1
|
Byeon H. Innovative approaches to managing chronic multimorbidity: A multidisciplinary perspective. World J Clin Cases 2025; 13:102484. [DOI: 10.12998/wjcc.v13.i19.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
The rising prevalence of chronic multimorbidity poses substantial challenges to healthcare systems, necessitating the development of innovative management strategies to optimize patient care and system efficiency. The study by Fontalba-Navas et al investigates the implementation of a novel high complexity unit (HCU) specifically designed to improve the management of patients with chronic complex conditions. By adopting a multidisciplinary approach, the HCU aims to provide comprehensive, patient-centered care that enhances health outcomes and alleviates the strain on traditional hospital services. Utilizing a longitudinal analysis of data from the Basic Minimum Data Set, this study compares hospitalization metrics among the HCU, Internal Medicine, and other departments within a regional hospital throughout 2022. The findings reveal that the HCU's integrated care model significantly reduces readmission rates and boosts patient satisfaction compared to conventional care practices. The study highlights the HCU's potential as a replicable model for managing chronic multimorbidity, emphasizing its effectiveness in minimizing unnecessary hospitalizations and enhancing the overall quality of patient care. This innovative approach not only addresses the complexities associated with chronic multimorbid conditions but also offers a sustainable framework for healthcare systems confronting similar challenges.
Collapse
Affiliation(s)
- Haewon Byeon
- Worker's Care and Digital Health Lab, Department of Future Technology, Korea University of Technology and Education, Cheonan 31253, South Korea
| |
Collapse
|
2
|
Ysebaert L, Mouchel PL, Laurent C, Quillet-Mary A. The multi-faceted roles of MYC in the prognosis of chronic lymphocytic leukemia. Leuk Lymphoma 2025; 66:805-817. [PMID: 39743868 DOI: 10.1080/10428194.2024.2447362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
In this review, we focus on the pro-oncogene MYC, the modes of deregulation in mouse and human B-cells, its undisputable importance in the evaluation of biological prognostication of patients, but also how it impacts on response to modern therapeutics, and how it should be targeted to improve the overall survival of chronic lymphocytic lymphoma (CLL) patients. After an overview of the current understanding of the molecular dysregulation of c-MYC, we will show how CLL, both in its indolent and transformed phases, has developed among other B-cell lymphomas a tight regulation of its expression through the chronic activation of B-Cell Receptors (among others). This is particularly important if one desires to understand the mechanisms at stake in the over-expression of c-MYC especially in the lymph nodes compartment. So doing, we will show how this oncogene orchestrates pivotal cellular functions such as metabolism, drug resistance, proliferation and histologic transformation (Richter syndrome).
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Prognosis
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Animals
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Loic Ysebaert
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Department of Hematology, IUC Toulouse-Oncopole, Toulouse, France
| | | | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Department of Hematology, IUC Toulouse-Oncopole, Toulouse, France
| | - Anne Quillet-Mary
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
| |
Collapse
|
3
|
Naresh KN. Understanding splenic B-cell lymphoma/leukaemia with prominent nucleoli: Diagnosis, underpinnings for disease classification and future directions. Br J Haematol 2024; 205:2142-2152. [PMID: 39253895 DOI: 10.1111/bjh.19754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
The 5th edition of the WHO classification of haematolymphoid tumours (WHO-HAEM5) introduced a new category, splenic B-cell lymphoma/leukaemia with prominent nucleoli (SBLPN). The diagnostic entity B-cell prolymphocytic leukaemia (B-PLL) has been discontinued and the category of hairy cell leukaemia variant (HCLv) has been conceptually reframed. B-PLL and HCLv diagnoses were uncommon. Overlap existed between B-PLL and other indolent lymphomas like chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL). HCLv lacked consistent cytomorphological, immunophenotypic and genetic features. To address these issues, the WHO-HAEM5 classification has introduced SBLPN to serve as a temporary holding ground for entities that do not neatly fit into the existing classification. Cases previously classified as CD5-negative B-PLL and HCLv fall under the SBLPN category. Some splenic marginal zone lymphoma and splenic diffuse red pulp small B-cell lymphoma cases with higher number of medium or large nucleolated B cells would also be classified as SBLPN under the WHO-HAEM5. This review explores the rationale for discontinuing B-PLL and HCLv diagnoses. It then examines the concept of SBLPN, offers practical guidance for diagnosis and discusses future directions in classifying splenic B-cell lymphomas.
Collapse
MESH Headings
- Humans
- Leukemia, Hairy Cell/diagnosis
- Leukemia, Hairy Cell/pathology
- Leukemia, Hairy Cell/classification
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/classification
- Leukemia, Prolymphocytic, B-Cell/diagnosis
- Leukemia, Prolymphocytic, B-Cell/pathology
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/classification
- Lymphoma, B-Cell/pathology
- Splenic Neoplasms/diagnosis
- Splenic Neoplasms/pathology
- Splenic Neoplasms/classification
Collapse
Affiliation(s)
- Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Varghese AM, Munir T. SOHO State of the Art Updates and Next Questions | Impact of Biologic Markers on Outcomes With Novel Therapy in Chronic Lymphocytic Leukaemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)02400-5. [PMID: 39674706 DOI: 10.1016/j.clml.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/16/2024]
Abstract
Treatment of CLL has changed remarkably in the last decade and novel agents are the standard therapy in various jurisdictions. However, the biology of CLL still plays an important part in the treatment choice and disease outcomes. In this post chemo-immunotherapy era for CLL, number of biological factors have lost their clinical significance and most patients will benefit from continuous or time-limited therapy. However, TP53 and IGHV mutation status still retains clinical significance in determining outcomes with various therapeutic approaches. New emerging biological markers including drug-specific mutations are adding to the complexity of decision making in relapsed CLL. End of treatment minimal residual disease analysis (MRD) adds prognostic information to the outcomes with time-limited therapy. MRD-guided duration of treatment may improve further outcomes, but longer clinical follow-up is needed before this approach is incorporated in clinical guidelines. The review gives an update on the impact of biological markers on outcomes with novel agents.
Collapse
|
5
|
Huang YJ, Lim JQ, Hsu JS, Kuo MC, Wang PN, Kao HW, Wu JH, Chen CC, Tsai SF, Ong CK, Shih LY. Next-Generation Integrated Sequencing Identifies Poor Prognostic Factors in Patients with MYD88-Mutated Chronic Lymphocytic Leukemia in Taiwan. Pathobiology 2024; 92:77-89. [PMID: 39357512 PMCID: PMC11965870 DOI: 10.1159/000541709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the Western countries and is very rare in Asia. METHODS Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 215 patients with CLL were analyzed by using next-generation sequencing to investigate the ethnic differences in genetic abnormalities. RESULTS Whole-genome sequencing and whole-exome sequencing analyses on 30 cases showed that 9 genes, including IGLL5, MYD88, TCHH, DSCAM, AXDND1, BICRA, KMT2D, MYT1L, and RBM43, were more frequently mutated in our Taiwanese cohort compared with those of the Western cohorts. IGLL5, MYD88, and KMT2D genes were further analyzed by targeted sequencing in another 185 CLL patients, unraveling frequencies of 29.3%, 20.9%, and 15.0%, respectively. The most frequent positional mutation of MYD88 was V217F (26/45, 57.8%), followed by L265P (9/45, 20.0%). MYD88 mutations were significantly associated with IGLL5 mutations (p = 0.0004), mutated IGHV (p < 0.0001) and 13q deletion (p = 0.0164). CLL patients with co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations were associated with a significantly inferior survival compared to those with MYD88 mutation alone (not reached vs. 131.8 months, p = 0.007). In multivariate analysis, MYD88 mutation without KMT2D or IGLL5 mutations was an independently favorable predictor. CONCLUSIONS IGLL5, MYD88, and KMT2D mutations were enriched in Taiwanese CLL, and co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations was associated with a poorer prognosis. INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the Western countries and is very rare in Asia. METHODS Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 215 patients with CLL were analyzed by using next-generation sequencing to investigate the ethnic differences in genetic abnormalities. RESULTS Whole-genome sequencing and whole-exome sequencing analyses on 30 cases showed that 9 genes, including IGLL5, MYD88, TCHH, DSCAM, AXDND1, BICRA, KMT2D, MYT1L, and RBM43, were more frequently mutated in our Taiwanese cohort compared with those of the Western cohorts. IGLL5, MYD88, and KMT2D genes were further analyzed by targeted sequencing in another 185 CLL patients, unraveling frequencies of 29.3%, 20.9%, and 15.0%, respectively. The most frequent positional mutation of MYD88 was V217F (26/45, 57.8%), followed by L265P (9/45, 20.0%). MYD88 mutations were significantly associated with IGLL5 mutations (p = 0.0004), mutated IGHV (p < 0.0001) and 13q deletion (p = 0.0164). CLL patients with co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations were associated with a significantly inferior survival compared to those with MYD88 mutation alone (not reached vs. 131.8 months, p = 0.007). In multivariate analysis, MYD88 mutation without KMT2D or IGLL5 mutations was an independently favorable predictor. CONCLUSIONS IGLL5, MYD88, and KMT2D mutations were enriched in Taiwanese CLL, and co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations was associated with a poorer prognosis.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Myeloid Differentiation Factor 88/genetics
- Taiwan
- Female
- Male
- Prognosis
- Mutation
- Middle Aged
- Aged
- High-Throughput Nucleotide Sequencing
- Adult
- Aged, 80 and over
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- ONCO-ACP, Duke-NUS Medical School, Singapore, Singapore
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiao-Wen Kao
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Hou Wu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiu-Chen Chen
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Mavridou D, Psatha K, Aivaliotis M. Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia. J Pers Med 2024; 14:831. [PMID: 39202022 PMCID: PMC11355716 DOI: 10.3390/jpm14080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most common B-cell malignancy in the Western world, characterized by frequent relapses despite temporary remissions. Our study integrated publicly available proteomic, transcriptomic, and patient survival datasets to identify key differences between healthy and CLL samples. We exposed approximately 1000 proteins that differentiate healthy from cancerous cells, with 608 upregulated and 415 downregulated in CLL cases. Notable upregulated proteins include YEATS2 (an epigenetic regulator), PIGR (Polymeric immunoglobulin receptor), and SNRPA (a splicing factor), which may serve as prognostic biomarkers for this disease. Key pathways implicated in CLL progression involve RNA processing, stress resistance, and immune response deficits. Furthermore, we identified three existing drugs-Bosutinib, Vorinostat, and Panobinostat-for potential further investigation in drug repurposing in CLL. We also found limited correlation between transcriptomic and proteomic data, emphasizing the importance of proteomics in understanding gene expression regulation mechanisms. This generally known disparity highlights once again that mRNA levels do not accurately predict protein abundance due to many regulatory factors, such as protein degradation, post-transcriptional modifications, and differing rates of translation. These results demonstrate the value of integrating omics data to uncover deregulated proteins and pathways in cancer and suggest new therapeutic avenues for CLL.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Medical Biology—Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J, Strefford JC. The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:877-901. [PMID: 39280243 PMCID: PMC11390296 DOI: 10.37349/etat.2024.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, predominantly indolent B-cell lymphoma constituting fewer than 2% of lymphoid neoplasms. However, around 30% of patients have a shorter survival despite currently available treatments and the prognosis is especially poor for the 5-15% of cases that transform to a large cell lymphoma. Mounting evidence suggests that the molecular pathogenesis of SMZL is critically shaped by microenvironmental triggering and cell-intrinsic aberrations. Immunogenetic investigations have revealed biases in the immunoglobulin gene repertoire, indicating a role of antigen selection. Furthermore, cytogenetic studies have identified recurrent chromosomal abnormalities such as deletion of the long arm of chromosome 7, though specific disease-associated genes remain elusive. Our knowledge of SMZL's mutational landscape, based on a limited number of cases, has identified recurring mutations in KLF2, NOTCH2, and TP53, as well as genes clustering within vital B-cell differentiation pathways. These mutations can be clustered within patient subgroups with different patterns of chromosomal lesions, immunogenetic features, transcriptional signatures, immune microenvironments, and clinical outcomes. Regarding SMZL epigenetics, initial DNA methylation profiling has unveiled epigenetically distinct patient subgroups, including one characterized by elevated expression of Polycomb repressor complex 2 (PRC2) components. Furthermore, it has also demonstrated that patients with evidence of high historical cell division, inferred from methylation data, exhibit inferior treatment-free survival. This review provides an overview of our current understanding of SMZL's molecular basis and its implications for patient outcomes. Additionally, it addresses existing knowledge gaps, proposes future research directions, and discusses how a comprehensive molecular understanding of the disease will lead to improved management and treatment choices for patients.
Collapse
Affiliation(s)
- Amatta Mirandari
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Margaret Ashton-Key
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, SO16 6YD Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David G Oscier
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
8
|
Davids MS, Sharman JP, Ghia P, Woyach JA, Eyre TA, Jurczak W, Siddiqi T, Miranda P, Shahkarami M, Butturini A, Emeribe U, Byrd JC. Acalabrutinib-based regimens in frontline or relapsed/refractory higher-risk CLL: pooled analysis of 5 clinical trials. Blood Adv 2024; 8:3345-3359. [PMID: 38640349 PMCID: PMC11255369 DOI: 10.1182/bloodadvances.2023011307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024] Open
Abstract
ABSTRACT Before targeted therapies, patients with higher-risk chronic lymphocytic leukemia (CLL), defined as del(17p) and/or TP53 mutation (TP53m), unmutated immunoglobulin heavy chain variable region genes (uIGHV), or complex karyotype (CK), had poorer prognosis with chemoimmunotherapy. Bruton tyrosine kinase inhibitors (BTKis) have demonstrated benefit in higher-risk patient populations with CLL in individual trials. To better understand the impact of the second-generation BTKi acalabrutinib, we pooled data from 5 prospective clinical studies of acalabrutinib as monotherapy or in combination with obinutuzumab (ACE-CL-001, ACE-CL-003, ELEVATE-TN, ELEVATE-RR, and ASCEND) in patients with higher-risk CLL in treatment-naive (TN) or relapsed/refractory (R/R) cohorts. A total of 808 patients were included (TN cohort, n = 320; R/R cohort, n = 488). Median follow-up was 59.1 months (TN cohort) and 44.3 months (R/R cohort); 51.3% and 26.8% of patients in the TN and R/R cohorts, respectively, remained on treatment at last follow-up. In the del(17p)/TP53m, uIGHV, and CK subgroups in the TN cohort, median progression-free survival (PFS) and median overall survival (OS) were not reached (NR). In the del(17p)/TP53m, uIGHV, and CK subgroups in the R/R cohort, median PFS was 38.6 months, 46.9 months, and 38.6 months, respectively, and median OS was 60.6 months, NR, and NR, respectively. The safety profile of acalabrutinib-based therapy in this population was consistent with the known safety profile of acalabrutinib in a broad CLL population. Our analysis demonstrates long-term benefit of acalabrutinib-based regimens in patients with higher-risk CLL, regardless of line of therapy.
Collapse
MESH Headings
- Humans
- Pyrazines/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Benzamides/therapeutic use
- Male
- Aged
- Female
- Middle Aged
- Aged, 80 and over
- Adult
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Recurrence
- Clinical Trials as Topic
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Treatment Outcome
Collapse
Affiliation(s)
- Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jeff P. Sharman
- Willamette Valley Cancer Institute and Research Center/US Oncology Research, Eugene, OR
| | - Paolo Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Toby A. Eyre
- Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Wojciech Jurczak
- Maria Skłodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | - Tanya Siddiqi
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | | | | | | | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
9
|
Wiedmeier-Nutor JE, McCabe CE, O’Brien DR, Jessen E, Bonolo de Campos C, Boddicker NJ, Griffin R, Allmer C, Rabe KG, Cerhan JR, Parikh SA, Kay NE, Yan H, Van Dyke DL, Slager SL, Braggio E. Utility of Targeted Sequencing Compared to FISH for Detection of Chronic Lymphocytic Leukemia Copy Number Alterations. Cancers (Basel) 2024; 16:2450. [PMID: 39001512 PMCID: PMC11240685 DOI: 10.3390/cancers16132450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by multiple copy number alterations (CNAs) and somatic mutations that are central to disease prognosis, risk stratification, and mechanisms of therapy resistance. Fluorescence in situ hybridization (FISH) panels are widely used in clinical applications as the gold standard for screening prognostic chromosomal abnormalities in CLL. DNA sequencing is an alternative approach to identifying CNAs but is not an established method for clinical CNA screening. We sequenced DNA from 509 individuals with CLL or monoclonal B-cell lymphocytosis (MBL), the precursor to CLL, using a targeted sequencing panel of 59 recurrently mutated genes in CLL and additional amplicons across regions affected by clinically relevant CNAs [i.e., del(17p), del(11q), del(13q), and trisomy 12]. We used the PatternCNV algorithm to call CNA and compared the concordance of calling clinically relevant CNAs by targeted sequencing to that of FISH. We found a high accuracy of calling CNAs via sequencing compared to FISH. With FISH as the gold standard, the specificity of targeted sequencing was >95%, sensitivity was >86%, positive predictive value was >90%, and negative predictive value was >84% across the clinically relevant CNAs. Using targeted sequencing, we were also able to identify other common CLL-associated CNAs, including del(6q), del(14q), and gain 8q, as well as complex karyotype, defined as the presence of 3 or more chromosomal abnormalities, in 26 patients. In a single and cost-effective assay that can be performed on stored DNA samples, targeted sequencing can simultaneously detect CNAs, somatic mutations, and complex karyotypes, which are all important prognostic features in CLL.
Collapse
Affiliation(s)
- J. Erin Wiedmeier-Nutor
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Chantal E. McCabe
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel R. O’Brien
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik Jessen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Cecilia Bonolo de Campos
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Nicholas J. Boddicker
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosalie Griffin
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Cristine Allmer
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Kari G. Rabe
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - James R. Cerhan
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Sameer A. Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Neil E. Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Huihuang Yan
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel L. Van Dyke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Susan L. Slager
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Esteban Braggio
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
10
|
Stamatopoulos K, Pavlova S, Al‐Sawaf O, Chatzikonstantinou T, Karamanidou C, Gaidano G, Cymbalista F, Kater AP, Rawstron A, Scarfò L, Ghia P, Rosenquist R. Realizing precision medicine in chronic lymphocytic leukemia: Remaining challenges and potential opportunities. Hemasphere 2024; 8:e113. [PMID: 39035106 PMCID: PMC11260284 DOI: 10.1002/hem3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) exhibit diverse clinical outcomes. An expanding array of genetic tests is now employed to facilitate the identification of patients with high-risk disease and inform treatment decisions. These tests encompass molecular cytogenetic analysis, focusing on recurrent chromosomal alterations, particularly del(17p). Additionally, sequencing is utilized to identify TP53 mutations and to determine the somatic hypermutation status of the immunoglobulin heavy variable gene. Concurrently, a swift advancement of targeted treatment has led to the implementation of novel strategies for patients with CLL, including kinase and BCL2 inhibitors. This review explores both current and emerging diagnostic tests aimed at identifying high-risk patients who should benefit from targeted therapies. We outline existing treatment paradigms, emphasizing the importance of matching the right treatment to the right patient beyond genetic stratification, considering the crucial balance between safety and efficacy. We also take into consideration the practical and logistical issues when choosing a management strategy for each individual patient. Furthermore, we delve into the mechanisms underlying therapy resistance and stress the relevance of monitoring measurable residual disease to guide treatment decisions. Finally, we underscore the necessity of aggregating real-world data, adopting a global perspective, and ensuring patient engagement. Taken together, we argue that precision medicine is not the mere application of precision diagnostics and accessibility of precision therapies in CLL but encompasses various aspects of the patient journey (e.g., lifestyle exposures and comorbidities) and their preferences toward achieving true personalized medicine for patients with CLL.
Collapse
Affiliation(s)
- Kostas Stamatopoulos
- Centre for Research and Technology HellasInstitute of Applied BiosciencesThessalonikiGreece
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Sarka Pavlova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and GenomicsUniversity Hospital Brno and Medical Faculty, Masaryk UniversityBrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Othman Al‐Sawaf
- Department I of Internal Medicine and German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)University of Cologne, Faculty of Medicine and University Hospital of CologneCologneGermany
- Francis Crick Institute LondonLondonUK
- Cancer Institute, University College LondonLondonUK
| | | | - Christina Karamanidou
- Centre for Research and Technology HellasInstitute of Applied BiosciencesThessalonikiGreece
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| | | | - Arnon P. Kater
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Andy Rawstron
- Haematological Malignancy Diagnostic ServiceLeeds Teaching Hospitals TrustLeedsUK
| | - Lydia Scarfò
- Medical SchoolUniversità Vita Salute San RaffaeleMilanoItaly
- Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanoItaly
| | - Paolo Ghia
- Medical SchoolUniversità Vita Salute San RaffaeleMilanoItaly
- Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanoItaly
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University HospitalStockholmSweden
| |
Collapse
|
11
|
Goergen E, Al-Sawaf O. The prognostic significance of genomic complexity in patients with CLL. Leuk Lymphoma 2024; 65:873-881. [PMID: 38593054 DOI: 10.1080/10428194.2024.2333448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
Chromosomal aberrations are a common feature of cancer and can fuel cancer progression and treatment resistance. In chronic lymphocytic leukemia (CLL), the presence of multiple chromosomal aberrations is commonly referred to as "genomic complexity" or "complex karyotype"- (CKT). In the context of chemo- and chemoimmunotherapy, genomic complexity is associated with poor response to treatment and short survival, while some targeted therapies are able to mitigate its adverse prognostic impact. This article reviews currently available data and literature on the role of genomic complexity in CLL. The currently established tools to measure genomic complexity in patients with CLL are summarized and their strengths and weaknesses for routine diagnostics are evaluated. Moreover, possible definitions of CKT as an indicator for genomic complexity are discussed. Finally, data on the impact of CKT on clinical outcomes of patients with CLL are reviewed and the implications for patient stratification are presented.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Prognosis
- Chromosome Aberrations
- Genomics/methods
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Ellinor Goergen
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Othman Al-Sawaf
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Negara I, Tomuleasa C, Buruiana S, Efremov DG. Molecular Subtypes and the Role of TP53 in Diffuse Large B-Cell Lymphoma and Richter Syndrome. Cancers (Basel) 2024; 16:2170. [PMID: 38927876 PMCID: PMC11201917 DOI: 10.3390/cancers16122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy and a heterogeneous entity comprised of several biologically distinct subtypes. Recently, novel genetic classifications of DLBCL have been resolved based on common mutational patterns indicative of distinct pathways of transformation. However, the complicated and costly nature of the novel classifiers has precluded their inclusion into routine practice. In view of this, the status of the TP53 gene, which is mutated or deleted in 20-30% of the cases, has emerged as an important prognostic factor for DLBCL patients, setting itself apart from other predictors. TP53 genetic lesions are particularly enriched in a genetic subtype of DLBCL that shares genomic features with Richter Syndrome, highlighting the possibility of a subset of DLBCL arising from the transformation of an occult chronic lymphocytic leukemia-like malignancy, such as monoclonal B-cell lymphocytosis. Patients with TP53-mutated DLBCL, including those with Richter Syndrome, have a particularly poor prognosis and display inferior responses to standard chemoimmunotherapy regimens. The data presented in this manuscript argue for the need for improved and more practical risk-stratification models for patients with DLBCL and show the potential for the use of TP53 mutational status for prognostication and, in prospect, treatment stratification in DLBCL.
Collapse
Affiliation(s)
- Ivan Negara
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Department of Internal Medicine, Hematology, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Sanda Buruiana
- Department of Internal Medicine, Hematology, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Dimitar G. Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia
| |
Collapse
|
13
|
Lew TE, Bennett R, Lin VS, Whitechurch A, Handunnetti SM, Marlton P, Shen Y, Mulligan SP, Casan J, Blombery P, Tam CS, Roberts AW, Seymour JF, Thompson PA, Anderson MA. Venetoclax-rituximab is active in patients with BTKi-exposed CLL, but durable treatment-free remissions are uncommon. Blood Adv 2024; 8:1439-1443. [PMID: 38231032 PMCID: PMC10955641 DOI: 10.1182/bloodadvances.2023011327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
- Thomas E. Lew
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rory Bennett
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Victor S. Lin
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Ashley Whitechurch
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Paula Marlton
- Department of Hematology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Yandong Shen
- Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Stephen P. Mulligan
- Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia
- Department of Haematology and Flow Cytometry, Laverty Pathology, Sydney, NSW, Australia
| | - Joshua Casan
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Piers Blombery
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Andrew W. Roberts
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - John F. Seymour
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Philip A. Thompson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mary A. Anderson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Jondreville L, Dehgane L, Doualle C, Smagghe L, Grange B, Davi F, Lerner LK, Garnier D, Bravetti C, Tournilhac O, Roos-Weil D, Boubaya M, Chapiro E, Susin SA, Nguyen-Khac F. del(8p) and TNFRSF10B loss are associated with a poor prognosis and resistance to fludarabine in chronic lymphocytic leukemia. Leukemia 2023; 37:2221-2230. [PMID: 37752286 DOI: 10.1038/s41375-023-02035-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease, the prognosis of which varies according to the cytogenetic group. We characterized a rare chromosomal abnormality (del(8p), deletion of the short arm of chromosome 8) in the context of CLL. By comparing the largest cohort of del(8p) CLL to date (n = 57) with a non-del(8p) cohort (n = 155), del(8p) was significantly associated with a poor prognosis, a shorter time to first treatment, worse overall survival (OS), and a higher risk of Richter transformation. For patients treated with fludarabine-based regimens, the next-treatment-free survival and the OS were shorter in del(8p) cases (including those with mutated IGHV). One copy of the TNFRSF10B gene (coding a pro-apoptotic receptor activated by TRAIL) was lost in 91% of del(8p) CLL. TNFRSF10B was haploinsufficient in del(8p) CLL, and was involved in the modulation of fludarabine-induced cell death - as confirmed by our experiments in primary cells and in CRISPR-edited TNFRSF10B knock-out CLL cell lines. Lastly, del(8p) abrogated the synergy between fludarabine and TRAIL-induced apoptosis. Our results highlight del(8p)'s value as a prognostic marker and suggest that fit CLL patients (i.e. with mutated IGHV and no TP53 disruption) should be screened for del(8p) before the initiation of fludarabine-based treatment.
Collapse
Affiliation(s)
- Ludovic Jondreville
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Lea Dehgane
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Cecile Doualle
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Luce Smagghe
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Beatrice Grange
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Frederic Davi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Leticia K Lerner
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Clotilde Bravetti
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Olivier Tournilhac
- Service d'Hématologie Clinique, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand, France
| | - Damien Roos-Weil
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marouane Boubaya
- Unité de Recherche Clinique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Bobigny, France
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France.
| |
Collapse
|
15
|
Hengeveld PJ, Kolijn PM, Demmers JA, Doff W, Dubois JM, Rijken M, Assmann JL, van der Straten L, Boiten HJ, Gussinklo KJ, Valk PJ, Faber LM, Westerweel PE, Kater AP, Levin MD, Langerak AW. High-throughput Proteomics Identifies THEMIS2 as Independent Biomarker of Treatment-free Survival in Untreated CLL. Hemasphere 2023; 7:e951. [PMID: 37731707 PMCID: PMC10508458 DOI: 10.1097/hs9.0000000000000951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
It remains challenging in chronic lymphocytic leukemia (CLL) to distinguish between patients with favorable and unfavorable time-to-first treatment (TTFT). Additionally, the downstream protein correlates of well-known molecular features of CLL are not always clear. To address this, we selected 40 CLL patients with TTFT ≤24 months and compared their B cell intracellular protein expression with 40 age- and sex-matched CLL patients with TTFT >24 months using mass spectrometry. In total, 3268 proteins were quantified in the cohort. Immunoglobulin heavy-chain variable (IGHV) mutational status and trisomy 12 were most impactful on the CLL proteome. Comparing cases to controls, 5 proteins were significantly upregulated, whereas 3 proteins were significantly downregulated. Of these, only THEMIS2, a signaling protein acting downstream of the B cell receptor, was significantly associated with TTFT, independently of IGHV and TP53 mutational status (hazard ratio, 2.49 [95% confidence interval, 1.62-3.84]; P < 0.001). This association was validated on the mRNA and protein level by quantitative polymerase chain reaction and ELISA, respectively. Analysis of 2 independently generated RNA sequencing and mass spectrometry datasets confirmed the association between THEMIS2 expression and clinical outcome. In conclusion, we present a comprehensive characterization of the proteome of untreated CLL and identify THEMIS2 expression as a putative biomarker of TTFT.
Collapse
Affiliation(s)
- Paul J. Hengeveld
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | | | | - Wouter Doff
- Proteomics Center, Erasmus MC, Rotterdam, the Netherlands
| | - Julie M.N. Dubois
- Department of Hematology and Experimental Immunology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Melissa Rijken
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | | | - Lina van der Straten
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Henk Jan Boiten
- Department of Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - Kirsten J. Gussinklo
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Peter J.M. Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Laura M. Faber
- Department of Hematology, Red Cross Hospital, Beverwijk, the Netherlands
| | - Peter E. Westerweel
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Arnon P. Kater
- Department of Hematology and Experimental Immunology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | |
Collapse
|
16
|
Nguyen-Khac F, Balogh Z, Chauzeix J, Veronese L, Chapiro E. Cytogenetics in the management of chronic lymphocytic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103410. [PMID: 38039634 DOI: 10.1016/j.retram.2023.103410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 12/03/2023]
Abstract
Chromosomal abnormalities are frequent in chronic lymphocytic leukemia (CLL), and most have prognostic value. In addition to the four well-known abnormalities (13q, 11q and 17p deletions, and trisomy 12), other recurrent aberrations have been linked to the disease outcome and/or drug resistance. Moreover, the complex karyotype has recently emerged as a prognostic marker for patients undergoing immunochemotherapy or targeted therapies. Here, we describe the main chromosomal abnormalities identified in CLL and related disorders (small lymphocytic lymphoma and monoclonal B-cell lymphocytosis) by reviewing the most recent literature and discussing their detection and clinical impact. Lastly, we provide technical guidelines and a strategy for the cytogenetic assessment of CLL.
Collapse
Affiliation(s)
- Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Paris, France; Service d'Hématologie Biologique, Bâtiment Pharmacie, 3e étage, Pitié-Salpêtrière/Charles Foix University Hospital, AP-HP, 83 Bd de l'Hôpital, Paris F-75013, France.
| | - Zsofia Balogh
- Département d'Innovation Thérapeutique et des Essais Précoces, Gustave Roussy, Villejuif, France
| | - Jasmine Chauzeix
- Service d'Hématologie biologique, CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, Clermont-Ferrand 63003, France
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Paris, France; Service d'Hématologie Biologique, Bâtiment Pharmacie, 3e étage, Pitié-Salpêtrière/Charles Foix University Hospital, AP-HP, 83 Bd de l'Hôpital, Paris F-75013, France
| |
Collapse
|
17
|
Rigolin GM, Traversa A, Caputo V, Del Giudice I, Bardi A, Saccenti E, Raponi S, Ilari C, Cafforio L, Giovannetti A, Pizzuti A, Guarini A, Foà R, Cuneo A. Additional lesions identified by genomic microarrays are associated with an inferior outcome in low-risk chronic lymphocytic leukaemia patients. Br J Haematol 2023; 202:953-959. [PMID: 37357817 DOI: 10.1111/bjh.18946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
We explored the relevance of genomic microarrays (GM) in the refinement of prognosis in newly diagnosed low-risk chronic lymphocytic leukaemia (CLL) patients as defined by isolated del(13q) or no lesions by a standard 4 probe fluorescence in situ hybridization (FISH) analysis. Compared to FISH, additional lesions were detected by GM in 27 of the 119 patients (22.7%). The concordance rate between FISH and GM was 87.4%. Discordant results between cytogenetic banding analysis (CBA) and GM were observed in 45/119 cases (37.8%) and were mainly due to the intrinsic characteristics of each technique. The presence of additional lesions by GM was associated with age > 65 years (p = 0.047), advanced Binet stage (p = 0.001), CLL-IPI score (p < 0.001), a complex karyotype (p = 0.004) and a worse time-to-first treatment in multivariate analysis (p = 0.009). Additional lesions by GM were also significantly associated with a worse time-to-first treatment in the subset of patients with wild-type TP53 and mutated IGHV (p = 0.025). In CLL patients with low-risk features, the presence of additional lesions identified by GM helps to identify a subset of patients with a worse outcome that could be proposed for a risk-adapted follow-up and for early treatment including targeted agents within clinical trials.
Collapse
Affiliation(s)
| | - Alice Traversa
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Antonella Bardi
- Hematology Section, St. Anna University Hospital, Ferrara, Italy
| | - Elena Saccenti
- Hematology Section, St. Anna University Hospital, Ferrara, Italy
| | - Sara Raponi
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Caterina Ilari
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Luciana Cafforio
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
- GenomeUp S.r.l., Rome, Italy
| | - Agnese Giovannetti
- Clinical Genomics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Anna Guarini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Antonio Cuneo
- Hematology Section, St. Anna University Hospital, Ferrara, Italy
| |
Collapse
|
18
|
Anderson MA, Bennett R, Badoux X, Best G, Chia N, Cochrane T, Cull G, Crassini K, Harrup R, Jackson S, Kuss B, Lasica M, Lew TE, Marlton P, Opat S, Palfreyman E, Polizzotto MN, Ratnasingam S, Seymour JF, Soosapilla A, Talaulikar D, Tam CS, Weinkove R, Wight J, Mulligan SP. Chronic lymphocytic leukaemia Australasian consensus practice statement. Intern Med J 2023; 53:1678-1691. [PMID: 37743239 DOI: 10.1111/imj.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/30/2023] [Indexed: 09/26/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in Australia and New Zealand (ANZ). Considerable changes to diagnostic and management algorithms have occurred within the last decade. The availability of next-generation sequencing and measurable residual disease assessment by flow cytometry allow for advanced prognostication and response assessments. Novel therapies, including inhibitors of Bruton's tyrosine kinase (BTKi) and B-cell lymphoma 2 (BCL2) inhibitors, have transformed the treatment landscape for both treatment-naïve and relapsed/refractory disease, particularly for patients with high-risk genetic aberrations. Recommendations regarding appropriate supportive management continue to evolve, and special considerations are required for patients with CLL with respect to the global SARS-CoV-2 pandemic. The unique funding and treatment environments in Australasia highlight the need for specific local guidance with respect to the investigation and management of CLL. This consensus practice statement was developed by a broadly representative group of ANZ experts in CLL with endorsement by peak haematology bodies, with a view to providing this standardised guidance.
Collapse
Affiliation(s)
- Mary A Anderson
- Department of Clinical Haematology, The Royal Melbourne Hospital and The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Division of Blood Cells and Blood Cancer, The Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rory Bennett
- Department of Clinical Haematology, The Royal Melbourne Hospital and The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Xavier Badoux
- St George Hospital, Sydney, New South Wales, Australia
| | - Giles Best
- Flinders University and Medical Centre, Adelaide, South Australia, Australia
| | - Nicole Chia
- Genomic Diagnostics, Healius Pathology, Brisbane, Queensland, Australia
| | - Tara Cochrane
- Gold Coast University Hospital, Griffith University, Gold Coast, Queensland, Australia
| | - Gavin Cull
- Sir Charles Gairdner Hospital, PathWest Laboratory Medicine and University of Western Australia, Perth, Western Australia, Australia
| | - Kyle Crassini
- Mid North Coast Cancer Institute, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
| | - Rosemary Harrup
- Cancer and Blood Services Royal Hobart Hospital, Hobart, Tasmania, Australia
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Sharon Jackson
- Te Whatu Ora health New Zealand Counties Manukau, Auckland, New Zealand
| | - Bryone Kuss
- Flinders University and Medical Centre, Adelaide, South Australia, Australia
| | - Masa Lasica
- St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Thomas E Lew
- Department of Clinical Haematology, The Royal Melbourne Hospital and The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Division of Blood Cells and Blood Cancer, The Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paula Marlton
- Department of Haematology, Princess Alexandra Hospital and University of Queensland, Brisbane, Queensland, Australia
| | - Stephen Opat
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Emma Palfreyman
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Mark N Polizzotto
- Department of Clinical Haematology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
- Clinical Hub for Interventional Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sumita Ratnasingam
- St John of God Hospital Geelong, Geelong, Victoria, Australia
- University Hospital Geelong, Geelong, Victoria, Australia
- School of Medicine, Geelong Clinical School, Deakin University, Geelong, Victoria, Australia
| | - John F Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Asha Soosapilla
- Flow Cytometry, Healius Pathology, Sydney, New South Wales, Australia
| | - Dipti Talaulikar
- Department of Diagnostic Genomics, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia
- Department of Haematology, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia
- Australian National University, Canberra, Australian Capital Territory, Australia
| | - Constantine S Tam
- Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Robert Weinkove
- Te Rerenga Ora Blood & Cancer Centre, Te Whatu Ora Health New Zealand Capital Coast & Hutt Valley, Wellington, New Zealand
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Joel Wight
- Department of Haematology and Bone Marrow Transplantation, Townsville University Hospital, Townsville, Queensland, Australia
- James Cook University, School of Medicine, Townsville, Queensland, Australia
| | - Stephen P Mulligan
- Royal North Shore Hospital, Sydney, New South Wales, Australia
- Healius Pathology, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Balla B, Tripon F, Candea M, Banescu C. Copy Number Variations and Gene Mutations Identified by Multiplex Ligation-Dependent Probe Amplification in Romanian Chronic Lymphocytic Leukemia Patients. J Pers Med 2023; 13:1239. [PMID: 37623489 PMCID: PMC10455273 DOI: 10.3390/jpm13081239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is known for its wide-ranging clinical and genetic diversity. The study aimed to assess the associations between copy number variations (CNVs) and various biological and clinical features, as well as the survival rates of CLL patients and to evaluate the effectiveness of the multiplex ligation-dependent probe amplification (MLPA) technique in CLL patients.DNA was extracted from 110 patients, and MLPA was performed. Mutations in NOTCH1, SF3B1, and MYD88 were also analyzed. A total of 52 patients showed at least one CNV, 26 had at least one somatic mutation, and 10 presented both, CNVs, and somatic mutations. The most commonly identified CNVs were del(114.3), del(11q22.3), and dup(12q23.2). Other CNVs identified included del(17p13.1), del(14q32.33), dup(10q23.31), and del(19p13.2). One patient was identified with concomitant trisomy 12, 13, and 19. NOTCH1 and SF3B1 mutations were found in 13 patients each, either alone or in combination with other mutations or CNVs, while MYD88 mutation was identified in one patient. Forty-two patients had normal results. Associations between the investigated CNVs and gene mutations and patients' overall survival were found. The presence of NOTCH1 and SF3B1 mutations or the combination of NOTCH1 mutation and CNVs significantly influenced the survival of patients with CLL. Both mutations are frequently associated with different CNVs. Del(13q) is associated with the longest survival rate, while the shortest survival is found in patients with del(17p). Even if MLPA has constraints, it may be used as the primary routine analysis in patients with CLL.
Collapse
Affiliation(s)
- Beata Balla
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Florin Tripon
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Marcela Candea
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Claudia Banescu
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Medical Genetics Laboratory, Emergency County Hospital of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
20
|
Fürstenau M, Thus YJ, Robrecht S, Mellink CHM, van der Kevie-Kersemaekers AM, Dubois J, von Tresckow J, Patz M, Gregor M, Thornton P, Staber PB, Tadmor T, Levin MD, da Cunha-Bang C, Schneider C, Poulsen CB, Illmer T, Schöttker B, Janssens A, Christiansen I, Nösslinger T, Baumann M, Hebart H, Gaska T, Regelink JC, Dompeling EC, Lindström V, Juliusson G, Widmer A, Goede J, Goldschmidt N, Simon F, De Silva N, Fink AM, Fischer K, Wendtner CM, Ritgen M, Brüggemann M, Tausch E, Spaargaren M, Eldering E, Stilgenbauer S, Niemann CU, Hallek M, Eichhorst B, Kreuzer KA, Kater AP. High karyotypic complexity is an independent prognostic factor in patients with CLL treated with venetoclax combinations. Blood 2023; 142:446-459. [PMID: 37172204 DOI: 10.1182/blood.2023019634] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/14/2023] Open
Abstract
Complex karyotypes have been associated with inferior outcomes in chronic lymphocytic leukemia (CLL) treated with chemoimmunotherapy (CIT), whereas their prognostic impact in the context of venetoclax-based treatments is still debated. In this prospective analysis on karyotype complexity in CLL, we evaluated the impact of complex (≥3 chromosomal aberrations [CAs], CKTs) and highly complex karyotypes (≥5 CAs; hCKTs) as well as specific aberrations in previously untreated patients without TP53 aberrations undergoing either CIT or time-limited venetoclax-based therapies in the phase 3 GAIA/CLL13 trial. Karyotype analyses were available for 895 of 926 patients (96.7%), of whom 153 (17%) had a CKT and 43 (5%) hCKT. In the CIT arm, CKT was associated with shorter progression-free survival (PFS) (hazard ratio [HR] 2.58; 95% confidence interval [95% CI], 1.54-4.32; P < .001) and overall survival (HR, 3.25; 95% CI, 1.03-10.26; P = .044). In the pooled venetoclax arms, a multivariable analysis identified hCKTs (HR, 1.96; 95% CI, 1.03-3.72; P = .041), but not CKTs, as independent adverse prognosticators for PFS. The presence of translocations (unbalanced and/or balanced) was also independently associated with shorter PFSs in the venetoclax arms. CIT led to the acquisition of additional CAs (mean CAs, 2.0-3.4; from baseline to CLL progression), whereas karyotype complexity remained stable after venetoclax-based treatments (2.0, both time points). This analysis establishes highly complex karyotypes and translocations as adverse prognostic factors in the context of venetoclax-based combination treatments. The findings of this study support the incorporation of karyotyping into the standard diagnostic workup of CLL, because it identifies patients at high risk of poor treatment outcomes and thereby improves prognostication. This trial was registered at www.clinicaltrials.gov as #NCT02950051.
Collapse
Affiliation(s)
- Moritz Fürstenau
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Yvonne J Thus
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandra Robrecht
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Clemens H M Mellink
- Genome Diagnostics Laboratory, Section Cytogenetics, Department of Human Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie van der Kevie-Kersemaekers
- Genome Diagnostics Laboratory, Section Cytogenetics, Department of Human Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Julie Dubois
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Julia von Tresckow
- Clinic for Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michaela Patz
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Michael Gregor
- Division of Hematology, Cantonal Hospital of Lucerne, Lucerne, Switzerland
- Swiss Group for Clinical Cancer Research, Berne, Switzerland
| | - Patrick Thornton
- Department of Haematology, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Cancer Trials Ireland, Dublin, Ireland
| | - Philipp B Staber
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tamar Tadmor
- Hematology, Bnai-Zion Medical Center, Haifa, Israel
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Caspar da Cunha-Bang
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christof Schneider
- Division of CLL, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Thomas Illmer
- BAG Freiberg-Richter, Jacobasch, Wolf, Illmer, Dresden, Germany
| | - Björn Schöttker
- Hämatologisch-onkologische Schwerpunktpraxis Würzburg, Würzburg, Germany
| | - Ann Janssens
- Department of Hematology, Universitaire Ziekenhuizen Leuven, Leuven, Belgium
| | - Ilse Christiansen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Thomas Nösslinger
- Department of Internal Medicine III, Hanusch Hospital, Vienna, Austria
| | - Michael Baumann
- Swiss Group for Clinical Cancer Research, Berne, Switzerland
- Department of Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Holger Hebart
- Department of Oncology, Stauferklinikum, Mutlangen, Germany
| | - Tobias Gaska
- Hematology and Oncology, Brüderkrankenhaus, Paderborn, Germany
| | - Josien C Regelink
- Department of Haematology, Meander Medisch Centrum, Amersfoort, The Netherlands
| | | | - Vesa Lindström
- Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Gunnar Juliusson
- Department of Hematology, Skåne University Hospital, Lund, Sweden
| | - Anouk Widmer
- Swiss Group for Clinical Cancer Research, Berne, Switzerland
- Department of Medical Oncology and Haematology, Universitätsspital Zürich, Zürich, Switzerland
| | - Jeroen Goede
- Swiss Group for Clinical Cancer Research, Berne, Switzerland
- Clinic for Medical Oncology and Hematology, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Neta Goldschmidt
- Department of Hematology, Hadassah Medical Center, Jerusalem, Israel
| | - Florian Simon
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Nisha De Silva
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Anna-Maria Fink
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Clemens-Martin Wendtner
- Department of Hematology, Oncology, Immunology, Palliative Care, Infectious Diseases and Tropical Medicine, German CLL Study Group, Munich Clinic Schwabing, Munich, Germany
| | - Matthias Ritgen
- Department II of Internal Medicine, University of Schleswig-Holstein, Kiel, Germany
| | - Monika Brüggemann
- Department II of Internal Medicine, University of Schleswig-Holstein, Kiel, Germany
| | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Marcel Spaargaren
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German CLL Study Group, University of Cologne, Cologne, Germany
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Coccaro N, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Minervini CF, Minervini A, Conserva MR, Redavid I, Parciante E, Macchia MG, Specchia G, Musto P, Albano F. Feasibility of Optical Genome Mapping in Cytogenetic Diagnostics of Hematological Neoplasms: A New Way to Look at DNA. Diagnostics (Basel) 2023; 13:diagnostics13111841. [PMID: 37296693 DOI: 10.3390/diagnostics13111841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Optical genome mapping (OGM) is a new genome-wide technology that can reveal both structural genomic variations (SVs) and copy number variations (CNVs) in a single assay. OGM was initially employed to perform genome assembly and genome research, but it is now more widely used to study chromosome aberrations in genetic disorders and in human cancer. One of the most useful OGM applications is in hematological malignancies, where chromosomal rearrangements are frequent and conventional cytogenetic analysis alone is insufficient, necessitating further confirmation using ancillary techniques such as fluorescence in situ hybridization, chromosomal microarrays, or multiple ligation-dependent probe amplification. The first studies tested OGM efficiency and sensitivity for SV and CNV detection, comparing heterogeneous groups of lymphoid and myeloid hematological sample data with those obtained using standard cytogenetic diagnostic tests. Most of the work based on this innovative technology was focused on myelodysplastic syndromes (MDSs), acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL), whereas little attention was paid to chronic lymphocytic leukemia (CLL) or multiple myeloma (MM), and none was paid to lymphomas. The studies showed that OGM can now be considered as a highly reliable method, concordant with standard cytogenetic techniques but able to detect novel clinically significant SVs, thus allowing better patient classification, prognostic stratification, and therapeutic choices in hematological malignancies.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luisa Anelli
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angela Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Rosa Conserva
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Elisa Parciante
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Giovanna Macchia
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Albano
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
22
|
Matis S, Grazia Recchia A, Colombo M, Cardillo M, Fabbi M, Todoerti K, Bossio S, Fabris S, Cancila V, Massara R, Reverberi D, Emionite L, Cilli M, Cerruti G, Salvi S, Bet P, Pigozzi S, Fiocca R, Ibatici A, Angelucci E, Gentile M, Monti P, Menichini P, Fronza G, Torricelli F, Ciarrocchi A, Neri A, Fais F, Tripodo C, Morabito F, Ferrarini M, Cutrona G. MiR-146b-5p regulates IL-23 receptor complex expression in chronic lymphocytic leukemia cells. Blood Adv 2022; 6:5593-5612. [PMID: 35819446 PMCID: PMC9647700 DOI: 10.1182/bloodadvances.2021005726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells express the interleukin-23 receptor (IL-23R) chain, but the expression of the complementary IL-12Rβ1 chain requires cell stimulation via surface CD40 molecules (and not via the B-cell receptor [BCR]). This stimulation induces the expression of a heterodimeric functional IL-23R complex and the secretion of IL-23, initiating an autocrine loop that drives leukemic cell expansion. Based on the observation in 224 untreated Binet stage A patients that the cases with the lowest miR-146b-5p concentrations had the shortest time to first treatment (TTFT), we hypothesized that miR-146b-5p could negatively regulate IL-12Rβ1 side chain expression and clonal expansion. Indeed, miR-146b-5p significantly bound to the 3'-UTR region of the IL-12Rβ1 mRNA in an in vitro luciferase assay. Downregulation of miR-146b-5p with specific miRNA inhibitors in vitro led to the upregulation of the IL-12Rβ1 side chain and expression of a functional IL-23R complex similar to that observed after stimulation of the CLL cell through the surface CD40 molecules. Expression of miR-146b-5p with miRNA mimics in vitro inhibited the expression of the IL-23R complex after stimulation with CD40L. Administration of a miR-146b-5p mimic to NSG mice, successfully engrafted with CLL cells, caused tumor shrinkage, with a reduction of leukemic nodules and of IL-12Rβ1-positive CLL cells in the spleen. Our findings indicate that IL-12Rβ1 expression, a crucial checkpoint for the functioning of the IL-23 and IL-23R complex loop, is under the control of miR-146b-5p, which may represent a potential target for therapy since it contributes to the CLL pathogenesis. This trial is registered at www.clinicaltrials.gov as NCT00917540.
Collapse
Affiliation(s)
- Serena Matis
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Grazia Recchia
- Hematology Unit AO of Cosenza, Cosenza, Italy
- Biothecnology Research Unit, AO, Cosenza, Italy
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martina Cardillo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Marina Fabbi
- Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Katia Todoerti
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Bossio
- Hematology Unit AO of Cosenza, Cosenza, Italy
- Biothecnology Research Unit, AO, Cosenza, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Rosanna Massara
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giannamaria Cerruti
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sandra Salvi
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Bet
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Pigozzi
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Roberto Fiocca
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Adalberto Ibatici
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuele Angelucci
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Massimo Gentile
- Hematology Unit AO of Cosenza, Cosenza, Italy
- Biothecnology Research Unit, AO, Cosenza, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Fortunato Morabito
- Biothecnology Research Unit, AO, Cosenza, Italy
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
23
|
Seymour JF, Kipps TJ, Eichhorst BF, D'Rozario J, Owen CJ, Assouline S, Lamanna N, Robak T, de la Serna J, Jaeger U, Cartron G, Montillo M, Mellink C, Chyla B, Panchal A, Lu T, Wu JQ, Jiang Y, Lefebure M, Boyer M, Kater AP. Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab. Blood 2022; 140:839-850. [PMID: 35605176 PMCID: PMC9412011 DOI: 10.1182/blood.2021015014] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/30/2022] [Indexed: 11/20/2022] Open
Abstract
The MURANO trial (A Study to Evaluate the Benefit of Venetoclax Plus Rituximab Compared With Bendamustine Plus Rituximab in Participants With Relapsed or Refractory Chronic Lymphocytic Leukemia [CLL]; ClinicalTrials.gov identifier #NCT02005471) reported superior progression-free survival (PFS) and overall survival (OS) with venetoclax-rituximab (VenR) vs bendamustine-rituximab (BR) in relapsed/refractory (R/R) CLL. Patients were randomized to 2 years of VenR (n = 194; rituximab for the first 6 months) or 6 months of BR (n = 195). Although undetectable minimal residual disease (uMRD) was achieved more often with VenR, the long-term implications of uMRD with this fixed-duration, chemotherapy-free regimen have not been explored. We report MRD kinetics and updated outcomes with 5 years' follow-up. Survival benefits with VenR vs BR were sustained (median PFS [95% confidence interval]: 53.6 [48.4, 57.0] vs 17.0 [15.5, 21.7] months, respectively, P < .0001; 5-year OS [95% confidence interval]: 82.1% [76.4, 87.8] vs 62.2% [54.8, 69.6], P < .0001). VenR was superior to BR, regardless of cytogenetic category. VenR-treated patients with uMRD at end of treatment (EOT; n = 83) had superior OS vs those with high-MRD+ (n = 12): 3-year post-EOT survival rates were 95.3% vs 72.9% (P = .039). In those with uMRD at EOT, median time to MRD conversion was 19.4 months. Of 47 patients with documented MRD conversion, 19 developed progressive disease (PD); median time from conversion to PD was 25.2 months. A population-based logistic growth model indicated slower MRD median doubling time post-EOT with VenR (93 days) vs BR (53 days; P = 1.2 × 10-7). No new safety signals were identified. Sustained survival, uMRD benefits, and durable responses support 2-year fixed-duration VenR treatment in R/R CLL.
Collapse
Affiliation(s)
- John F Seymour
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
| | | | - Barbara F Eichhorst
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine and Center of Integrated Oncology Aachen, Bonn, Cologne, Dusseldorf (CIO ABCD), Cologne, Germany
| | - James D'Rozario
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | - Sarit Assouline
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Nicole Lamanna
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | - Tadeusz Robak
- Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | | | - Ulrich Jaeger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Guillaume Cartron
- Department of Hematology, Centre Hospitalier Universitaire de Montpellier (UMR-CNRS 5535), Montpellier, France
| | - Marco Montillo
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Clemens Mellink
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Anesh Panchal
- Roche Products Ltd., Welwyn Garden City, United Kingdom
| | - Tong Lu
- Genentech, Inc., South San Francisco, CA; and
| | - Jenny Q Wu
- Genentech, Inc., South San Francisco, CA; and
| | | | | | | | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Five Percent Variant Allele Frequency Is a Reliable Reporting Threshold for TP53 Variants Detected by Next Generation Sequencing in Chronic Lymphocytic Leukemia in the Clinical Setting. Hemasphere 2022; 6:e761. [PMID: 35935605 PMCID: PMC9348859 DOI: 10.1097/hs9.0000000000000761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
The clinical significance of small TP53 clones detected with next generation sequencing (NGS) in chronic lymphocytic leukemia is an issue of active debate. According to the official guidelines, treatment decisions should be guided only by variants with variant allele frequency (VAF) ≥10%. We present data on 325 consecutive patients with chronic lymphocytic leukemia analyzed with NGS. In total 47 pathogenic/likely pathogenic (P/LP), TP53 variants were detected in 26 patients (8%). Eleven of these (23%) were in the 5% to 10% VAF range and reported according to our institutional policy. All TP53 variants in the 5% to 10% VAF range were confirmed (100% concordance) with a second NGS panel. Our results where further validated with the performance of Sanger sequencing and digital droplet PCR (ddPCR). In 12 patients with available fluorescence in situ hybridization data and TP53 mutations within 5% to 10% VAF, deletion of chromosome 17p (del(17p)) was detectable in only 1 patient. We propose a robust diagnostic algorithm, which allows the safe detection and reporting of TP53 variants with VAF down to 5% in the clinical setting. Our study provides evidence that NGS is equally potent to detect variants with VAF 5% to 10% compared to those with VAF 10% to 15%, highlighting the urgent need for harmonization of NGS methodologies across diagnostic laboratories.
Collapse
|
25
|
Wästerlid T, Cavelier L, Haferlach C, Konopleva M, Fröhling S, Östling P, Bullinger L, Fioretos T, Smedby KE. Application of precision medicine in clinical routine in haematology-Challenges and opportunities. J Intern Med 2022; 292:243-261. [PMID: 35599019 PMCID: PMC9546002 DOI: 10.1111/joim.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Precision medicine is revolutionising patient care in cancer. As more knowledge is gained about the impact of specific genetic lesions on diagnosis, prognosis and treatment response, diagnostic precision and the possibility for optimal individual treatment choice have improved. Identification of hallmark genetic aberrations such as the BCR::ABL1 gene fusion in chronic myeloid leukaemia (CML) led to the rapid development of efficient targeted therapy and molecular follow-up, vastly improving survival for patients with CML during recent decades. The assessment of translocations, copy number changes and point mutations are crucial for the diagnosis and risk stratification of acute myeloid leukaemia and myelodysplastic syndromes. Still, the often heterogeneous and complex genetic landscape of haematological malignancies presents several challenges for the implementation of precision medicine to guide diagnosis, prognosis and treatment choice. This review provides an introduction and overview of the important molecular characteristics and methods currently applied in clinical practice to guide clinical decision making in haematological malignancies of myeloid and lymphoid origin. Further, experimental ways to guide the choice of targeted therapy for refractory patients are reviewed, such as functional precision medicine using drug profiling. An example of the use of pipeline studies where the treatment is chosen according to the molecular characteristics in rare solid malignancies is also provided. Finally, the future opportunities and remaining challenges of precision medicine in the real world are discussed.
Collapse
Affiliation(s)
- Tove Wästerlid
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Marina Konopleva
- Department of Leukemia, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Päivi Östling
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK) Berlin Site, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Science for Life Laboratory, Lund University and Clinical Genomics Lund, Lund, Sweden
| | - Karin E Smedby
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Ramos-Campoy S, Puiggros A, Kamaso J, Beà S, Bougeon S, Larráyoz MJ, Costa D, Parker H, Rigolin GM, Blanco ML, Collado R, Ancín I, Salgado R, Moro-García MA, Baumann T, Gimeno E, Moreno C, Salido M, Calvo X, Calasanz MJ, Cuneo A, Nguyen-Khac F, Oscier D, Haferlach C, Strefford JC, Schoumans J, Espinet B. TP53 Abnormalities Are Underlying the Poor Outcome Associated with Chromothripsis in Chronic Lymphocytic Leukemia Patients with Complex Karyotype. Cancers (Basel) 2022; 14:3715. [PMID: 35954380 PMCID: PMC9367500 DOI: 10.3390/cancers14153715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Chromothripsis (cth) has been associated with a dismal outcome and poor prognosis factors in patients with chronic lymphocytic leukemia (CLL). Despite being correlated with high genome instability, previous studies have not assessed the role of cth in the context of genomic complexity. Herein, we analyzed a cohort of 33 CLL patients with cth and compared them against a cohort of 129 non-cth cases with complex karyotypes. Nine cth cases were analyzed using optical genome mapping (OGM). Patterns detected by genomic microarrays were compared and the prognostic value of cth was analyzed. Cth was distributed throughout the genome, with chromosomes 3, 6 and 13 being those most frequently affected. OGM detected 88.1% of the previously known copy number alterations and several additional cth-related rearrangements (median: 9, range: 3-26). Two patterns were identified: one with rearrangements clustered in the region with cth (3/9) and the other involving both chromothriptic and non-chromothriptic chromosomes (6/9). Cases with cth showed a shorter time to first treatment (TTFT) than non-cth patients (median TTFT: 2 m vs. 15 m; p = 0.013). However, when stratifying patients based on TP53 status, cth did not affect TTFT. Only TP53 maintained its significance in the multivariate analysis for TTFT, including cth and genome complexity defined by genomic microarrays (HR: 1.60; p = 0.029). Our findings suggest that TP53 abnormalities, rather than cth itself, underlie the poor prognosis observed in this subset.
Collapse
Affiliation(s)
- Silvia Ramos-Campoy
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (E.G.); (M.S.); (X.C.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Anna Puiggros
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (E.G.); (M.S.); (X.C.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Joanna Kamaso
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (E.G.); (M.S.); (X.C.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Sílvia Beà
- Hematopathology Section, Department of Pathology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (S.B.); (D.C.); (T.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Sandrine Bougeon
- Oncogenomic Laboratory, Hematology Service, Lausanne University Hospital, 1011 Lausanne, Switzerland; (S.B.); (J.S.)
| | - María José Larráyoz
- Cytogenetics and Hematological Genetics Services, Department of Genetics, University of Navarra, 31008 Pamplona, Spain; (M.J.L.); (M.J.C.)
| | - Dolors Costa
- Hematopathology Section, Department of Pathology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (S.B.); (D.C.); (T.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (H.P.); (J.C.S.)
| | - Gian Matteo Rigolin
- Hematology Section, St. Anna University Hospital, 44121 Ferrara, Italy; (G.M.R.); (A.C.)
| | - María Laura Blanco
- Department of Hematology, Hospital de la Santa Creu I Sant Pau, 08041 Barcelona, Spain; (M.L.B.); (C.M.)
| | - Rosa Collado
- Department of Hematology, Consorcio Hospital General Universitario, 46014 Valencia, Spain;
| | - Idoya Ancín
- Department of Hematology and Hemotherapy, Hospital Universitario Cruces, 48903 Bilbao, Spain;
| | - Rocío Salgado
- Cytogenetics Laboratory, Hematology Department, Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Marco A. Moro-García
- Laboratory Medicine Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - Tycho Baumann
- Hematopathology Section, Department of Pathology, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (S.B.); (D.C.); (T.B.)
| | - Eva Gimeno
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (E.G.); (M.S.); (X.C.)
- Applied Clinical Research in Hematological Malignances, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Carol Moreno
- Department of Hematology, Hospital de la Santa Creu I Sant Pau, 08041 Barcelona, Spain; (M.L.B.); (C.M.)
| | - Marta Salido
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (E.G.); (M.S.); (X.C.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Xavier Calvo
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (E.G.); (M.S.); (X.C.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - María José Calasanz
- Cytogenetics and Hematological Genetics Services, Department of Genetics, University of Navarra, 31008 Pamplona, Spain; (M.J.L.); (M.J.C.)
| | - Antonio Cuneo
- Hematology Section, St. Anna University Hospital, 44121 Ferrara, Italy; (G.M.R.); (A.C.)
| | - Florence Nguyen-Khac
- Sorbonne University, Hematology Department, Hôpital Pitié-Salpêtrière, APHP, INSERM U1138, 75013 Paris, France;
| | - David Oscier
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK;
| | | | - Jonathan C. Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (H.P.); (J.C.S.)
| | - Jacqueline Schoumans
- Oncogenomic Laboratory, Hematology Service, Lausanne University Hospital, 1011 Lausanne, Switzerland; (S.B.); (J.S.)
| | - Blanca Espinet
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (E.G.); (M.S.); (X.C.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| |
Collapse
|
27
|
Puiggros A, Ramos-Campoy S, Kamaso J, de la Rosa M, Salido M, Melero C, Rodríguez-Rivera M, Bougeon S, Collado R, Gimeno E, García-Serra R, Alonso S, Moro-García MA, García-Malo MD, Calvo X, Arenillas L, Ferrer A, Mantere T, Hoischen A, Schoumans J, Espinet B. Optical Genome Mapping: A Promising New Tool to Assess Genomic Complexity in Chronic Lymphocytic Leukemia (CLL). Cancers (Basel) 2022; 14:cancers14143376. [PMID: 35884436 PMCID: PMC9317182 DOI: 10.3390/cancers14143376] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
Novel treatments in chronic lymphocytic leukemia (CLL) have generated interest regarding the clinical impact of genomic complexity, currently assessed by chromosome banding analysis (CBA) and chromosomal microarray analysis (CMA). Optical genome mapping (OGM), a novel technique based on imaging of long DNA molecules labeled at specific sites, allows the identification of multiple cytogenetic abnormalities in a single test. We aimed to determine whether OGM is a suitable alternative to cytogenomic assessment in CLL, especially focused on genomic complexity. Cytogenomic OGM aberrations from 42 patients were compared with CBA, FISH, and CMA information. Clinical−biological characteristics and time to first treatment (TTFT) were analyzed according to the complexity detected by OGM. Globally, OGM identified 90.3% of the known alterations (279/309). Discordances were mainly found in (peri-)centromeric or telomeric regions or subclonal aberrations (<15−20%). OGM underscored additional abnormalities, providing novel structural information on known aberrations in 55% of patients. Regarding genomic complexity, the number of OGM abnormalities had better accuracy in predicting TTFT than current methods (C-index: 0.696, 0.602, 0.661 by OGM, CBA, and CMA, respectively). A cut-off of ≥10 alterations defined a complex OGM group (C-OGM, n = 12), which included 11/14 patients with ≥5 abnormalities by CBA/CMA and one patient with chromothripsis (Kappa index = 0.778; p < 0.001). Moreover, C-OGM displayed enrichment of TP53 abnormalities (58.3% vs. 3.3%, p < 0.001) and a significantly shorter TTFT (median: 2 vs. 43 months, p = 0.014). OGM is a robust technology for implementation in the routine management of CLL patients, although further studies are required to define standard genomic complexity criteria.
Collapse
Affiliation(s)
- Anna Puiggros
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Correspondence: (A.P.); (B.E.)
| | - Silvia Ramos-Campoy
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Joanna Kamaso
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Mireia de la Rosa
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Marta Salido
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Carme Melero
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - María Rodríguez-Rivera
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Sandrine Bougeon
- Oncogenomic Laboratory, Hematology Service, Lausanne University Hospital, 1011 Lausanne, Switzerland; (S.B.); (J.S.)
| | - Rosa Collado
- Department of Hematology, Consorcio Hospital General Universitario, 46014 Valencia, Spain; (R.C.); (R.G.-S.)
| | - Eva Gimeno
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain;
- Applied Clinical Research in Hematological Malignances, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Rocío García-Serra
- Department of Hematology, Consorcio Hospital General Universitario, 46014 Valencia, Spain; (R.C.); (R.G.-S.)
- Research Foundation from Hospital General Universitario, 46014 Valencia, Spain
| | - Sara Alonso
- Department of Hematology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | | | | | - Xavier Calvo
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Leonor Arenillas
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Ana Ferrer
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, 6500 Nijmegen, The Netherlands; (T.M.); (A.H.)
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6500 Nijmegen, The Netherlands; (T.M.); (A.H.)
- Radboud Center for Infectious Diseases (RCI), Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6532 Nijmegen, The Netherlands
| | - Jacqueline Schoumans
- Oncogenomic Laboratory, Hematology Service, Lausanne University Hospital, 1011 Lausanne, Switzerland; (S.B.); (J.S.)
| | - Blanca Espinet
- Molecular Cytogenetics and Hematological Cytology Laboratories, Pathology Department, Hospital del Mar, 08003 Barcelona, Spain; (S.R.-C.); (J.K.); (M.d.l.R.); (M.S.); (C.M.); (M.R.-R.); (X.C.); (L.A.); (A.F.)
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Correspondence: (A.P.); (B.E.)
| |
Collapse
|
28
|
Pérez‐Carretero C, Hernández‐Sánchez M, González T, Quijada‐Álamo M, Martín‐Izquierdo M, Santos‐Mínguez S, Miguel‐García C, Vidal M, García‐De‐Coca A, Galende J, Pardal E, Aguilar C, Vargas‐Pabón M, Dávila J, Gascón‐Y‐Marín I, Hernández‐Rivas J, Benito R, Hernández‐Rivas J, Rodríguez‐Vicente A. TRAF3 alterations are frequent in del-3'IGH chronic lymphocytic leukemia patients and define a specific subgroup with adverse clinical features. Am J Hematol 2022; 97:903-914. [PMID: 35472012 DOI: 10.1002/ajh.26578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/08/2022]
Abstract
Interstitial 14q32 deletions involving IGH gene are infrequent events in chronic lymphocytic leukemia (CLL), affecting less than 5% of patients. To date, little is known about their clinical impact and molecular underpinnings, and its mutational landscape is currently unknown. In this work, a total of 871 CLLs were tested for the IGH break-apart probe, and 54 (6.2%) had a 300 kb deletion of 3'IGH (del-3'IGH CLLs), which contributed to a shorter time to first treatment (TFT). The mutational analysis by next-generation sequencing of 317 untreated CLLs (54 del-3'IGH and 263 as the control group) showed high mutational frequencies of NOTCH1 (30%), ATM (20%), genes involved in the RAS signaling pathway (BRAF, KRAS, NRAS, and MAP2K1) (15%), and TRAF3 (13%) within del-3'IGH CLLs. Notably, the incidence of TRAF3 mutations was significantly higher in del-3'IGH CLLs than in the control group (p < .001). Copy number analysis also revealed that TRAF3 loss was highly enriched in CLLs with 14q deletion (p < .001), indicating a complete biallelic inactivation of this gene through deletion and mutation. Interestingly, the presence of mutations in the aforementioned genes negatively refined the prognosis of del-3'IGH CLLs in terms of overall survival (NOTCH1, ATM, and RAS signaling pathway genes) and TFT (TRAF3). Furthermore, TRAF3 biallelic inactivation constituted an independent risk factor for TFT in the entire CLL cohort. Altogether, our work demonstrates the distinct genetic landscape of del-3'IGH CLL with multiple molecular pathways affected, characterized by a TRAF3 biallelic inactivation that contributes to a marked poor outcome in this subgroup of patients.
Collapse
Affiliation(s)
- Claudia Pérez‐Carretero
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - María Hernández‐Sánchez
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Teresa González
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Miguel Quijada‐Álamo
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Marta Martín‐Izquierdo
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Sandra Santos‐Mínguez
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Cristina Miguel‐García
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | | | | | | | - Emilia Pardal
- Servicio de Hematología Hospital Virgen del Puerto Plasencia Spain
| | - Carlos Aguilar
- Servicio de Hematología, Complejo Hospitalario de Soria Soria Spain
| | | | - Julio Dávila
- Servicio de Hematología Hospital Nuestra Señora de Sonsoles Ávila Spain
| | - Isabel Gascón‐Y‐Marín
- Servicio de Hematología, Hospital Universitario Infanta Leonor Universidad Complutense Madrid Spain
| | | | - Rocío Benito
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Jesús‐María Hernández‐Rivas
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| | - Ana‐Eugenia Rodríguez‐Vicente
- Universidad de Salamanca, IBSAL, IBMCC‐ Centro de Investigación del Cáncer (USAL‐CSIC) Salamanca Spain
- Servicio de Hematología Hospital Universitario de Salamanca Salamanca Spain
| |
Collapse
|
29
|
Sudha P, Ahsan A, Ashby C, Kausar T, Khera A, Kazeroun MH, Hsu CC, Wang L, Fitzsimons E, Salminen O, Blaney P, Czader M, Williams J, Abu Zaid MI, Ansari-Pour N, Yong KL, van Rhee F, Pierceall WE, Morgan GJ, Flynt E, Gooding S, Abonour R, Ramasamy K, Thakurta A, Walker BA. Myeloma Genome Project Panel is a Comprehensive Targeted Genomics Panel for Molecular Profiling of Patients with Multiple Myeloma. Clin Cancer Res 2022; 28:2854-2864. [PMID: 35522533 PMCID: PMC9250632 DOI: 10.1158/1078-0432.ccr-21-3695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE We designed a comprehensive multiple myeloma targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. EXPERIMENTAL DESIGN The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNA). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical FISH (translocations), multiplex ligation probe analysis (MLPA; CNAs), whole-genome sequencing (WGS; CNAs, mutations, translocations), or droplet digital PCR (ddPCR) of known standards (mutations). RESULTS Canonical immunoglobulin heavy chain translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for 1 patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2 = 0.969. Variant allele frequency (VAF) for 74 mutations were compared between sequencing and ddPCR with concordance of R2 = 0.9849. CONCLUSIONS In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost-effective, comprehensive, clinically actionable, and can be routinely deployed to assist risk stratification at diagnosis or posttreatment to guide sequencing of therapies.
Collapse
Affiliation(s)
- Parvathi Sudha
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Aarif Ahsan
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Cody Ashby
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tasneem Kausar
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Akhil Khera
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Mohammad H. Kazeroun
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Chih-Chao Hsu
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Lin Wang
- Department of Pathology and Laboratory Research, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | | | - Outi Salminen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Patrick Blaney
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Magdalena Czader
- Department of Pathology and Laboratory Research, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Jonathan Williams
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Mohammad I. Abu Zaid
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Naser Ansari-Pour
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kwee L. Yong
- Cancer Institute, University College London, London, United Kingdom
| | - Frits van Rhee
- Myeloma Center, Winthrop P. Rockefeller Cancer institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Gareth J. Morgan
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Erin Flynt
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Sarah Gooding
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Center for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | - Rafat Abonour
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| | - Karthik Ramasamy
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford Center for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Anjan Thakurta
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
- Oxford Center for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Brian A. Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
30
|
Ondroušková E, Bohúnová M, Závacká K, Čech P, Šmuhařová P, Boudný M, Oršulová M, Panovská A, Radová L, Doubek M, Plevová K, Jarošová M. Duplication of 8q24 in Chronic Lymphocytic Leukemia: Cytogenetic and Molecular Biologic Analysis of MYC Aberrations. Front Oncol 2022; 12:859618. [PMID: 35814434 PMCID: PMC9263084 DOI: 10.3389/fonc.2022.859618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) with cytogenetics findings, such as complex karyotype and deletions of TP53 or ATM, is associated with adverse clinical outcomes. Additional chromosomal abnormalities further stratify patients into groups with diverse prognoses. Gain of 8q24 is one of the abnormalities considered as prognostically unfavorable. In our study, we performed a FISH analysis in an initial cohort of 303 consecutive CLL patients and determined the frequency of +8q to be 6.3 %. Our analysis confirmed the association with TP53/ATM aberrations and CK, as the frequency of +8q reached 26.7 % in an extended delTP53/ATM+CK cohort. M-FISH analysis enabled the identification of partner chromosomes where the segment of the duplicated 8q arm was localized. More detailed mapping of the gained 8q region using the M-BAND method determined the smallest amplified region 8q23-8qter. We observed significantly shorter overall survival (OS; 9.0 years in +8q-positive vs. 10.6 years in +8q-negative; p=0.02) and detected slightly higher MYC mRNA/protein levels in +8q-positive vs. +8q-negative patients.
Collapse
Affiliation(s)
- Eva Ondroušková
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Michaela Bohúnová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kristýna Závacká
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Patrik Čech
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Šmuhařová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Miroslav Boudný
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Martina Oršulová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Anna Panovská
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lenka Radová
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Michael Doubek
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Karla Plevová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marie Jarošová
- Department of Internal Medicine – Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
- *Correspondence: Marie Jarošová,
| |
Collapse
|
31
|
Hengeveld PJ, Ertem YE, Dubois JMN, Mellink CHM, van der Kevie-Kersemaekers AM, Evers LM, Heezen K, Kolijn PM, Mook ORF, Motazacker MM, Nasserinejad K, Kersting S, Westerweel PE, Niemann CU, Kater AP, Langerak AW, Levin MD. Clinicobiological characteristics and treatment efficacy of novel agents in chronic lymphocytic leukemia with IGLV3-21 R110. Leukemia 2022; 36:1935-1938. [PMID: 35585140 DOI: 10.1038/s41375-022-01600-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Paul J Hengeveld
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Y Emre Ertem
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Julie M N Dubois
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Clemens H M Mellink
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ludo M Evers
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kim Heezen
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - P Martijn Kolijn
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Olaf R F Mook
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - M Mahdi Motazacker
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kazem Nasserinejad
- HOVON Data Center, Dept. of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - S Kersting
- Department of Hematology, Haga Hospital, The Hague, The Netherlands
| | - Peter E Westerweel
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Arnon P Kater
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands.
| |
Collapse
|
32
|
Nguyen-Khac F, Bidet A, Daudignon A, Lafage-Pochitaloff M, Ameye G, Bilhou-Nabéra C, Chapiro E, Collonge-Rame MA, Cuccuini W, Douet-Guilbert N, Eclache V, Luquet I, Michaux L, Nadal N, Penther D, Quilichini B, Terre C, Lefebvre C, Troadec MB, Véronèse L. The complex karyotype in hematological malignancies: a comprehensive overview by the Francophone Group of Hematological Cytogenetics (GFCH). Leukemia 2022; 36:1451-1466. [DOI: 10.1038/s41375-022-01561-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022]
|
33
|
Cytogenetics in Chronic Lymphocytic Leukemia: ERIC Perspectives and Recommendations. Hemasphere 2022; 6:e707. [PMID: 35392482 PMCID: PMC8984316 DOI: 10.1097/hs9.0000000000000707] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
Mounting evidence underscores the clinical value of cytogenetic analysis in chronic lymphocytic leukemia (CLL), particularly as it allows the identification of complex karyotype, that has recently emerged as a prognostic and potentially predictive biomarker. That said, explicit recommendations regarding the methodology and clinical interpretation of either chromosome banding analysis (CBA) or chromosome microarray analysis (CMA) are still lacking. We herein present the consensus of the Cytogenetic Steering Scientific Committee of ERIC, the European Research Initiative on CLL, regarding methodological issues as well as clinical interpretation of CBA/CMA and discuss their relevance in CLL. ERIC considers CBA standardized and feasible for CLL on the condition that standards are met, extending from the use of novel mitogens to the accurate interpretation of the findings. On the other hand, CMA, is also standardized, however, robust data on its clinical utility are still scarce. In conclusion, cytogenetic analysis is not yet mature enough to guide treatment choices in CLL. That notwithstanding, ERIC encourages the wide application of CBA, and potentially also CMA, in clinical trials in order to obtain robust evidence regarding the predictive value of specific cytogenetic profiles towards refining risk stratification and improving the management of patients with CLL.
Collapse
|
34
|
Insight into the Molecular Basis Underlying Chromothripsis. Int J Mol Sci 2022; 23:ijms23063318. [PMID: 35328739 PMCID: PMC8948871 DOI: 10.3390/ijms23063318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Chromoanagenesis constitutes a group of events that arise from single cellular events during early development. This particular class of complex rearrangements is a newfound occurrence that may lead to chaotic and complex genomic realignments. By that, chromoanagenesis is thought to be a crucial factor regarding macroevolution of the genome, and consequently is affecting the karyotype revolution together with genomic plasticity. One of chromoanagenesis-type of events is chromothripsis. It is characterised by the breakage of the chromosomal structure and its reassembling in random order and orientation which results in the establishment of derivative forms of chromosomes. Molecular mechanisms that underlie this phenomenon are mostly related to chromosomal sequestration throughout the micronuclei formation process. Chromothripsis is linked both to congenital and cancer diseases, moreover, it might be detected in subjects characterised by a normal phenotype. Chromothripsis, as well as the other chromoanagenetic variations, may be confined to one or more chromosomes, which makes up a non-uniform variety of karyotypes among chromothriptic patients. The detection of chromothripsis is enabled via tools like microarray-based comparative genomic hybridisation, next generation sequencing or authorial protocols aimed for the recognition of structural variations.
Collapse
|
35
|
Soussi T, Baliakas P. Landscape of TP53 Alterations in Chronic Lymphocytic Leukemia via Data Mining Mutation Databases. Front Oncol 2022; 12:808886. [PMID: 35251978 PMCID: PMC8890000 DOI: 10.3389/fonc.2022.808886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Locus-specific databases are invaluable tools for both basic and clinical research. The extensive information they contain is gathered from the literature and manually curated by experts. Cancer genome sequencing projects generate an immense amount of data, which are stored directly in large repositories (cancer genome databases). The presence of a TP53 defect (17p deletion and/or TP53 mutations) is an independent prognostic factor in chronic lymphocytic leukemia (CLL) and TP53 status analysis has been adopted in routine clinical practice. For that reason, TP53 mutation databases have become essential for the validation of the plethora of TP53 variants detected in tumor samples. TP53 profiles in CLL are characterized by a great number of subclonal TP53 mutations with low variant allelic frequencies and the presence of multiple minor subclones harboring different TP53 mutations. In this review, we describe the various characteristics of the multiple levels of heterogeneity of TP53 variants in CLL through the analysis of TP53 mutation databases and the utility of their diagnosis in the clinic.
Collapse
Affiliation(s)
- Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Sorbonne Université, UPMC Univ Paris 06, Paris, France
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Ramos-Campoy S, Puiggros A, Beà S, Bougeon S, Larráyoz MJ, Costa D, Parker H, Rigolin GM, Ortega M, Blanco ML, Collado R, Salgado R, Baumann T, Gimeno E, Moreno C, Bosch F, Calvo X, Calasanz MJ, Cuneo A, Strefford JC, Nguyen-Khac F, Oscier D, Haferlach C, Schoumans J, Espinet B. Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients. Haematologica 2022; 107:593-603. [PMID: 33691382 PMCID: PMC8883543 DOI: 10.3324/haematol.2020.274456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/26/2021] [Indexed: 11/09/2022] Open
Abstract
Genome complexity has been associated with poor outcome in patients with chronic lymphocytic leukemia (CLL). Previous cooperative studies established five abnormalities as the cut-off that best predicts an adverse evolution by chromosome banding analysis (CBA) and genomic microarrays (GM). However, data comparing risk stratification by both methods are scarce. Herein, we assessed a cohort of 340 untreated CLL patients highly enriched in cases with complex karyotype (CK) (46.5%) with parallel CBA and GM studies. Abnormalities found by both techniques were compared. Prognostic stratification in three risk groups based on genomic complexity (0-2, 3- 4 and ≥5 abnormalities) was also analyzed. No significant differences in the percentage of patients in each group were detected, but only a moderate agreement was observed between methods when focusing on individual cases (κ=0.507; P<0.001). Discordant classification was obtained in 100 patients (29.4%), including 3% classified in opposite risk groups. Most discrepancies were technique-dependent and no greater correlation in the number of abnormalities was achieved when different filtering strategies were applied for GM. Nonetheless, both methods showed a similar concordance index for prediction of time to first treatment (TTFT) (CBA: 0.67 vs. GM: 0.65) and overall survival (CBA: 0.55 vs. GM: 0.57). High complexity maintained its significance in the multivariate analysis for TTFT including TP53 and IGHV status when defined by CBA (hazard ratio [HR] 3.23; P<0.001) and GM (HR 2.74; P<0.001). Our findings suggest that both methods are useful but not equivalent for risk stratification of CLL patients. Validation studies are needed to establish the prognostic value of genome complexity based on GM data in future prospective studies.
Collapse
Affiliation(s)
- Silvia Ramos-Campoy
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain; Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain; Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| | - Sílvia Beà
- Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - Sandrine Bougeon
- Oncogenomic Laboratory, Hematology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - María José Larráyoz
- Cytogenetics and Hematological Genetics Services, Department of Genetics, University of Navarra, Pamplona, Spain
| | - Dolors Costa
- Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Margarita Ortega
- Department of Hematology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - María Laura Blanco
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rosa Collado
- Department of Hematology, Consorcio Hospital General Universitario, Valencia, Spain
| | - Rocío Salgado
- Cytogenetics Laboratory, Hematology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Tycho Baumann
- Hematopathology Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona, Spain
| | - Eva Gimeno
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain; Applied Clinical Research in Hematological Malignances, Cancer Research Program, IMIMHospital del Mar, Barcelona, Spain
| | - Carolina Moreno
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Francesc Bosch
- Department of Hematology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Xavier Calvo
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain; Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - María José Calasanz
- Cytogenetics and Hematological Genetics Services, Department of Genetics, University of Navarra, Pamplona, Spain
| | - Antonio Cuneo
- Hematology Section, St. Anna University Hospital, Ferrara, Italy
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Florence Nguyen-Khac
- Hematology Department and Sorbonne Université, Hopital Pitie-Salpetriere, APHP, INSERM U1138, Paris, France
| | - David Oscier
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth, UK
| | | | - Jacqueline Schoumans
- Oncogenomic Laboratory, Hematology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain; Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| |
Collapse
|
37
|
Kay NE, Hampel PJ, Van Dyke DL, Parikh SA. CLL update 2022: A continuing evolution in care. Blood Rev 2022; 54:100930. [DOI: 10.1016/j.blre.2022.100930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
|
38
|
Chatzikonstantinou T, Demosthenous C, Baliakas P. Biology and Treatment of High-Risk CLL: Significance of Complex Karyotype. Front Oncol 2021; 11:788761. [PMID: 34912723 PMCID: PMC8667220 DOI: 10.3389/fonc.2021.788761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
Several reports highlight the clinical significance of cytogenetic complexity, namely, complex karyotype (CK) identified though the performance of chromosome banding analysis (CBA) in chronic lymphocytic leukemia. Indeed, apart from a number of studies underscoring the prognostic and predictive value of CK in the chemo(immune)therapy era, mounting evidence suggests that CK could serve as an independent prognosticator and predictor even in patients treated with novel agents. In the present review, we provide an overview of the current knowledge regarding the clinical impact of CK in CLL, touching upon open issues related to the incorporation of CK in the clinical setting.
Collapse
Affiliation(s)
- Thomas Chatzikonstantinou
- Hematology Department-Bone Marrow Transplantation (BMT) Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Christos Demosthenous
- Hematology Department-Bone Marrow Transplantation (BMT) Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
39
|
Zavacka K, Plevova K. Chromothripsis in Chronic Lymphocytic Leukemia: A Driving Force of Genome Instability. Front Oncol 2021; 11:771664. [PMID: 34900721 PMCID: PMC8661134 DOI: 10.3389/fonc.2021.771664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Chromothripsis represents a mechanism of massive chromosome shattering and reassembly leading to the formation of derivative chromosomes with abnormal functions and expression. It has been observed in many cancer types, importantly, including chronic lymphocytic leukemia (CLL). Due to the associated chromosomal rearrangements, it has a significant impact on the pathophysiology of the disease. Recent studies have suggested that chromothripsis may be more common than initially inferred, especially in CLL cases with adverse clinical outcome. Here, we review the main features of chromothripsis, the challenges of its assessment, and the potential benefit of its detection. We summarize recent findings of chromothripsis occurrence across hematological malignancies and address its causes and consequences in the context of CLL clinical features, as well as chromothripsis-related molecular abnormalities described in published CLL studies. Furthermore, we discuss the use of the current knowledge about genome functions associated with chromothripsis in the optimization of treatment strategies in CLL.
Collapse
Affiliation(s)
- Kristyna Zavacka
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno & Faculty of Medicine, Masaryk University, Brno, Czechia.,Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno & Faculty of Medicine, Masaryk University, Brno, Czechia.,Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia.,Institute of Medical Genetics and Genomics, University Hospital Brno & Masaryk University, Brno, Czechia
| |
Collapse
|
40
|
The more complex, the worse outcome in CLL. Blood 2021; 138:2305-2307. [PMID: 34882215 DOI: 10.1182/blood.2021013285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
|
41
|
Kolijn PM, Muggen AF, Ljungström V, Agathangelidis A, Wolvers-Tettero ILM, Beverloo HB, Pál K, Hengeveld PJ, Darzentas N, Hendriks RW, van Dongen JJM, Rosenquist R, Langerak AW. Consistent B Cell Receptor Immunoglobulin Features Between Siblings in Familial Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:740083. [PMID: 34513715 PMCID: PMC8427434 DOI: 10.3389/fonc.2021.740083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Key processes in the onset and evolution of chronic lymphocytic leukemia (CLL) are thought to include chronic (antigenic) activation of mature B cells through the B cell receptor (BcR), signals from the microenvironment, and acquisition of genetic alterations. Here we describe three families in which two or more siblings were affected by CLL. We investigated whether there are immunogenetic similarities in the leukemia-specific immunoglobulin heavy (IGH) and light (IGL/IGK) chain gene rearrangements of the siblings in each family. Furthermore, we performed array analysis to study if similarities in CLL-associated chromosomal aberrations are present within each family and screened for somatic mutations using paired tumor/normal whole-genome sequencing (WGS). In two families a consistent IGHV gene mutational status (one IGHV-unmutated, one IGHV-mutated) was observed. Intriguingly, the third family with four affected siblings was characterized by usage of the lambda IGLV3-21 gene, with the hallmark R110 mutation of the recently described clinically aggressive IGLV3-21R110 subset. In this family, the CLL-specific rearrangements in two siblings could be assigned to either stereotyped subset #2 or the immunogenetically related subset #169, both of which belong to the broader IGLV3-21R110 subgroup. Consistent patterns of cytogenetic aberrations were encountered in all three families. Furthermore, the CLL clones carried somatic mutations previously associated with IGHV mutational status, cytogenetic aberrations and stereotyped subsets, respectively. From these findings, we conclude that similarities in immunogenetic characteristics in familial CLL, in combination with genetic aberrations acquired, point towards shared underlying mechanisms behind CLL development within each family.
Collapse
Affiliation(s)
- P Martijn Kolijn
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Alice F Muggen
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece.,Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ingrid L M Wolvers-Tettero
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Karol Pál
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Paul J Hengeveld
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Nikos Darzentas
- Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
42
|
Costa D, Granada I, Espinet B, Collado R, Ruiz-Xivillé N, Puiggros A, Uribe M, Arias A, Gómez C, Delgado J, Pereira A, Magnano L, Colomer D, López C, Beà S. Balanced and unbalanced translocations in a multicentric series of 2843 patients with chronic lymphocytic leukemia. Genes Chromosomes Cancer 2021; 61:37-43. [PMID: 34414624 DOI: 10.1002/gcc.22994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023] Open
Abstract
Chromosomal translocations in chronic lymphocytic leukemia (CLL) are very rare, and therefore systematic analysis of large series of cases is needed to allow the identification of recurrent rearrangements, breakpoints involved, and target genes. The aims of the present study were to identify new translocations and their clinical impact and to establish their frequency in a large cohort of 2843 CLL patients. By conventional cytogenetics 250 translocations were identified in 215 (7.5%) patients, 186 (74%) were apparently balanced and 64 (26%) were unbalanced. All chromosomes were involved in translocations, except Y chromosome. The chromosomes more frequently translocated were in decreasing frequency chromosomes 14, 18, 13, 17, 1, 6, 2, 3, 8, and 11. Translocations were found in the karyotypes either as the unique chromosomal abnormality (27%), associated with another alteration (24%), or as a part of a complex karyotype (CK, 48%). A large proportion of rearranged breakpoints involved genes related to CLL such as IGH (14q32), RB1, MIR15A, MIR16-1 (13q14), BCL2 (18q21), IGL (22q11.2), TP53 (17p13), IRF4 (6p25-p23), ATM (11q22), and CDK6 (7q21). Overall, 76 novel CLL translocations were identified, including a recurrent t(8;11)(p21;q21-23). Whole-genome sequencing and/or copy-number microarray data of 24 cases with translocations confirmed all rearrangements, enabled refinement of 3 karyotypes and all breakpoints at gene level. The projected survival and time to first treatment significantly decreased linearly with the number of translocations. In summary, this study allowed to establish the frequency of translocations (7.5%) and to identify new translocations in a cohort of 2843 CLL patients.
Collapse
Affiliation(s)
- Dolors Costa
- Hematopathology Section, Department of Pathology, Hospital Clinic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Isabel Granada
- Hematological Laboratory Service, Germans Trias i Pujol University Hospital, Catalan Institute of Oncology, Josep Carreras Leukaemia Research Institute, Universitat Autonòma de Barcelona, Barcelona, Spain
| | - Blanca Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, Barcelona, Spain
| | - Rosa Collado
- Laboratorio de Citogenética y Biología Molecular, Servicio de Hematología, Consorcio Hospital General Universitario, Valencia, Spain
| | - Neus Ruiz-Xivillé
- Hematological Laboratory Service, Germans Trias i Pujol University Hospital, Catalan Institute of Oncology, Josep Carreras Leukaemia Research Institute, Universitat Autonòma de Barcelona, Barcelona, Spain
| | - Anna Puiggros
- Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, Barcelona, Spain
| | - Marisol Uribe
- Laboratorio de Citogenética y Biología Molecular, Servicio de Hematología, Consorcio Hospital General Universitario, Valencia, Spain
| | - Amparo Arias
- Hematopathology Section, Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Cándida Gómez
- Hematopathology Section, Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Julio Delgado
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Arturo Pereira
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Laura Magnano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Dolors Colomer
- Hematopathology Section, Department of Pathology, Hospital Clinic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sílvia Beà
- Hematopathology Section, Department of Pathology, Hospital Clinic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Mavridou D, Psatha K, Aivaliotis M. Proteomics and Drug Repurposing in CLL towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13143391. [PMID: 34298607 PMCID: PMC8303629 DOI: 10.3390/cancers13143391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Despite continued efforts, the current status of knowledge in CLL molecular pathobiology, diagnosis, prognosis and treatment remains elusive and imprecise. Proteomics approaches combined with advanced bioinformatics and drug repurposing promise to shed light on the complex proteome heterogeneity of CLL patients and mitigate, improve, or even eliminate the knowledge stagnation. In relation to this concept, this review presents a brief overview of all the available proteomics and drug repurposing studies in CLL and suggests the way such studies can be exploited to find effective therapeutic options combined with drug repurposing strategies to adopt and accost a more “precision medicine” spectrum. Abstract CLL is a hematological malignancy considered as the most frequent lymphoproliferative disease in the western world. It is characterized by high molecular heterogeneity and despite the available therapeutic options, there are many patient subgroups showing the insufficient effectiveness of disease treatment. The challenge is to investigate the individual molecular characteristics and heterogeneity of these patients. Proteomics analysis is a powerful approach that monitors the constant state of flux operators of genetic information and can unravel the proteome heterogeneity and rewiring into protein pathways in CLL patients. This review essences all the available proteomics studies in CLL and suggests the way these studies can be exploited to find effective therapeutic options combined with drug repurposing approaches. Drug repurposing utilizes all the existing knowledge of the safety and efficacy of FDA-approved or investigational drugs and anticipates drug alignment to crucial CLL therapeutic targets, leading to a better disease outcome. The drug repurposing studies in CLL are also discussed in this review. The next goal involves the integration of proteomics-based drug repurposing in precision medicine, as well as the application of this procedure into clinical practice to predict the most appropriate drugs combination that could ensure therapy and the long-term survival of each CLL patient.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| | - Michalis Aivaliotis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| |
Collapse
|
44
|
Navrkalova V, Plevova K, Hynst J, Pal K, Mareckova A, Reigl T, Jelinkova H, Vrzalova Z, Stranska K, Pavlova S, Panovska A, Janikova A, Doubek M, Kotaskova J, Pospisilova S. LYmphoid NeXt-Generation Sequencing (LYNX) Panel: A Comprehensive Capture-Based Sequencing Tool for the Analysis of Prognostic and Predictive Markers in Lymphoid Malignancies. J Mol Diagn 2021; 23:959-974. [PMID: 34082072 DOI: 10.1016/j.jmoldx.2021.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
B-cell neoplasms represent a clinically heterogeneous group of hematologic malignancies with considerably diverse genomic architecture recently endorsed by next-generation sequencing (NGS) studies. Because multiple genetic defects have a potential or confirmed clinical impact, a tendency toward more comprehensive testing of diagnostic, prognostic, and predictive markers is desired. This study introduces the design, validation, and implementation of an integrative, custom-designed, capture-based NGS panel titled LYmphoid NeXt-generation sequencing (LYNX) for the analysis of standard and novel molecular markers in the most common lymphoid neoplasms (chronic lymphocytic leukemia, acute lymphoblastic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and mantle cell lymphoma). A single LYNX test provides the following: i) accurate detection of mutations in all coding exons and splice sites of 70 lymphoma-related genes with a sensitivity of 5% variant allele frequency, ii) reliable identification of large genome-wide (≥6 Mb) and recurrent chromosomal aberrations (≥300 kb) in at least 20% of the clonal cell fraction, iii) the assessment of immunoglobulin and T-cell receptor gene rearrangements, and iv) lymphoma-specific translocation detection. Dedicated bioinformatic pipelines were designed to detect all markers mentioned above. The LYNX panel represents a comprehensive, up-to-date tool suitable for routine testing of lymphoid neoplasms with research and clinical applicability. It allows a wide adoption of capture-based targeted NGS in clinical practice and personalized management of patients with lymphoproliferative diseases.
Collapse
Affiliation(s)
- Veronika Navrkalova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jakub Hynst
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karol Pal
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Internal Medicine II - Hematology and Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andrea Mareckova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Tomas Reigl
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hana Jelinkova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Zuzana Vrzalova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kamila Stranska
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pavlova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Anna Panovska
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine - Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic; Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
45
|
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by extreme genomic heterogeneity. Numerous recurrent genetic abnormalities are associated with dismal clinical outcome in patients treated with chemo(immuno)therapy, with aberrations of the TP53 gene being the main genomic abnormalities that dictate treatment choice. In the era of novel agents the predictive significance of the genomic aberrations is highly challenged as the results of the clinical trials performed thus far question the previously established unfavorable impact of genomic aberrations, even that of the TP53 gene. The prognostic and predictive value of the most common genomic abnormalities is discussed in the present review.
Collapse
|
46
|
Pérez-Carretero C, González-Gascón-y-Marín I, Rodríguez-Vicente AE, Quijada-Álamo M, Hernández-Rivas JÁ, Hernández-Sánchez M, Hernández-Rivas JM. The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics (Basel) 2021; 11:diagnostics11050853. [PMID: 34068813 PMCID: PMC8151186 DOI: 10.3390/diagnostics11050853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers. Thanks to next-generation sequencing (NGS), an unprecedented number of gene mutations were identified with potential prognostic and predictive value in the 2010s, although significant work on their validation is still required before they can be used in a routine clinical setting. In terms of treatment, there has been an impressive explosion of new approaches based on targeted therapies for CLL patients during the last decade. In this current chemotherapy-free era, BCR and BCL2 inhibitors have changed the management of CLL patients and clearly improved their prognosis and quality of life. In this review, we provide an overview of these novel advances, as well as point out questions that should be further addressed to continue improving the outcomes of patients.
Collapse
Affiliation(s)
- Claudia Pérez-Carretero
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Ana E. Rodríguez-Vicente
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Miguel Quijada-Álamo
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José-Ángel Hernández-Rivas
- Department of Hematology, Infanta Leonor University Hospital, 28031 Madrid, Spain; (I.G.-G.-y-M.); (J.-Á.H.-R.)
- Department of Medicine, Complutense University, 28040 Madrid, Spain
| | - María Hernández-Sánchez
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| | - Jesús María Hernández-Rivas
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| |
Collapse
|
47
|
Brieghel C, Aarup K, Torp MH, Andersen MA, Yde CW, Tian X, Wiestner A, Ahn IE, Niemann CU. Clinical Outcomes in Patients with Multi-Hit TP53 Chronic Lymphocytic Leukemia Treated with Ibrutinib. Clin Cancer Res 2021; 27:4531-4538. [PMID: 33963002 DOI: 10.1158/1078-0432.ccr-20-4890] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE TP53 aberration (TP53 mutation and/or 17p deletion) is the most important predictive marker in chronic lymphocytic leukemia (CLL). Although each TP53 aberration is considered an equal prognosticator, the prognostic value of carrying isolated (single-hit) or multiple (multi-hit) TP53 aberrations remains unclear, particularly in the context of targeted agents. PATIENTS AND METHODS We performed deep sequencing of TP53 using baseline samples collected from 51 TP53 aberrant patients treated with ibrutinib in a phase II study (NCT01500733). RESULTS We identified TP53 mutations in 43 patients (84%) and del(17p) in 47 (92%); 9 and 42 patients carried single-hit and multi-hit TP53, respectively. The multi-hit TP53 subgroup was enriched with younger patients who had prior treatments and unmutated immunoglobulin heavy-chain variable region gene status. We observed significantly shorter overall survival, progression-free survival (PFS), and time-to-progression (TTP) in patients with multi-hit TP53 compared with those with single-hit TP53. Clinical outcomes were similar in patient subgroups stratified by 2 or >2 TP53 aberrations. In multivariable analyses, multi-hit TP53 CLL was independently associated with inferior PFS and TTP. In sensitivity analyses, excluding mutations below 1% VAF demonstrated similar outcome. Results were validated in an independent population-based cohort of 112 patients with CLL treated with ibrutinib. CONCLUSIONS In this study, single-hit TP53 defines a distinct subgroup of patients with an excellent long-term response to single-agent ibrutinib, whereas multi-hit TP53 is independently associated with shorter PFS. These results warrant further investigations on prognostication and management of multi-hit TP53 CLL.See related commentary by Bomben et al., p. 4462.
Collapse
Affiliation(s)
- Christian Brieghel
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kathrine Aarup
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mathias H Torp
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael A Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina W Yde
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
48
|
B Cell Receptor signaling and genetic lesions in TP53 and CDKN2A/CDKN2B cooperate in Richter Transformation. Blood 2021; 138:1053-1066. [PMID: 33900379 DOI: 10.1182/blood.2020008276] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/06/2021] [Indexed: 11/20/2022] Open
Abstract
B cell receptor (BCR) signals play a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL), but their role in regulating CLL cell proliferation has still not been firmly established. Unlike normal B cells, CLL cells do not proliferate in vitro upon engagement of the BCR, suggesting that CLL cell proliferation is regulated by other signals from the microenvironment, such as those provided by Toll-like receptors or T cells. Here, we report that BCR engagement of human and murine CLL cells induces several positive regulators of the cell cycle, but simultaneously induces the negative regulators CDKN1A, CDKN2A and CDKN2B, which block cell cycle progression. We further show that introduction of genetic lesions that downregulate these cell cycle inhibitors, such as inactivating lesions in CDKN2A, CDKN2B and the CDKN1A regulator TP53, leads to more aggressive disease in a murine in vivo CLL model and spontaneous proliferation in vitro that is BCR-dependent but independent of costimulatory signals. Importantly, inactivating lesions in CDKN2A, CDKN2B and TP53 frequently co-occur in Richter syndrome, and BCR stimulation of human Richter syndrome cells with such lesions is sufficient to induce proliferation. We also show that tumor cells with combined TP53 and CDKN2A/2B abnormalities remain sensitive to BCR inhibitor treatment and are synergistically sensitive to the combination of a BCR and CDK4/6 inhibitor both in vitro and in vivo. These data provide evidence that BCR signals are directly involved in driving CLL cell proliferation and reveal a novel mechanism of Richter transformation.
Collapse
|
49
|
From Biomarkers to Models in the Changing Landscape of Chronic Lymphocytic Leukemia: Evolve or Become Extinct. Cancers (Basel) 2021; 13:cancers13081782. [PMID: 33917885 PMCID: PMC8068228 DOI: 10.3390/cancers13081782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course. Thus, predicting the outcome of patients with this disease is a topic of special interest. The rapidly changing treatment landscape of CLL has questioned the value of classical biomarkers and prognostic models. Herein we examine the current state-of-the-art of prognostic and predictive biomarkers in the setting of new oral targeted agents with special focus on the most controversial findings over the last years. We also discuss the available information on the role of “old” and “new” prognostic models in the era of oral small molecules. Abstract Chronic lymphocytic leukemia (CLL) is an extremely heterogeneous disease. With the advent of oral targeted agents (Tas) the treatment of CLL has undergone a revolution, which has been accompanied by an improvement in patient’s survival and quality of life. This paradigm shift also affects the value of prognostic and predictive biomarkers and prognostic models, most of them inherited from the chemoimmunotherapy era but with a different behavior with Tas. This review discusses: (i) the role of the most relevant prognostic and predictive biomarkers in the setting of Tas; and (ii) the validity of classic and new scoring systems in the context of Tas. In addition, a critical point of view about predictive biomarkers with special emphasis on 11q deletion, novel resistance mutations, TP53 abnormalities, IGHV mutational status, complex karyotype and NOTCH1 mutations is stated. We also go over prognostic models in early stage CLL such as IPS-E. Finally, we provide an overview of the applicability of the CLL-IPI for patients treated with Tas, as well as the emergence of new models, generated with data from patients treated with Tas.
Collapse
|
50
|
Cuneo A, Rigolin GM, Mecucci C. Genomic arrays for the identification of high-risk chronic lymphocytic leukemia: ready for prime time? Haematologica 2021; 106:7-9. [PMID: 33386713 PMCID: PMC7776236 DOI: 10.3324/haematol.2020.264689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Antonio Cuneo
- Hematology, Department of Medical Sciences, St. Anna University Hospital.
| | | | - Cristina Mecucci
- Hematology, Department of Medicine, University of Perugia, Perugia
| |
Collapse
|