hôpital Saint-Antoine, AP-HP - Sorbonne Université, Paris, France
| | - Adrien Picod
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'hématologie, Hôpital Saint-Antoine, AP-HP - Sorbonne Université, Paris, France
| | - Raïda Bouzid
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France
| | - Agnès Veyradier
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'Hématologie Biologique, Groupe Hospitalier Saint-Louis-Lariboisière, AP-HP, Paris, France.,Université Paris-Diderot, Paris, France
| | - Paul Coppo
- Centre de Référence des MicroAngiopathies Thrombotiques, Paris, France.,Service d'hématologie, Hôpital Saint-Antoine, AP-HP - Sorbonne Université, Paris, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Paris, France
| |
Collapse
|
17
|
Sui J, Lu R, Halkidis K, Kocher NK, Cao W, Marques MB, Zheng XL. Plasma levels of S100A8/A9, histone/DNA complexes, and cell-free DNA predict adverse outcomes of immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2021; 19:370-379. [PMID: 33188723 PMCID: PMC8058879 DOI: 10.1111/jth.15176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune thrombotic thrombocytopenic purpura (iTTP) is a life-threatening blood disorder, primarily resulting from autoantibodies against ADAMTS13. Infection or inflammation often precedes acute iTTP. However, the association of inflammation and inflammatory mediators with disease severity and outcome of acute iTTP is not fully assessed. OBJECTIVES Here, we determined plasma levels of S100A8/A9, histone/DNA complexes, citrullinated histone H3 (CitH3), and cell-free DNA (cfDNA) in a cohort of 108 acute episodes from 94 unique iTTP patients and healthy controls, and assessed the association of each of these biomarkers with the disease severity and mortality. RESULTS All acute iTTP patients had significantly increased plasma levels of S100A8/A9 (median 84.8, interquartile range [IQR] 31.2-157.4 µg/mL), histone/DNA complexes (median 55.7, IQR 35.8-130.8 U/mL), CitH3 (median 3.8, IQR 2.2-6.4 ng/mL), and cfDNA (median 937.7, IQR 781.3-1420.0 ng/mL) on the admission blood samples when compared with healthy controls. An increased plasma level of S100A8/A9, histone/DNA complex and cfDNA was associated with organ damage, coagulopathy, and mortality in iTTP. After being adjusted for age and history of hypertension, Cox proportional hazard regression analysis demonstrated that a hazard ratio (95% confidence interval) for an elevated plasma level of S100A8/A9, histone/DNA complexes, and cfDNA was 11.5 (1.4-90.9) (P = .021), 10.3 (2.7-38.5) (P = .001), and 12.8 (3.9-42.0) (P = .014), respectively. CONCLUSION These results indicate that inflammation or plasma inflammatory mediators such as S100A8/A9 or NETosis markers such as histone/DNA complexes and cfDNA may play a role in pathogenesis of iTTP, which may help stratify patients with a high risk of death during acute iTTP episodes.
Collapse
Affiliation(s)
- Jingrui Sui
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ruinan Lu
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Konstantine Halkidis
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nicole K. Kocher
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wenjing Cao
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marisa B. Marques
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - X. Long Zheng
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
18
|
Prevel R, Roubaud-Baudron C, Tellier E, Le Besnerais M, Kaplanski G, Veyradier A, Benhamou Y, Coppo P. [Endothelial dysfunction in thrombotic thrombocytopenic purpura: therapeutic perspectives]. Rev Med Interne 2021; 42:202-209. [PMID: 33455838 DOI: 10.1016/j.revmed.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/19/2020] [Accepted: 12/26/2020] [Indexed: 01/05/2023]
Abstract
Immune Thrombotic Thrombocytopenic Purpura (iTTP) is a rare but severe disease with a mortality rate of almost 100 % in the absence of adequate treatment. iTTP is caused by a severe deficiency in ADAMTS13 activity due to the production of inhibitory antibodies. Age has been shown to be a major prognostic factor. iTTP patients in the elderly (60yo and over) have more frequent organ involvement, especially heart and kidney failures compared with younger patients. They also have non-specific neurologic symptoms leading to a delayed diagnosis. Factors influencing this impaired survival among older patients remain unknown so far. Alteration of the functional capacity of involved organs could be part of the explanation as could be the consequences of vascular aging. In fact, severe ADAMTS13 deficiency is necessary but likely not sufficient for iTTP physiopathology. A second hit leading to endothelial activation is thought to play a central role in iTTP. Interestingly, the mechanisms involved in endothelial activation may share common features with those involved in vascular aging, potentially leading to endothelial dysfunction. It could thus be interesting to better investigate the causes of mid- and long-term mortality among older iTTP patients to confirm whether inflammation and endothelial activation really impact vascular aging and long-term mortality in those patients, in addition to their presumed role at iTTP acute phase. If so, further insights into the mechanisms involved could lead to new therapeutic targets.
Collapse
Affiliation(s)
- R Prevel
- CHU Bordeaux, Pôle de Gérontologie Clinique, 33000 Bordeaux, France; CHU Bordeaux, FHU Acronim 33000 Bordeaux, France; University Bordeaux, INSERM 1045 CRCTB 33000 Bordeaux, France
| | - C Roubaud-Baudron
- CHU Bordeaux, Pôle de Gérontologie Clinique, 33000 Bordeaux, France; University Bordeaux, INSERM UMR 1053 Bariton 33000 Bordeaux, France
| | - E Tellier
- Vascular Research Center of Marseille, Inserm, UMRS_1076, Aix-Marseille Université, Marseille, France
| | - M Le Besnerais
- Service de Médecine Interne, CHU Charles Nicolle, Rouen, France; INSERM U1096, UFR médecine pharmacie Rouen, Rouen, France
| | - G Kaplanski
- Vascular Research Center of Marseille, Inserm, UMRS_1076, Aix-Marseille Université, Marseille, France; Aix-Marseille université, 13284, Service de médecine interne, hôpital de la Conception, AP-HM, 147, boulevard Baille, 13385 Marseille cedex 05, France; Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France
| | - A Veyradier
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France; Hématologie biologique, Hôpital Lariboisière, AP-HP, Université Paris Diderot, Paris, France
| | - Y Benhamou
- Service de Médecine Interne, CHU Charles Nicolle, Rouen, France; INSERM U1096, UFR médecine pharmacie Rouen, Rouen, France; Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France
| | - P Coppo
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France; Service d'Hématologie, Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), AP-HP.6, Paris, France.
| | | |
Collapse
|
19
|
Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, Lin J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front Immunol 2020; 11:610696. [PMID: 33343584 PMCID: PMC7738460 DOI: 10.3389/fimmu.2020.610696] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.
Collapse
Affiliation(s)
- Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiwei Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Long
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
20
|
Abstract
CONTEXT.— The coronavirus disease 2019 (COVID-19) is a highly contagious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coagulation dysfunction is a hallmark in patients with COVID-19. Fulminant thrombotic complications emerge as critical issues in patients with severe COVID-19. OBJECTIVE.— To present a review of the literature and discuss the mechanisms of COVID-19 underlying coagulation activation and the implications for anticoagulant and thrombolytic treatment in the management of COVID-19. DATA SOURCES.— We performed a systemic review of scientific papers on the topic of COVID-19, available online via the PubMed NCBI, medRxiv, and Preprints as of May 15, 2020. We also shared our experience on the management of thrombotic events in patients with COVID-19. CONCLUSIONS.— COVID-19-associated coagulopathy ranges from mild laboratory alterations to disseminated intravascular coagulation (DIC) with a predominant phenotype of thrombotic/multiple organ failure. Characteristically, high D-dimer levels on admission and/or continuously increasing concentrations of D-dimer are associated with disease progression and poor overall survival. SARS-CoV-2 infection triggers the immune-hemostatic response. Drastic inflammatory responses including, but not limited to, cytokine storm, vasculopathy, and NETosis may contribute to an overwhelming activation of coagulation. Hypercoagulability and systemic thrombotic complications necessitate anticoagulant and thrombolytic interventions, which provide opportunities to prevent or reduce "excessive" thrombin generation while preserving "adaptive" hemostasis and bring additional benefit via their anti-inflammatory effect in the setting of COVID-19.
Collapse
Affiliation(s)
- Yang Fei
- From the Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Fei, Tang)
| | - Ning Tang
- From the Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Fei, Tang)
| | - Hefei Liu
- the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City (Liu, Cao)
| | - Wenjing Cao
- the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City (Liu, Cao)
| |
Collapse
|
21
|
Zebrafish for thrombocytopoiesis- and hemostasis-related researches and disorders. BLOOD SCIENCE 2020; 2:44-49. [PMID: 35402814 PMCID: PMC8975081 DOI: 10.1097/bs9.0000000000000043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Platelets play vital roles in hemostasis, inflammation, and vascular biology. Platelets are also active participants in the immune responses. As vertebrates, zebrafish have a highly conserved hematopoietic system in the developmental, cellular, functional, biochemical, and genetic levels with mammals. Thrombocytes in zebrafish are functional homologs of mammalian platelets. Here, we summarized thrombocyte development, function, and related research techniques in zebrafish, and reviewed available zebrafish models of platelet-associated disorders, including congenital amegakaryocytic thrombocytopenia, inherited thrombocytopenia, essential thrombocythemia, and blood coagulation disorders such as gray platelet syndrome. These elegant zebrafish models and methods are crucial for understanding the molecular and genetic mechanisms of thrombocyte development and function, and provide deep insights into related human disease pathophysiology and drug development.
Collapse
|
22
|
Coppo P, Lämmle B. Animal models of thrombotic thrombocytopenic purpura: the tales from zebrafish. Haematologica 2020; 105:861-863. [PMID: 32238467 DOI: 10.3324/haematol.2019.245043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paul Coppo
- Service d'Hématologie, Centre de Référence des Microangiopathies Thrombotiques, AP-HP.6, Paris, France
| | - Bernhard Lämmle
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern Switzerland .,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Haemostasis Research Unit, University College London, London, United Kingdom
| |
Collapse
|