1
|
Kouroumalis E, Tsomidis I, Voumvouraki A. HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease. Biomedicines 2025; 13:683. [PMID: 40149659 PMCID: PMC11940282 DOI: 10.3390/biomedicines13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Iron overload can lead to increased deposition of iron and cause organ damage in the liver, the pancreas, the heart and the synovium. Iron overload disorders are due to either genetic or acquired abnormalities such as excess transfusions or chronic liver diseases. The most common genetic disease of iron deposition is classic hemochromatosis (HH) type 1, which is caused by mutations of HFE. Other rare forms of HH include type 2A with mutations at the gene hemojuvelin or type 2B with mutations in HAMP that encodes hepcidin. HH type 3, is caused by mutations of the gene that encodes transferrin receptor 2. Mutations of SLC40A1 which encodes ferroportin cause either HH type 4A or HH type 4B. In the present review, an overview of iron metabolism including absorption by enterocytes and regulation of iron by macrophages, liver sinusoidal endothelial cells (LSECs) and hepatocyte production of hepcidin is presented. Hereditary Hemochromatosis and the current pathogenetic model are analyzed. Finally, a new hypothesis based on published data was suggested. The Kupffer cell is the primary defect in HFE hemochromatosis (and possibly in types 2 and 3), while the hepcidin-relative deficiency, which is the common underlying abnormality in the three types of HH, is a secondary consequence.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete Medical School, 71500 Heraklion, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
2
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 215.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Baratz E, Protchenko O, Jadhav S, Zhang D, Violet PC, Grounds S, Shakoury-Elizeh M, Levine M, Philpott CC. Vitamin E Induces Liver Iron Depletion and Alters Iron Regulation in Mice. J Nutr 2023; 153:1866-1876. [PMID: 37127137 PMCID: PMC10375508 DOI: 10.1016/j.tjnut.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Vitamin E (vit E) is an essential nutrient that functions as a lipophilic antioxidant and is used clinically to treat nonalcoholic fatty liver disease, where it suppresses oxidative damage and impedes the progression of steatosis and fibrosis. Mice lacking a critical liver iron-trafficking protein also manifest steatosis because of iron-mediated oxidative damage and are protected from liver disease by oral vit E supplements. OBJECTIVES We aimed to examine the role of dietary vit E supplementation in modulating iron-sensing regulatory systems and nonheme iron levels in mouse liver. METHODS C57Bl/6 male mice, aged 6 wk, were fed purified diets containing normal amounts of iron and either control (45 mg/kg) or elevated (450 mg/kg) levels of 2R-α-tocopherol (vit E) for 18 d. Mouse plasma and liver were analyzed for nonheme iron, levels and activity of iron homeostatic proteins, and markers of oxidative stress. We compared means ± SD for iron and oxidative stress parameters between mice fed the control diet and those fed the vit E diet. RESULTS The Vit E-fed mice exhibited lower levels of liver nonheme iron (38% reduction, P < 0.0001) and ferritin (74% reduction, P < 0.01) than control-fed mice. The levels of liver mRNA for transferrin receptor 1 and divalent metal transporter 1 were reduced to 42% and 57% of the control, respectively. The mRNA levels for targets of nuclear factor erythroid 2-related factor (Nrf2), a major regulator of the oxidative stress response and iron-responsive genes, were also suppressed in vit E livers. Hepcidin, an iron regulatory hormone, levels were lower in the plasma (P < 0.05), and ferroportin (FPN), the iron exporter regulated by hepcidin, was expressed at higher levels in the liver (P < 0.05). CONCLUSIONS Oral vit E supplementation in mice can lead to depletion of liver iron stores by suppressing the iron- and redox-sensing transcription factor Nrf2, leading to enhanced iron efflux through liver FPN. Iron depletion may indirectly enhance the antioxidative effects of vit E.
Collapse
Affiliation(s)
- Ethan Baratz
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, United States
| | - Olga Protchenko
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, United States
| | | | - Deliang Zhang
- Section on Human Iron Metabolism, NICHD, NIH, Bethesda, MD, United States
| | | | - Samantha Grounds
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, United States
| | | | - Mark Levine
- Molecular and Clinical Nutrition Section, NIDDK, NIH, Bethesda, MD, United States
| | | |
Collapse
|
4
|
Rodrigues F, Coman T, Fouquet G, Côté F, Courtois G, Trovati Maciel T, Hermine O. A deep dive into future therapies for microcytic anemias and clinical considerations. Expert Rev Hematol 2023; 16:349-364. [PMID: 37092971 DOI: 10.1080/17474086.2023.2206556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Microcytic anemias (MA) have frequent or rare etiologies. New discoveries in understanding and treatment of microcytic anemias need to be reviewed. AREAS COVERED Microcytic anemias with a focus on the most frequent causes and on monogenic diseases that are relevant for understanding biocellular mechanisms of MA. All treatments except gene therapy, with a focus on recent advances. PubMed search with references selected by expert opinion. EXPERT OPINION As the genetic and cellular backgrounds of dyserythropoiesis will continue to be clarified, collaboration with bioengineering of treatments acting specifically at the protein domain level will continue to provide new therapies in hematology as well as oncology and neurology.
Collapse
Affiliation(s)
- François Rodrigues
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | - Tereza Coman
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
- Département d'hématologie, Institut Gustave Roussy, Villejuif, France
| | - Guillemette Fouquet
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Hématologie clinique, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Francine Côté
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | | | | | - Olivier Hermine
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| |
Collapse
|
5
|
Theobald V, Grünig E, Benjamin N, Seyfarth H, Halank M, Schneider MA, Richtmann S, Kazdal D, Hinderhofer K, Xanthouli P, Egenlauf B, Harutyunova S, Hoeper MM, Jonigk D, Sparla R, Muckenthaler MU, Eichstaedt CA. Is iron deficiency caused by BMPR2 mutations or dysfunction in pulmonary arterial hypertension patients? Pulm Circ 2023; 13:e12242. [PMID: 37292089 PMCID: PMC10247310 DOI: 10.1002/pul2.12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Iron deficiency is common in idiopathic and heritable pulmonary arterial hypertension patients (I/HPAH). A previous report suggested a dysregulation of the iron hormone hepcidin, which is controlled by BMP/SMAD signaling involving the bone morphogenetic protein receptor 2 (BMPR-II). Pathogenic variants in the BMPR2 gene are the most common cause of HPAH. Their effect on patients' hepcidin levels has not been investigated. The aim of this study was to assess whether iron metabolism and regulation of the iron regulatory hormone hepcidin was disturbed in I/HPAH patients with and without a pathogenic variant in the gene BMPR2 compared to healthy controls. In this explorative, cross-sectional study hepcidin serum levels were quantified by enzyme-linked immunosorbent assay. We measured iron status, inflammatory parameters and hepcidin modifying proteins such as IL6, erythropoietin, and BMP2, BMP6 in addition to BMPR-II protein and mRNA levels. Clinical routine parameters were correlated with hepcidin levels. In total 109 I/HPAH patients and controls, separated into three groups, 23 BMPR2 variant-carriers, 56 BMPR2 noncarriers and 30 healthy controls were enrolled. Of these, 84% had iron deficiency requiring iron supplementation. Hepcidin levels were not different between groups and corresponded to the degree of iron deficiency. The levels of IL6, erythropoietin, BMP2, or BMP6 showed no correlation with hepcidin expression. Hence, iron homeostasis and hepcidin regulation was largely independent from these parameters. I/HPAH patients had a physiologically normal iron regulation and no false elevation of hepcidin levels. Iron deficiency was prevalent albeit independent of pathogenic variants in the BMPR2 gene.
Collapse
Affiliation(s)
- Vivienne Theobald
- Center for Pulmonary HypertensionThoraxklinik Heidelberg gGmbH at Heidelberg University HospitalHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
| | - Ekkehard Grünig
- Center for Pulmonary HypertensionThoraxklinik Heidelberg gGmbH at Heidelberg University HospitalHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
| | - Nicola Benjamin
- Center for Pulmonary HypertensionThoraxklinik Heidelberg gGmbH at Heidelberg University HospitalHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
| | - Hans‐Jürgen Seyfarth
- Department of Pneumology, Medical Clinic IIUniversity Hospital of LeipzigLeipzigGermany
| | - Michael Halank
- Medical Clinic IUniversity Hospital of DresdenDresdenGermany
| | - Marc A. Schneider
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
- Translational Research UnitThoraxklinik Heidelberg gGmbH at Heidelberg University HospitalHeidelbergGermany
| | - Sarah Richtmann
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
- Translational Research UnitThoraxklinik Heidelberg gGmbH at Heidelberg University HospitalHeidelbergGermany
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Katrin Hinderhofer
- Laboratory for Molecular Diagnostics, Institute of Human GeneticsHeidelberg UniversityHeidelbergGermany
| | - Panagiota Xanthouli
- Center for Pulmonary HypertensionThoraxklinik Heidelberg gGmbH at Heidelberg University HospitalHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
| | - Benjamin Egenlauf
- Center for Pulmonary HypertensionThoraxklinik Heidelberg gGmbH at Heidelberg University HospitalHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
| | - Satenik Harutyunova
- Center for Pulmonary HypertensionThoraxklinik Heidelberg gGmbH at Heidelberg University HospitalHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
| | - Marius M. Hoeper
- Department of Pneumology, Hannover Medical School, Biomedical Research in End‐stage and Obstructive Lung Disease Hannover (BREATH)German Center for Lung Research (DZL)HannoverGermany
| | - Danny Jonigk
- Hannover Medical School, Institute for Pathology, German Center for Lung Research (DZL)Biomedical Research in End‐stage and Obstructive Lung Disease Hannover (BREATH)HannoverGermany
- Institute of PathologyRWTH Aachen University HospitalAachenGermany
| | - Richard Sparla
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
- Centre for Translational Biomedical Iron Research, Hematology, Immunology and PulmonologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Martina U. Muckenthaler
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
- Centre for Translational Biomedical Iron Research, Hematology, Immunology and PulmonologyUniversity Hospital HeidelbergHeidelbergGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site Heidelberg/MannheimHeidelbergGermany
| | - Christina A. Eichstaedt
- Center for Pulmonary HypertensionThoraxklinik Heidelberg gGmbH at Heidelberg University HospitalHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany
- Laboratory for Molecular Diagnostics, Institute of Human GeneticsHeidelberg UniversityHeidelbergGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site Heidelberg/MannheimHeidelbergGermany
| |
Collapse
|
6
|
Fisher AL, Babitt JL. Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions. Dev Dyn 2022; 251:26-46. [PMID: 33993583 PMCID: PMC8594283 DOI: 10.1002/dvdy.372] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated to balance the iron requirement for erythropoiesis and other vital cellular functions, while preventing cellular injury from iron excess. The liver hormone hepcidin is the master regulator of systemic iron balance by controlling the degradation and function of the sole known mammalian iron exporter ferroportin. Liver hepcidin expression is coordinately regulated by several signals that indicate the need for more or less iron, including plasma and tissue iron levels, inflammation, and erythropoietic drive. Most of these signals regulate hepcidin expression by modulating the activity of the bone morphogenetic protein (BMP)-SMAD pathway, which controls hepcidin transcription. Genetic disorders of iron overload and iron deficiency have identified several hepatocyte membrane proteins that play a critical role in mediating the BMP-SMAD and hepcidin regulatory response to iron. However, the precise molecular mechanisms by which serum and tissue iron levels are sensed to regulate BMP ligand production and promote the physical and/or functional interaction of these proteins to modulate SMAD signaling and hepcidin expression remain uncertain. This critical commentary will focus on the current understanding and key unanswered questions regarding how the liver senses iron levels to regulate BMP-SMAD signaling and thereby hepcidin expression to control systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Jodie L Babitt
- Corresponding author: Jodie L Babitt, Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. Mailing address: 185 Cambridge St., CPZN-8208, Boston, MA 02114. Telephone: +1 (617) 643-3181.
| |
Collapse
|
7
|
Rana S, Prabhakar N. Iron disorders and hepcidin. Clin Chim Acta 2021; 523:454-468. [PMID: 34755647 DOI: 10.1016/j.cca.2021.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Iron is an essential element due to its role in a wide variety of physiological processes. Iron homeostasis is crucial to prevent iron overload disorders as well as iron deficiency anemia. The liver synthesized peptide hormone hepcidin is a master regulator of systemic iron metabolism. Given its role in overall health, measurement of hepcidin can be used as a predictive marker in disease states. In addition, hepcidin-targeting drugs appear beneficial as therapeutic agents. This review emphasizes recent development on analytical techniques (immunochemical, mass spectrometry and biosensors) and therapeutic approaches (hepcidin agonists, stimulators and antagonists). These insights highlight hepcidin as a potential biomarker as well as an aid in the development of new drugs for iron disorders.
Collapse
Affiliation(s)
- Shilpa Rana
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
8
|
Colucci S, Altamura S, Marques O, Dropmann A, Horvat NK, Müdder K, Hammad S, Dooley S, Muckenthaler MU. Liver Sinusoidal Endothelial Cells Suppress Bone Morphogenetic Protein 2 Production in Response to TGFβ Pathway Activation. Hepatology 2021; 74:2186-2200. [PMID: 33982327 DOI: 10.1002/hep.31900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS TGFβ/bone morphogenetic protein (BMP) signaling in the liver plays a critical role in liver disease. Growth factors, such as BMP2, BMP6, and TGFβ1, are released from LSECs and signal in a paracrine manner to hepatocytes and hepatic stellate cells to control systemic iron homeostasis and fibrotic processes, respectively. The misregulation of the TGFβ/BMP pathway affects expression of the iron-regulated hormone hepcidin, causing frequent iron overload and deficiency diseases. However, whether LSEC-secreted factors can act in an autocrine manner to maintain liver homeostasis has not been addressed so far. APPROACH AND RESULTS We analyzed publicly available RNA-sequencing data of mouse LSECs for ligand-receptor interactions and identified members of the TGFβ family (BMP2, BMP6, and TGFβ1) as ligands with the highest expression levels in LSECs that may signal in an autocrine manner. We next tested the soluble factors identified through in silico analysis in optimized murine LSEC primary cultures and mice. Exposure of murine LSEC primary cultures to these ligands shows that autocrine responses to BMP2 and BMP6 are blocked despite high expression levels of the required receptor complexes partially involving the inhibitor FK-506-binding protein 12. By contrast, LSECs respond efficiently to TGFβ1 treatment, which causes reduced expression of BMP2 through activation of activin receptor-like kinase 5. CONCLUSIONS These findings reveal that TGFβ1 signaling is functionally interlinked with BMP signaling in LSECs, suggesting druggable targets for the treatment of iron overload diseases associated with deficiency of the BMP2-regulated hormone hepcidin, such as hereditary hemochromatosis, β-thalassemia, and chronic liver diseases.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Anne Dropmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Natalie K Horvat
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Katja Müdder
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Seddik Hammad
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Forensic and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| |
Collapse
|
9
|
Colucci S, Marques O, Altamura S. 20 years of Hepcidin: How far we have come. Semin Hematol 2021; 58:132-144. [PMID: 34389105 DOI: 10.1053/j.seminhematol.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
Twenty years ago the discovery of hepcidin deeply changed our understanding of the regulation of systemic iron homeostasis. It is now clear that hepcidin orchestrates systemic iron levels by controlling the amount of iron exported into the bloodstream through ferroportin. Hepcidin expression is increased in situations where systemic iron levels should be reduced, such as in iron overload and infection. Conversely, hepcidin is repressed during iron deficiency, hypoxia or expanded erythropoiesis, to increase systemic iron availability and sustain erythropoiesis. In this review, we will focus on molecular mechanisms of hepcidin regulation and on the pathological consequences of their disruption.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany..
| |
Collapse
|