1
|
Ala C, Ramalingam S, Kondapalli Venkata Gowri CS, Sankaranarayanan M. A critique review of fetal hemoglobin modulators through targeting epigenetic regulators for the treatment of sickle cell disease. Life Sci 2025; 369:123536. [PMID: 40057227 DOI: 10.1016/j.lfs.2025.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Sickle cell disease (SCD) is one of the most prevalent hereditary blood disorders characterized by aberrant hemoglobin synthesis that causes red blood cells (RBCs) to sickle and result in vaso-occlusion. The complex pathophysiological mechanisms that underlie SCD are explored in this study, including hemoglobin polymerization, the formation of fetal hemoglobin (HbF), and hemoglobin switching regulation. Notably, pharmaceutical approaches like hydroxyurea, l-glutamine, voxelotor, and crizanlizumab, in addition to therapeutic techniques like gene therapies like Casgevy and Lyfgenia, signify noteworthy advancements in the management of issues connected to SCD. Furthermore, the deciphering of the molecular mechanisms that dictate hemoglobin switching has revealed several potentially therapeutic targets, including key transcriptional repressors such as β-cell lymphoma/leukemia 11A (BCL11A), Zinc finger and BTB domain-containing 7A (ZBTB7A), Nuclear Factor IX (NFIX), and Nuclear Factor IA (NFIA), which play crucial roles in γ-globin silencing. Additionally, transcriptional activators such as Nuclear Factor Y (NF-Y), and Hypoxia-inducible factor 1α (HIF1α) have emerged as promising regulators that can disrupt repression and enhance HbF synthesis. Other epigenetic regulators, such as lysine-specific histone demethylase 1 (LSD1), euchromatic histone methyltransferases 1/2 (EHMT1/2), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and protein arginine methyltransferases (PRMTs). It has been demonstrated that inhibiting these targets can prevent the silencing of the gene encoding for the formation of γ-chains and, in turn, increase the synthesis of HbF, providing a possible treatment option for SCD symptoms. These approaches could pave the way for innovative, mechanism-driven therapies that address the unmet medical needs of SCD patients.
Collapse
Affiliation(s)
- Chandu Ala
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India.
| | - Sivaprakash Ramalingam
- Department of Biological Sciences and Bioengineering, Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.
| | - Chandra Sekhar Kondapalli Venkata Gowri
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India.
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India.
| |
Collapse
|
2
|
Eini M, Safarpour H, Miri-Moghddam E. The induction effect of hydroxyurea and metformin on fetal globin in the K562 cell line. Mol Med 2025; 31:132. [PMID: 40200166 PMCID: PMC11978054 DOI: 10.1186/s10020-025-01184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
Despite the established efficacy of hydroxyurea (HU) in increasing fetal hemoglobin (Hb F) levels in patients with intermedia beta-thalassemia (β-thal) and sickle cell anemia, the precise molecular mechanisms underlying these effects remain largely elusive. Understanding these mechanisms is paramount for identifying alternative therapeutic approaches to increase Hb F production while minimizing adverse effects. In this study, we employed weighted gene co-expression network analysis (WGCNA) to investigate the molecular underpinnings of γ-globin switching within GSE90878 dataset. Leveraging this information, we aimed to predict the transcriptome network and elucidate the mechanism of action of HU and Metformin (Met) on this network comprehensively. Through bioinformatic analysis, we identified IGF2BP1 and GCNT2 as key regulators of the γ-globin switching mechanism. To experimentally validate these findings, we utilized the K562 cell line as an erythroid model. Cells were treated with HU (50, 100, and 150 µM) and Met (50, 100, and 150 µM) for 24, 48, and 72 h. The expression levels of the GCNT2, γ-globin, IGF2BP1, miR-199a/b-5p, miR-451-5p and miR-144-3p were quantified using real-time polymerase chain reaction (qPCR). Our results revealed that treatment with HU (150 µM), Met (100 µM), and combination of HU-Met (150/100 µM) significantly increased IGF2BP1 expression by 6.2, 5.3, and 7.1-fold, respectively, after 24 h treatment. Furthermore, treatment with HU (50 µM), Met (50 µM) and HU/Met (50/50 µM) for 24 h led to a 3.3, 1.2, and 5-fold decrease in GCNT2 gene expression, respectively. Notably, the highest levels of γ-globin expression and Hb F production were observed with HU (100 µM), Met (50 µM), and HU/Met (100/50 µM). This study provides compelling evidence that HU and Met significantly enhance γ-globin expression and Hb F production in the K562 cell line. Our findings suggest that these drugs exert their effects by modulating the expression of IGF2BP1 and GCNT2, thus offering valuable insights into potential therapeutic strategies for disorders characterized by low Hb F levels.
Collapse
Affiliation(s)
- Mohammad Eini
- Department of Hematology, Faculty of paramedical, Birjand University of Medical Science, Birjand, Iran
| | - Hossain Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Ebrahim Miri-Moghddam
- Department of Molecular Medicine, Faculty of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran.
| |
Collapse
|
3
|
Qian C, Lee Y, Han Y, Zhong Y, Zhou J, Hrit J, Xie L, Chen Q, Kaniskan HÜ, Chen X, Rothbart S, Cheng X, Xiong Y, Jin J. Structure-Activity Relationship Studies of DNA Methyltransferase 1 Monovalent Degraders. J Med Chem 2025; 68:2903-2919. [PMID: 39905966 PMCID: PMC11932022 DOI: 10.1021/acs.jmedchem.4c02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
DNA methyltransferase 1 (DNMT1), which catalyzes maintenance methylation of hemimethylated DNA during DNA replication, is overexpressed in cancer. Recently, the first-in-class DNMT1-selective noncovalent small-molecule inhibitors, GSK3484862 and GSK3685032, were discovered. These inhibitors were also reported to degrade DNMT1. However, structure-activity relationship (SAR) studies of these monovalent DNMT1 degraders are lacking. Here, we report our SAR studies of this scaffold on degrading DNMT1, which led to the discovery of multiple lead degraders, including compound 4 (MS9024). Compound 4 potently and selectively degraded DNMT1 in multiple cancer cell lines in a concentration-, time-, and proteasome-dependent manner without altering DNMT1 transcription. Further mechanism-of-action studies suggest that the DNMT1 degradation induced by 4 was not mediated by lysosome or cullin RING E3 ligases but could potentially be mediated by HECT E3 ligases and/or UHRF1. Collectively, these studies pave the way for further developing DNMT1 monovalent degraders as potential therapeutics and useful chemical tools.
Collapse
Affiliation(s)
- Chao Qian
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Youngeun Lee
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yue Zhong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Scott Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
4
|
Lanka G, Banerjee S, Adhikari N, Ghosh B. Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approaches. Mol Divers 2025; 29:117-137. [PMID: 38637479 DOI: 10.1007/s11030-024-10837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
DNA methyl transferases (DNMTs) are one of the crucial epigenetic modulators associated with a wide variety of cancer conditions. Among the DNMT isoforms, DNMT1 is correlated with bladder, pancreatic, and breast cancer, as well as acute myeloid leukemia and esophagus squamous cell carcinoma. Therefore, the inhibition of DNMT1 could be an attractive target for combating cancers and other metabolic disorders. The disadvantages of the existing nucleoside and non-nucleoside DNMT1 inhibitors are the main motive for the discovery of novel promising inhibitors. Here, pharmacophore modeling, 3D-QSAR, and e-pharmacophore modeling of DNMT1 inhibitors were performed for the large fragment database screening. The resulting fragments with high dock scores were combined into molecules. The current study revealed several constitutional pharmacophoric features that can be essential for selective DNMT1 inhibition. The fragment docking and virtual screening identified 10 final hit molecules that exhibited good binding affinities in terms of docking score, binding free energies, and acceptable ADME properties. Also, the modified lead molecules (GL1b and GL2b) designed in this study showed effective binding with DNMT1 confirmed by their docking scores, binding free energies, 3D-QSAR predicted activities and acceptable drug-like properties. The MD simulation studies also suggested that leads (GL1b and GL2b) formed stable complexes with DNMT1. Therefore, the findings of this study can provide effective information for the development/identification of novel DNMT1 inhibitors as effective anticancer agents.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, West Bengal, 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, West Bengal, 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India.
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India.
| |
Collapse
|
5
|
Maggio A, Napolitano M, Taher AT, Bou-Fakhredin R, Ostuni MA. Reframing thalassaemia syndrome as a benign haematopoietic stem cell disorder. Br J Haematol 2025; 206:464-477. [PMID: 39676308 DOI: 10.1111/bjh.19919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024]
Abstract
Thalassaemia, caused by over 250 mutations in the beta globin gene, changes the haematopoietic stem cell (HSC) differentiation, leading to ineffective erythropoiesis. This Wider Perspective article overlooks its underlying nature as a benign HSC disorder with a significant impact on the erythroid cell lineage. The simplicity of managing symptoms through transfusions and iron chelation therapy has shifted the focus away from the development of cell-based treatments. The identification of the beta039 mutation by Chang and Kan in 1979 marked a turning point, suggesting as main approach the molecular level by correcting the beta globin chain imbalances through gene insertion and editing. However, challenges of technology have delayed the implementation of these strategies for over four decades. In contrast, the past two decades have witnessed significant advances in the treatment of HSC disorders of the myeloid clone which are driven by a 'target cell strategy'. Many current and innovative treatments for thalassaemia are now adopting this approach, highlighting the importance of identifying suitable candidates through risk stratification. This manuscript explores the evolving understanding of thalassaemia syndromes as congenital HSC disorders of the erythroid clone and examines the implications of this perspective for the development of future treatments.
Collapse
Affiliation(s)
- Aurelio Maggio
- Campus of Haematology Franco and Piera Cutino, AOOR Villa Sofia-V. Cervello, Palermo, Italy
| | - Mariasanta Napolitano
- Campus of Haematology Franco and Piera Cutino, AOOR Villa Sofia-V. Cervello, Palermo, Italy
- Dipartimento PROMISE, Università degli Studi di AOUP "P. Giaccone", Palermo, Italy
| | - Ali T Taher
- Division of Hematology and Oncology, Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rayan Bou-Fakhredin
- Division of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | |
Collapse
|
6
|
Diamantidis MD, Ikonomou G, Argyrakouli I, Pantelidou D, Delicou S. Genetic Modifiers of Hemoglobin Expression from a Clinical Perspective in Hemoglobinopathy Patients with Beta Thalassemia and Sickle Cell Disease. Int J Mol Sci 2024; 25:11886. [PMID: 39595957 PMCID: PMC11593634 DOI: 10.3390/ijms252211886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hemoglobinopathies, namely β-thalassemia and sickle cell disease (SCD), are hereditary diseases, characterized by molecular genetic aberrations in the beta chains of hemoglobin. These defects affect the normal production of hemoglobin with severe anemia due to less or no amount of beta globins in patients with β-thalassemia (quantitative disorder), while SCD is a serious disease in which a mutated form of hemoglobin distorts the red blood cells into a crescent shape at low oxygen levels (qualitative disorder). Despite the revolutionary progress in recent years with the approval of gene therapy and gene editing for specific patients, there is an unmet need for highlighting the mechanisms influencing hemoglobin production and for the development of novel drugs and targeted therapies. The identification of the transcription factors and other genetic modifiers of hemoglobin expression is of utmost importance for discovering novel therapeutic approaches for patients with hemoglobinopathies. The aim of this review is to describe these complex molecular mechanisms and pathways affecting hemoglobin expression and to highlight the relevant investigational approaches or pharmaceutical interventions focusing on restoring the hemoglobin normal function by linking the molecular background of the disease with the clinical perspective. All the associated drugs increasing the hemoglobin expression in patients with hemoglobinopathies, along with gene therapy and gene editing, are also discussed.
Collapse
Affiliation(s)
- Michael D. Diamantidis
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Georgia Ikonomou
- Thalassemia and Sickle Cell Disease Prevention Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Ioanna Argyrakouli
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Despoina Pantelidou
- Thalassemia and Sickle Cell Disease Unit, AHEPA University General Hospital, 41221 Thessaloniki, Greece;
| | - Sophia Delicou
- Center of Expertise in Hemoglobinopathies and Their Complications, Thalassemia and Sickle Cell Disease Unit, Hippokration General Hospital, 41221 Athens, Greece;
| |
Collapse
|
7
|
Lewis J, Guilcher GMT, Greenway SC. Reviewing the impact of hydroxyurea on DNA methylation and its potential clinical implications in sickle cell disease. Eur J Haematol 2024; 113:264-272. [PMID: 38831675 DOI: 10.1111/ejh.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Hydroxyurea (HU) is the most common drug therapy for sickle cell disease (SCD). The clinical benefits of HU derive from its upregulation of fetal hemoglobin (HbF), which reduces aggregation of the mutated sickle hemoglobin protein (HbS) and reduces SCD symptoms and complications. However, some individuals do not respond to HU, or stop responding over time. Unfortunately, current understanding of the mechanism of action of HU is limited, hindering the ability of clinicians to identify those patients who will respond to HU and to optimize treatment for those receiving HU. Given that epigenetic modifications are essential to erythropoiesis and HbF expression, we hypothesize that some effects of HU may be mediated by epigenetic modifications, specifically DNA methylation. However, few studies have investigated this possibility and the effects of HU on DNA methylation remain relatively understudied. In this review, we discuss the evidence linking HU treatment to DNA methylation changes and associated gene expression changes, with an emphasis on studies that were performed in individuals with SCD. Overall, although HU can affect DNA methylation, research on these changes and their clinical effects remains limited. Further study is likely to contribute to our understanding of hematopoiesis and benefit patients suffering from SCD.
Collapse
Affiliation(s)
- Jasmine Lewis
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gregory M T Guilcher
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven C Greenway
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Yang Q, Chen L, Zhang H, Li M, Sun L, Wu X, Zhao H, Qu X, An X, Wang T. DNMT1 regulates human erythropoiesis by modulating cell cycle and endoplasmic reticulum stress in a stage-specific manner. Cell Death Differ 2024; 31:999-1012. [PMID: 38719927 PMCID: PMC11303534 DOI: 10.1038/s41418-024-01305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 08/09/2024] Open
Abstract
The dynamic balance of DNA methylation and demethylation is required for erythropoiesis. Our previous transcriptomic analyses revealed that DNA methyltransferase 1 (DNMT1) is abundantly expressed in erythroid cells at all developmental stages. However, the role and molecular mechanisms of DNMT1 in human erythropoiesis remain unknown. Here we found that DNMT1 deficiency led to cell cycle arrest of erythroid progenitors which was partially rescued by treatment with a p21 inhibitor UC2288. Mechanically, this is due to decreased DNA methylation of p21 promoter, leading to upregulation of p21 expression. In contrast, DNMT1 deficiency led to increased apoptosis during terminal stage by inducing endoplasmic reticulum (ER) stress in a p21 independent manner. ER stress was attributed to the upregulation of RPL15 expression due to the decreased DNA methylation at RPL15 promoter. The upregulated RPL15 expression subsequently caused a significant upregulation of core ribosomal proteins (RPs) and thus ultimately activated all branches of unfolded protein response (UPR) leading to the excessive ER stress, suggesting a role of DNMT1 in maintaining protein homeostasis during terminal erythroid differentiation. Furthermore, the increased apoptosis was significantly rescued by the treatment of ER stress inhibitor TUDCA. Our findings demonstrate the stage-specific role of DNMT1 in regulating human erythropoiesis and provide new insights into regulation of human erythropoiesis.
Collapse
Affiliation(s)
- Qianqian Yang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Mengjia Li
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China.
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 East, 67th Street, New York, NY, 10065, USA.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Myers G, Sun Y, Wang Y, Benmhammed H, Cui S. Roles of Nuclear Orphan Receptors TR2 and TR4 during Hematopoiesis. Genes (Basel) 2024; 15:563. [PMID: 38790192 PMCID: PMC11121135 DOI: 10.3390/genes15050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
TR2 and TR4 (NR2C1 and NR2C2, respectively) are evolutionarily conserved nuclear orphan receptors capable of binding direct repeat sequences in a stage-specific manner. Like other nuclear receptors, TR2 and TR4 possess important roles in transcriptional activation or repression with developmental stage and tissue specificity. TR2 and TR4 bind DNA and possess the ability to complex with available cofactors mediating developmental stage-specific actions in primitive and definitive erythrocytes. In erythropoiesis, TR2 and TR4 are required for erythroid development, maturation, and key erythroid transcription factor regulation. TR2 and TR4 recruit and interact with transcriptional corepressors or coactivators to elicit developmental stage-specific gene regulation during hematopoiesis.
Collapse
Affiliation(s)
- Greggory Myers
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (G.M.); (Y.W.)
| | - Yanan Sun
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; (Y.S.); (H.B.)
| | - Yu Wang
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (G.M.); (Y.W.)
| | - Hajar Benmhammed
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; (Y.S.); (H.B.)
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; (Y.S.); (H.B.)
| |
Collapse
|
10
|
Zhang X, Xia F, Zhang X, Blumenthal RM, Cheng X. C2H2 Zinc Finger Transcription Factors Associated with Hemoglobinopathies. J Mol Biol 2024; 436:168343. [PMID: 37924864 PMCID: PMC11185177 DOI: 10.1016/j.jmb.2023.168343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
In humans, specific aberrations in β-globin results in sickle cell disease and β-thalassemia, symptoms of which can be ameliorated by increased expression of fetal globin (HbF). Two recent CRISPR-Cas9 screens, centered on ∼1500 annotated sequence-specific DNA binding proteins and performed in a human erythroid cell line that expresses adult hemoglobin, uncovered four groups of candidate regulators of HbF gene expression. They are (1) members of the nucleosome remodeling and deacetylase (NuRD) complex proteins that are already known for HbF control; (2) seven C2H2 zinc finger (ZF) proteins, including some (ZBTB7A and BCL11A) already known for directly silencing the fetal γ-globin genes in adult human erythroid cells; (3) a few other transcription factors of different structural classes that might indirectly influence HbF gene expression; and (4) DNA methyltransferase 1 (DNMT1) that maintains the DNA methylation marks that attract the MBD2-associated NuRD complex to DNA as well as associated histone H3 lysine 9 methylation. Here we briefly discuss the effects of these regulators, particularly C2H2 ZFs, in inducing HbF expression for treating β-hemoglobin disorders, together with recent advances in developing safe and effective small-molecule therapeutics for the regulation of this well-conserved hemoglobin switch.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. SCIENCE ADVANCES 2024; 10:eadl3188. [PMID: 38416817 PMCID: PMC10901381 DOI: 10.1126/sciadv.adl3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.
Collapse
Affiliation(s)
- Mencía Espinosa-Martínez
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María Alcázar-Fabra
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
12
|
Ala C, Joshi RP, Gupta P, Ramalingam S, Sankaranarayanan M. Discovery of potent DNMT1 inhibitors against sickle cell disease using structural-based virtual screening, MM-GBSA and molecular dynamics simulation-based approaches. J Biomol Struct Dyn 2024; 42:261-273. [PMID: 37061929 DOI: 10.1080/07391102.2023.2199081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/10/2023] [Indexed: 04/17/2023]
Abstract
Sickle cell disease (SCD) is an autosomal recessive genetic disorder affecting millions of people worldwide. A reversible and selective DNMT1 inhibitor, GSK3482364, has been known to decrease the overall methylation activity of DNMT1, resulting in the increase of HbF levels and percentage of HbF-expressing erythrocytes in an in vitro and in vivo model. In this study, a structure-based virtual screening was done with GSK3685032, a co-crystalized ligand of DNMT1 (PDB ID: 6X9K) with an IC50 value of 0.036 μM and identified 3988 compounds from three databases (ChEMBL, PubChem and Drug Bank). Using this screening method, we identified around 15 compounds with XP docking scores greater than -8 kcal/mol. Further, prime MM-GBSA calculations have been performed and found compound SCHEMBL19716714 with the highest binding free energy of -83.31 kcal/mol. Finally, four compounds were identified based on glide energy and ΔG bind scores that have the most binding with DG7, DG19, DG20 bases and Lys1535, His1507, Trp1510, Ser1230, which were required for the target enzyme inhibition. Furthermore, molecular dynamics simulation studies of top ligands validate the stability of the docked complexes by examining root mean square deviations, root mean square fluctuations, solvent accessible surface area, and radius of gyration graphs from simulation trajectories. These findings suggest that the top four hit compounds may be capable of inhibiting DNMT1 and that additional in vitro and in vivo studies will be essential to prove the clinical effectiveness of the selected lead compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandu Ala
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Rajasthan, India
| | - Renuka Parshuram Joshi
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Rajasthan, India
| | - Pragya Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sivaprakash Ramalingam
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Rajasthan, India
| |
Collapse
|
13
|
Chen Q, Liu B, Zeng Y, Hwang JW, Dai N, Corrêa I, Estecio M, Zhang X, Santos MA, Chen T, Cheng X. GSK-3484862 targets DNMT1 for degradation in cells. NAR Cancer 2023; 5:zcad022. [PMID: 37206360 PMCID: PMC10189803 DOI: 10.1093/narcan/zcad022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
Maintenance of genomic methylation patterns at DNA replication forks by DNMT1 is the key to faithful mitotic inheritance. DNMT1 is often overexpressed in cancer cells and the DNA hypomethylating agents azacytidine and decitabine are currently used in the treatment of hematologic malignancies. However, the toxicity of these cytidine analogs and their ineffectiveness in treating solid tumors have limited wider clinical use. GSK-3484862 is a newly-developed, dicyanopyridine containing, non-nucleoside DNMT1-selective inhibitor with low cellular toxicity. Here, we show that GSK-3484862 targets DNMT1 for protein degradation in both cancer cell lines and murine embryonic stem cells (mESCs). DNMT1 depletion was rapid, taking effect within hours following GSK-3484862 treatment, leading to global hypomethylation. Inhibitor-induced DNMT1 degradation was proteasome-dependent, with no discernible loss of DNMT1 mRNA. In mESCs, GSK-3484862-induced Dnmt1 degradation requires the Dnmt1 accessory factor Uhrf1 and its E3 ubiquitin ligase activity. We also show that Dnmt1 depletion and DNA hypomethylation induced by the compound are reversible after its removal. Together, these results indicate that this DNMT1-selective degrader/inhibitor will be a valuable tool for dissecting coordinated events linking DNA methylation to gene expression and identifying downstream effectors that ultimately regulate cellular response to altered DNA methylation patterns in a tissue/cell-specific manner.
Collapse
Affiliation(s)
- Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Jee Won Hwang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, MA 01938, USA
| | | | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| |
Collapse
|
14
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
15
|
Huang J, Chen Y, Guo Z, Yu Y, Zhang Y, Li P, Shi L, Lv G, Sun B. Prospective study and validation of early warning marker discovery based on integrating multi-omics analysis in severe burn patients with sepsis. BURNS & TRAUMA 2023; 11:tkac050. [PMID: 36659877 PMCID: PMC9840905 DOI: 10.1093/burnst/tkac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/22/2022] [Indexed: 01/17/2023]
Abstract
Background Early detection, timely diagnosis and rapid response are essential for case management and precautions of burn-associated sepsis. However, studies on indicators for early warning and intervention have rarely been conducted. This study was performed to better understand the pathophysiological changes and targets for prevention of severe burn injuries. Methods We conducted a multi-center, prospective multi-omics study, including genomics, microRNAomics, proteomics and single-cell transcriptomics, in 60 patients with severe burn injuries. A mouse model of severe burn injuries was also constructed to verify the early warning ability and therapeutic effects of potential markers. Results Through genomic analysis, we identified seven important susceptibility genes (DNAH11, LAMA2, ABCA2, ZFAND4, CEP290, MUC20 and ENTPD1) in patients with severe burn injuries complicated with sepsis. Through plasma miRNAomics studies, we identified four miRNAs (hsa-miR-16-5p, hsa-miR-185-5p, hsa-miR-451a and hsa-miR-423-5p) that may serve as early warning markers of burn-associated sepsis. A proteomic study indicated the changes in abundance of major proteins at different time points after severe burn injury and revealed the candidate early warning markers S100A8 and SERPINA10. In addition, the proteomic analysis indicated that neutrophils play an important role in the pathogenesis of severe burn injuries, as also supported by findings from single-cell transcriptome sequencing of neutrophils. Through further studies on severely burned mice, we determined that S100A8 is also a potential early therapeutic target for severe burn injuries, beyond being an early warning indicator. Conclusions Our multi-omics study identified seven susceptibility genes, four miRNAs and two proteins as early warning markers for severe burn-associated sepsis. In severe burn-associated sepsis, the protein S100A8 has both warning and therapeutic effects.
Collapse
Affiliation(s)
| | | | | | - Yanzhen Yu
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu, China
| | - Pingsong Li
- Department of Burns and Plastic Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, Jiangsu, China
| | - Lei Shi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Guozhong Lv
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214041, Jiangsu, China
| | | |
Collapse
|
16
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Zhao CR, Li J, Jiang ZT, Zhu JJ, Zhao JN, Yang QR, Yao W, Pang W, Li N, Yu M, Gan Y, Zhou J. Disturbed Flow-Facilitated Margination and Targeting of Nanodisks Protect against Atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204694. [PMID: 36403215 DOI: 10.1002/smll.202204694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Disturbed blood flow induces endothelial pro-inflammatory responses that promote atherogenesis. Nanoparticle-based therapeutics aimed at treating endothelial inflammation in vasculature where disturbed flow occurs may provide a promising avenue to prevent atherosclerosis. By using a vertical-step flow apparatus and a microfluidic chip of vascular stenosis, herein, it is found that the disk-shaped versus the spherical nanoparticles exhibit preferential margination (localization and adhesion) to the regions with the pro-atherogenic disturbed flow. By employing a mouse model of carotid partial ligation, superior targeting and higher accumulation of the disk-shaped particles are also demonstrated within disturbed flow areas than that of the spherical particles. In hyperlipidemia mice, administration of disk-shaped particles loaded with hypomethylating agent decitabine (DAC) displays greater anti-inflammatory and anti-atherosclerotic effects compared with that of the spherical counterparts and exhibits reduced toxicity than "naked" DAC. The findings suggest that shaping nanoparticles to disk is an effective strategy for promoting their delivery to atheroprone endothelia.
Collapse
Affiliation(s)
- Chuan-Rong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhi-Tong Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Juan-Juan Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jia-Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Qian-Ru Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| |
Collapse
|
18
|
Hara R, Kitahara T, Numata H, Toyosaki M, Watanabe S, Kikkawa E, Ogawa Y, Kawada H, Ando K. Fetal hemoglobin level predicts lower-risk myelodysplastic syndrome. Int J Hematol 2022; 117:684-693. [PMID: 36574168 DOI: 10.1007/s12185-022-03523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The relationship between fetal hemoglobin (HbF) levels and disease prognosis in patients with myelodysplastic syndrome (MDS) is unclear. This study aimed to clarify the relationship between HbF level and the prognosis of MDS. To this end, data from 217 patients diagnosed with MDS between April 2006 and August 2020 at Ebina General Hospital were analyzed retrospectively. The primary endpoint was leukemia-free survival (LFS) for 5 years after diagnosis. HbF levels were significantly higher in patients with MDS than in control patients without MDS (n = 155), with a cut-off value of 0.4%. Higher-risk patients had a similar prognosis regardless of HbF level, but lower-risk patients had longer LFS at intermediate HbF levels. Although prognosis based on pre-treatment HbF levels did not differ significantly among azacitidine-treated patients, prognosis tended to be better in lower-risk patients with intermediate HbF levels. Multivariate analysis showed that the intermediate HbF category correlated with LFS, independently of MDS lower-risk prognostic scoring system (LR-PSS)-related factors. This study is the first to assess the association between HbF levels and the new World Health Organization 2016 criteria for MDS, demonstrating the significance of HbF levels in the prognosis of MDS.
Collapse
Affiliation(s)
- Ryujiro Hara
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan.
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| | - Toshihiko Kitahara
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
| | - Hiroki Numata
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masako Toyosaki
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Shigeki Watanabe
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
| | - Eri Kikkawa
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroshi Kawada
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Kiyoshi Ando
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
19
|
Pavan AR, Lopes JR, Dos Santos JL. The state of the art of fetal hemoglobin-inducing agents. Expert Opin Drug Discov 2022; 17:1279-1293. [PMID: 36302760 DOI: 10.1080/17460441.2022.2141708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the β-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION The comprehension of the mechanisms involved in the β-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Juliana Romano Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| |
Collapse
|
20
|
Cheng X, Blumenthal RM. Mediating and maintaining methylation while minimizing mutation: Recent advances on mammalian DNA methyltransferases. Curr Opin Struct Biol 2022; 75:102433. [PMID: 35914495 PMCID: PMC9620438 DOI: 10.1016/j.sbi.2022.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Mammalian genomes are methylated on carbon-5 of many cytosines, mostly in CpG dinucleotides. Methylation patterns are maintained during mitosis via DNMT1, and regulatory factors involved in processes that include histone modifications. Methylation in a sequence longer than CpG can influence the binding of sequence-specific transcription factors, thus affecting gene expression. 5-Methylcytosine deamination results in C-to-T transition. While some mutations are beneficial, most are not; so boosting C-to-T transitions can be dangerous. Given the role of DNMT3A in establishing de novo DNA methylation during development, it is this CpG methylation and deamination that provide the major mutagenic impetus in the DNMT3A gene itself, including the R882H dominant-negative substitution associated with two diseases: germline mutations in DNMT3A overgrowth syndrome, and somatic mutations in clonal hematopoiesis that can initiate acute myeloid leukemia. We discuss recent developments in therapeutics targeting DNMT1, the role of noncatalytic isoform DNMT3B3 in regulating de novo methylation by DNMT3A, and structural characterization of DNMT3A in various configurations.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
21
|
Polycomb-lamina antagonism partitions heterochromatin at the nuclear periphery. Nat Commun 2022; 13:4199. [PMID: 35859152 PMCID: PMC9300685 DOI: 10.1038/s41467-022-31857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
The genome can be divided into two spatially segregated compartments, A and B, which partition active and inactive chromatin states. While constitutive heterochromatin is predominantly located within the B compartment near the nuclear lamina, facultative heterochromatin marked by H3K27me3 spans both compartments. How epigenetic modifications, compartmentalization, and lamina association collectively maintain heterochromatin architecture remains unclear. Here we develop Lamina-Inducible Methylation and Hi-C (LIMe-Hi-C) to jointly measure chromosome conformation, DNA methylation, and lamina positioning. Through LIMe-Hi-C, we identify topologically distinct sub-compartments with high levels of H3K27me3 and differing degrees of lamina association. Inhibition of Polycomb repressive complex 2 (PRC2) reveals that H3K27me3 is essential for sub-compartment segregation. Unexpectedly, PRC2 inhibition promotes lamina association and constitutive heterochromatin spreading into H3K27me3-marked B sub-compartment regions. Consistent with this repositioning, genes originally marked with H3K27me3 in the B compartment, but not the A compartment, remain largely repressed, suggesting that constitutive heterochromatin spreading can compensate for H3K27me3 loss at a transcriptional level. These findings demonstrate that Polycomb sub-compartments and their antagonism with lamina association are fundamental features of genome structure. More broadly, by jointly measuring nuclear position and Hi-C contacts, our study demonstrates how compartmentalization and lamina association represent distinct but interdependent modes of heterochromatin regulation.
Collapse
|
22
|
Umehara T. Epidrugs: Toward Understanding and Treating Diverse Diseases. EPIGENOMES 2022; 6:epigenomes6030018. [PMID: 35893014 PMCID: PMC9326711 DOI: 10.3390/epigenomes6030018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenomic modifications are unique in the type and amount of chemical modification at each chromosomal location, can vary from cell to cell, and can be externally modulated by small molecules. In recent years, genome-wide epigenomic modifications have been revealed, and rapid progress has been made in the identification of proteins responsible for epigenomic modifications and in the development of compounds that regulate them. This Special Issue on “Epidrugs: Toward Understanding and Treating Diverse Diseases” aims to provide insights into various aspects of the biology and development of epigenome-regulating compounds.
Collapse
Affiliation(s)
- Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
23
|
Upadhyay P, Beales J, Shah NM, Gruszczynska A, Miller CA, Petti AA, Ramakrishnan SM, Link DC, Ley TJ, Welch JS. Recurrent transcriptional responses in AML and MDS patients treated with decitabine. Exp Hematol 2022; 111:50-65. [PMID: 35429619 PMCID: PMC9833843 DOI: 10.1016/j.exphem.2022.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/21/2023]
Abstract
The molecular events responsible for decitabine responses in myelodysplastic syndrome and acute myeloid leukemia patients are poorly understood. Decitabine has a short serum half-life and limited stability in tissue culture. Therefore, theoretical pharmacologic differences may exist between patient molecular changes in vitro and the consequences of in vivo treatment. To systematically identify the global genomic and transcriptomic alterations induced by decitabine in vivo, we evaluated primary bone marrow samples that were collected during patient treatment and applied whole-genome bisulfite sequencing, RNA-sequencing, and single-cell RNA sequencing. Decitabine induced global, reversible hypomethylation after 10 days of therapy in all patients, which was associated with induction of interferon-induced pathways, the expression of endogenous retroviral elements, and inhibition of erythroid-related transcripts, recapitulating many effects seen previously in in vitro studies. However, at relapse after decitabine treatment, interferon-induced transcripts remained elevated relative to day 0, but erythroid-related transcripts now were more highly expressed than at day 0. Clinical responses were not correlated with epigenetic or transcriptional signatures, although sample size and interpatient variance restricted the statistical power required for capturing smaller effects. Collectively, these data define global hypomethylation by decitabine and find that erythroid-related pathways may be relevant because they are inhibited by therapy and reverse at relapse.
Collapse
Affiliation(s)
- Pawan Upadhyay
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeremy Beales
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Nakul M. Shah
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Agata Gruszczynska
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Christopher A. Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Allegra A. Petti
- Department of Neuro-logical Surgery, Washington University School of Medicine, St. Louis, MO
| | - Sai Mukund Ramakrishnan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John S. Welch
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
24
|
Bou-Fakhredin R, De Franceschi L, Motta I, Cappellini MD, Taher AT. Pharmacological Induction of Fetal Hemoglobin in β-Thalassemia and Sickle Cell Disease: An Updated Perspective. Pharmaceuticals (Basel) 2022; 15:ph15060753. [PMID: 35745672 PMCID: PMC9227505 DOI: 10.3390/ph15060753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
A significant amount of attention has recently been devoted to the mechanisms involved in hemoglobin (Hb) switching, as it has previously been established that the induction of fetal hemoglobin (HbF) production in significant amounts can reduce the severity of the clinical course in diseases such as β-thalassemia and sickle cell disease (SCD). While the induction of HbF using lentiviral and genome-editing strategies has been made possible, they present limitations. Meanwhile, progress in the use of pharmacologic agents for HbF induction and the identification of novel HbF-inducing strategies has been made possible as a result of a better understanding of γ-globin regulation. In this review, we will provide an update on all current pharmacological inducer agents of HbF in β-thalassemia and SCD in addition to the ongoing research into other novel, and potentially therapeutic, HbF-inducing agents.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: (M.D.C.); (A.T.T.)
| | - Ali T. Taher
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
- Correspondence: (M.D.C.); (A.T.T.)
| |
Collapse
|
25
|
Li E, Wang K, Zhang B, Guo S, Xiao S, Pan Q, Wang X, Chen W, Wu Y, Xu H, Kong X, Luo C, Chen S, Liu B. Design, synthesis, and biological evaluation of novel carbazole derivatives as potent DNMT1 inhibitors with reasonable PK properties. J Enzyme Inhib Med Chem 2022; 37:1537-1555. [PMID: 35670075 PMCID: PMC9186373 DOI: 10.1080/14756366.2022.2079640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The DNA methyltransferases (DNMTs) were found in mammals to maintain DNA methylation. Among them, DNMT1 was the first identified, and it is an attractive target for tumour chemotherapy. DC_05 and DC_517 have been reported in our previous work, which is non-nucleoside DNMT1 inhibitor with low micromolar IC50 values and significant selectivity towards other S-adenosyl-L-methionine (SAM)-dependent protein methyltransferases. In this study, through a process of similarity-based analog searching, a series of DNMT1 inhibitors were designed, synthesized, and evaluated as anticancer agents. SAR studies were conducted based on enzymatic assays. And most of the compounds showed strong inhibitory activity on human DNMT1, especially WK-23 displayed a good inhibitory effect on human DNMT1 with an IC50 value of 5.0 µM. Importantly, the pharmacokinetic (PK) profile of WK-23 was obtained with quite satisfying oral bioavailability and elimination half-life. Taken together, WK-23 is worth developing as DNMT1-selective therapy for the treatment of malignant tumour.
Collapse
Affiliation(s)
- Ennian Li
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siqi Guo
- State Key Laboratory of Drug Research, The Center for Chemical Biology, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, Nanchang University, Nanchang, China
| | - Senhao Xiao
- State Key Laboratory of Drug Research, The Center for Chemical Biology, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qi Pan
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowan Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiying Chen
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Yunshan Wu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Hesong Xu
- State Key Laboratory of Drug Research, The Center for Chemical Biology, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiangqian Kong
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, The Center for Chemical Biology, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Shijie Chen
- State Key Laboratory of Drug Research, The Center for Chemical Biology, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Horton JR, Pathuri S, Wong K, Ren R, Rueda L, Fosbenner DT, Heerding DA, McCabe MT, Pappalardi MB, Zhang X, King BW, Cheng X. Structural characterization of dicyanopyridine containing DNMT1-selective, non-nucleoside inhibitors. Structure 2022; 30:793-802.e5. [PMID: 35395178 PMCID: PMC9177618 DOI: 10.1016/j.str.2022.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
Abstract
DNMT1 maintains the parental DNA methylation pattern on newly replicated hemimethylated DNA. The failure of this maintenance process causes aberrant DNA methylation that affects transcription and contributes to the development and progression of cancers such as acute myeloid leukemia. Here, we structurally characterized a set of newly discovered DNMT1-selective, reversible, non-nucleoside inhibitors that bear a core 3,5-dicyanopyridine moiety, as exemplified by GSK3735967, to better understand their mechanism of inhibition. All of the dicyanopydridine-containing inhibitors examined intercalate into the hemimethylated DNA between two CpG base pairs through the DNA minor groove, resulting in conformational movement of the DNMT1 active-site loop. In addition, GSK3735967 introduces two new binding sites, where it interacts with and stabilizes the displaced DNMT1 active-site loop and it occupies an open aromatic cage in which trimethylated histone H4 lysine 20 is expected to bind. Our work represents a substantial step in generating potent, selective, and non-nucleoside inhibitors of DNMT1.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarath Pathuri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kristen Wong
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lourdes Rueda
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - David T Fosbenner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Dirk A Heerding
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Michael T McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Melissa B Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bryan W King
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
27
|
7-Aminoalkoxy-Quinazolines from Epigenetic Focused Libraries Are Potent and Selective Inhibitors of DNA Methyltransferase 1. Molecules 2022; 27:molecules27092892. [PMID: 35566242 PMCID: PMC9102847 DOI: 10.3390/molecules27092892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Inhibitors of epigenetic writers such as DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug and probe discovery. To advance epigenetic probes and drug discovery, chemical companies are developing focused libraries for epigenetic targets. Based on a knowledge-based approach, herein we report the identification of two quinazoline-based derivatives identified in focused libraries with sub-micromolar inhibition of DNMT1 (30 and 81 nM), more potent than S-adenosylhomocysteine. Also, both compounds had a low micromolar affinity of DNMT3A and did not inhibit DNMT3B. The enzymatic inhibitory activity of DNMT1 and DNMT3A was rationalized with molecular modeling. The quinazolines reported in this work are known to have low cell toxicity and be potent inhibitors of the epigenetic target G9a. Therefore, the quinazoline-based compounds presented are attractive not only as novel potent inhibitors of DNMTs but also as dual and selective epigenetic agents targeting two families of epigenetic writers.
Collapse
|
28
|
Iftikhar F, Rahman S, Khan MBN, Khan K, Khan MN, Uddin R, Musharraf SG. In Vitro and In Vivo Studies for the Investigation of γ-Globin Gene Induction by Adhatoda vasica: A Pre-Clinical Study of HbF Inducers for β-Thalassemia. Front Pharmacol 2022; 13:797853. [PMID: 35422700 PMCID: PMC9002120 DOI: 10.3389/fphar.2022.797853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal hemoglobin (HbF) is a potent genetic modifier, and the γ-globin gene induction has proven to be a sustainable therapeutic approach for the management of β-thalassemia. In this study, we have evaluated the HbF induction ability of A. vasica in vitro and in vivo, and the identification of potential therapeutic compounds through a bioassay-guided approach. In vitro benzidine-Hb assay demonstrated strong erythroid differentiation of K562 cells by A. vasica extracts. Subsequently, an in vivo study with an aqueous extract of A. vasica (100 mg/kg) showed significant induction of the γ-globin gene and HbF production. While in the acute study, the hematological and biochemical indices were found to be unaltered at the lower dose of A. vasica. Following the bioassay-guided approach, two isolated compounds, vasicinol (1) and vasicine (2) strongly enhanced HbF levels and showed prominent cellular growth kinetics with ample accumulation of total hemoglobin in K562 cultures. High HbF levels were examined by immunofluorescence and flow cytometry analysis, concomitant with the overexpression in the γ-globin gene level. Compound 1 (0.1 µM) and compound 2 (1 µM) resulted in a greater increase in F-cells (90 and 83%) with marked up (8-fold and 5.1-fold) expression of the γ-globin gene, respectively. Molecular docking studies indicated strong binding affinities of (1) and (2) with HDAC2 and KDM1 protein that predict the possible mechanism of compounds in inhibition of these epigenetic regulators in the γ-globin gene reactivation. Altogether, these observations demonstrated the therapeutic usefulness of A. vasica for fostering HbF production in clinical implications for blood disorders.
Collapse
Affiliation(s)
- Fizza Iftikhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saeedur Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Behroz Naeem Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Noman Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
29
|
Conery AR, Rocnik JL, Trojer P. Small molecule targeting of chromatin writers in cancer. Nat Chem Biol 2021; 18:124-133. [PMID: 34952934 DOI: 10.1038/s41589-021-00920-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways-DNA methylation, histone acetylation and methylation-are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy.
Collapse
|
30
|
Azevedo Portilho N, Saini D, Hossain I, Sirois J, Moraes C, Pastor WA. The DNMT1 inhibitor GSK-3484862 mediates global demethylation in murine embryonic stem cells. Epigenetics Chromatin 2021; 14:56. [PMID: 34906184 PMCID: PMC8672470 DOI: 10.1186/s13072-021-00429-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background DNA methylation plays an important role in regulating gene expression in mammals. The covalent DNMT1 inhibitors 5-azacytidine and decitabine are widely used in research to reduce DNA methylation levels, but they impart severe cytotoxicity which limits their demethylation capability and confounds interpretation of experiments. Recently, a non-covalent inhibitor of DNMT1 called GSK-3484862 was developed by GlaxoSmithKline. We sought to determine whether GSK-3484862 can induce demethylation more effectively than 5-azanucleosides. Murine embryonic stem cells (mESCs) are an ideal cell type in which to conduct such experiments, as they have a high degree of DNA methylation but tolerate dramatic methylation loss. Results We determined the cytotoxicity and optimal concentration of GSK-3484862 by treating wild-type (WT) or Dnmt1/3a/3b triple knockout (TKO) mESC with different concentrations of the compound, which was obtained from two commercial sources. Concentrations of 10 µM or below were readily tolerated for 14 days of culture. Known DNA methylation targets such as germline genes and GLN-family transposons were upregulated within 2 days of the start of GSK-3484862 treatment. By contrast, 5-azacytidine and decitabine induced weaker upregulation of methylated genes and extensive cell death. Whole-genome bisulfite sequencing showed that treatment with GSK-3484862 induced dramatic DNA methylation loss, with global CpG methylation levels falling from near 70% in WT mESC to less than 18% after 6 days of treatment with GSK-3484862. The treated cells showed a methylation level and pattern similar to that observed in Dnmt1-deficient mESCs. Conclusions GSK-3484862 mediates striking demethylation in mESCs with minimal non-specific toxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00429-0.
Collapse
Affiliation(s)
- Nathalia Azevedo Portilho
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada.,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada. .,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
31
|
Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M, Gowher H. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer 2021; 3:zcab045. [PMID: 34870206 PMCID: PMC8634572 DOI: 10.1093/narcan/zcab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns. Consequently, the acquired gene expression may increase the proliferative potential of cells, often concomitant with loss of cell identity as found in cancer. Aberrant DNA methylation, including hypermethylation and hypomethylation at various genomic regions, therefore, is a hallmark of most cancers. Additionally, somatic mutations in DNMTs that affect catalytic activity were mapped in Acute Myeloid Leukemia cancer cells. Despite being very effective in some cancers, the clinically approved DNMT inhibitors lack specificity, which could result in a wide range of deleterious effects. Elucidating distinct molecular mechanisms of DNMTs will facilitate the discovery of alternative cancer therapeutic targets. This review is focused on: (i) the structure and characteristics of DNMTs, (ii) the prevalence of mutations and abnormal expression of DNMTs in cancer, (iii) factors that mediate their abnormal expression and (iv) the effect of anomalous DNMT-complexes in cancer.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
32
|
Mukherjee M, Rahaman M, Ray SK, Shukla PC, Dolai TK, Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mol Biol Rep 2021; 49:2359-2373. [PMID: 34822068 DOI: 10.1007/s11033-021-06977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Beta-hemoglobinopathies exhibit a heterogeneous clinical picture with varying degrees of clinical severity. Pertaining to the limited treatment options available, where blood transfusion still remains the commonest mode of treatment, pharmacological induction of fetal hemoglobin (HbF) has been a lucrative therapeutic intervention. Till now more than 70 different HbF inducers have been identified. The practical usage of many pharmacological drugs has been limited due to safety concerns. Natural compounds, like Resveratrol, Ripamycin and Bergaptene, with limited cytotoxicity and high efficacy have started capturing the attention of researchers. In this review, we have summarized pharmacological drugs and bioactive compounds isolated from natural sources that have been shown to increase HbF significantly. It primarily discusses recently identified synthetic and natural compounds, their mechanism of action, and their suitable screening platforms, including high throughput drug screening technology and biosensors. It also delves into the topic of combinatorial therapy and drug repurposing for HbF induction. Overall, we aim to provide insights into where we stand in HbF induction strategies for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Suman Kumar Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Tuphan Kanti Dolai
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
33
|
Parker WB, Thottassery JV. 5-Aza-4'-thio-2'-deoxycytidine, a New Orally Bioavailable Nontoxic "Best-in-Class": DNA Methyltransferase 1-Depleting Agent in Clinical Development. J Pharmacol Exp Ther 2021; 379:211-222. [PMID: 34503994 PMCID: PMC9164309 DOI: 10.1124/jpet.121.000758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
DNA methyltransferase (DNMT) 1 is an enzyme that functions as a maintenance methyltransferase during DNA replication, and depletion of this enzyme from cells is considered to be a rational goal in DNA methylation-dependent disorders. Two DNMT1-depleting agents 5-aza-2'-deoxycytidine (aza-dCyd, decitabine) and 5-aza-cytidine (aza-Cyd, azacitidine) are currently used for the treatment of myelodysplastic syndromes and acute myeloid leukemia and have also been investigated for nononcology indications, such as sickle cell disease. However, these agents have several off-target activities leading to significant toxicities that limit dosing and duration of treatment. Development of more selective inhibitors of DNMT1 could therefore afford treatment of long durations at effective doses. We have discovered that 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) is as effective as aza-dCyd in depleting DNMT1 in mouse tumor models but with markedly low toxicity. In this review we describe the preclinical studies that led to the development of aza-T-dCyd as a superior DNMT1-depleting agent with respect to aza-dCyd and will describe its pharmacology, metabolism, and mechanism of action. In an effort to understand why aza-T-dCyd is a more selective DNMT1 depleting agent than aza-dCyd, we will also compare and contrast the activities of these two agents. SIGNIFICANCE STATEMENT: Aza-T-dCyd is a potent DNMT1-depleting agent. Although similar in structure to decitabine (aza-dCyd), its metabolism and mechanism of action is different than that of aza-dCyd, resulting in less off-target activity and less toxicity. The larger therapeutic index of aza-T-dCyd (DNMT1 depletion vs. toxicity) in mice suggests that it would be a better clinical candidate to selectively deplete DNMT1 from target cells and determine whether or not depletion of DNMT1 is an effective target for various diseases.
Collapse
Affiliation(s)
- William B Parker
- PNP Therapeutics, Birmingham, Alabama (W.B.P.); and UDG Healthcare, Smartanalyst - Ashfield Division, New York, New York (J.V.T.)
| | - Jaideep V Thottassery
- PNP Therapeutics, Birmingham, Alabama (W.B.P.); and UDG Healthcare, Smartanalyst - Ashfield Division, New York, New York (J.V.T.)
| |
Collapse
|
34
|
Pappalardi MB, Keenan K, Cockerill M, Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J, Steidel M, Chapman P, Groy A, Wiseman AK, McHugh CF, Campobasso N, Graves AP, Fairweather E, Werner T, Raoof A, Butlin RJ, Rueda L, Horton JR, Fosbenner DT, Zhang C, Handler JL, Muliaditan M, Mebrahtu M, Jaworski JP, McNulty DE, Burt C, Eberl HC, Taylor AN, Ho T, Merrihew S, Foley SW, Rutkowska A, Li M, Romeril SP, Goldberg K, Zhang X, Kershaw CS, Bantscheff M, Jurewicz AJ, Minthorn E, Grandi P, Patel M, Benowitz AB, Mohammad HP, Gilmartin AG, Prinjha RK, Ogilvie D, Carpenter C, Heerding D, Baylin SB, Jones PA, Cheng X, King BW, Luengo JI, Jordan AM, Waddell I, Kruger RG, McCabe MT. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. NATURE CANCER 2021; 2:1002-1017. [PMID: 34790902 DOI: 10.1038/s43018-021-00249-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/27/2021] [Indexed: 05/22/2023]
Abstract
DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.
Collapse
Affiliation(s)
- Melissa B Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kathryn Keenan
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Mark Cockerill
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
- These authors contributed equally: Mark Cockerill, Wendy A. Kellner
| | - Wendy A Kellner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
- These authors contributed equally: Mark Cockerill, Wendy A. Kellner
| | - Alexandra Stowell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Christian Sherk
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kristen Wong
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Sarath Pathuri
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacques Briand
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael Steidel
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Philip Chapman
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Arthur Groy
- Future Pipeline Discovery, GlaxoSmithKline, Collegeville, PA, USA
| | - Ashley K Wiseman
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Charles F McHugh
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Nino Campobasso
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Alan P Graves
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Emma Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Thilo Werner
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Ali Raoof
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Roger J Butlin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Lourdes Rueda
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David T Fosbenner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Cunyu Zhang
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Jessica L Handler
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Morris Muliaditan
- Drug Metabolism and Pharmacokinetics Modelling, GlaxoSmithKline, Stevenage, UK
| | - Makda Mebrahtu
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon-Paul Jaworski
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Dean E McNulty
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Charlotte Burt
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - H Christian Eberl
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Amy N Taylor
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Thau Ho
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Susan Merrihew
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Shawn W Foley
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Anna Rutkowska
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Mei Li
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Stuart P Romeril
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kristin Goldberg
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher S Kershaw
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Marcus Bantscheff
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | | | - Elisabeth Minthorn
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Paola Grandi
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Mehul Patel
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Helai P Mohammad
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Rab K Prinjha
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Donald Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | | | - Dirk Heerding
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Peter A Jones
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan W King
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Juan I Luengo
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Ryan G Kruger
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael T McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
35
|
|
36
|
Feng S, De Carvalho DD. Clinical advances in targeting epigenetics for cancer therapy. FEBS J 2021; 289:1214-1239. [PMID: 33545740 DOI: 10.1111/febs.15750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Shengrui Feng
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
- Department of Medical Biophysics University of Toronto ON Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
- Department of Medical Biophysics University of Toronto ON Canada
| |
Collapse
|
37
|
The methyltransferase PRMT1 regulates γ-globin translation. J Biol Chem 2021; 296:100417. [PMID: 33587951 PMCID: PMC7966866 DOI: 10.1016/j.jbc.2021.100417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/30/2022] Open
Abstract
Induction of fetal hemoglobin to overcome adult β-globin gene deficiency is an effective therapeutic strategy to ameliorate human β-hemoglobinopathies. Previous work has revealed that fetal γ-globin can be translationally induced via integrated stress signaling, but other studies have indicated that activating stress may eventually suppress γ-globin expression transcriptionally. The mechanism by which γ-globin expression is regulated at the translational level remains largely unknown, limiting our ability to determine whether activating stress is a realistic therapeutic option for these disorders. In this study, we performed a functional CRISPR screen targeting protein arginine methyltransferases (PRMTs) to look for changes in γ-globin expression in K562 cells. We not only discovered that several specific PRMTs may block γ-globin transcription, but also revealed PRMT1 as a unique family member that is able to suppress γ-globin synthesis specifically at the translational level. We further identified that a non-AUG uORF within the 5' untranslated region of γ-globin serves as a barrier for translation, which is bypassed upon PRMT1 deficiency. Finally, we found that this novel mechanism of γ-globin suppression could be pharmacologically targeted by the PRMT1 inhibitor, furamidine dihydrochloride. These data raise new questions regarding methyltransferase function and may offer a new therapeutic direction for β-hemoglobinopathies.
Collapse
|
38
|
Pace BS, Starlard-Davenport A, Kutlar A. Sickle cell disease: progress towards combination drug therapy. Br J Haematol 2021; 194:240-251. [PMID: 33471938 DOI: 10.1111/bjh.17312] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
Abstract
Dr. John Herrick described the first clinical case of sickle cell anaemia (SCA) in the United States in 1910. Subsequently, four decades later, Ingram and colleagues characterized the A to T substitution in DNA producing the GAG to GTG codon and replacement of glutamic acid with valine in the sixth position of the βS -globin chain. The establishment of Comprehensive Sickle Cell Centers in the United States in the 1970s was an important milestone in the development of treatment strategies and describing the natural history of sickle cell disease (SCD) comprised of genotypes including homozygous haemoglobin SS (HbSS), HbSβ0 thalassaemia, HbSC and HbSβ+ thalassaemia, among others. Early drug studies demonstrating effective treatments of HbSS and HbSβ0 thalassaemia, stimulated clinical trials to develop disease-specific therapies to induce fetal haemoglobin due to its ability to block HbS polymerization. Subsequently, hydroxycarbamide proved efficacious in adults with SCA and was Food and Drug Administration (FDA)-approved in 1998. After two decades of hydroxycarbamide use for SCD, there continues to be limited clinical acceptance of this chemotherapy drug, providing the impetus for investigators and pharmaceutical companies to develop non-chemotherapy agents. Investigative efforts to determine the role of events downstream of deoxy-HbS polymerization, such as endothelial cell activation, cellular adhesion, chronic inflammation, intravascular haemolysis and nitric oxide scavenging, have expanded drug targets which reverse the pathophysiology of SCD. After two decades of slow progress in the field, since 2018 three new drugs were FDA-approved for SCA, but research efforts to develop treatments continue. Currently over 30 treatment intervention trials are in progress to investigate a wide range of agents acting by complementary mechanisms, providing the rationale for ushering in the age of effective and safe combination drug therapy for SCD. Parallel efforts to develop curative therapies using haematopoietic stem cell transplant and gene therapy provide individuals with SCD multiple treatment options. We will discuss progress made towards drug development and potential combination drug therapy for SCD with the standard of care hydroxycarbamide.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Abdullah Kutlar
- Department of Medicine, Center for Blood Disorders, Augusta University, Augusta, GA, USA
| |
Collapse
|
39
|
Sundaravel S, Steidl U, Wickrema A. Epigenetic modifiers in normal and aberrent erythropoeisis. Semin Hematol 2021; 58:15-26. [PMID: 33509439 PMCID: PMC7883935 DOI: 10.1053/j.seminhematol.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Erythroid differentiation program is comprised of lineage commitment, erythroid progenitor proliferation, and termination differentiation. Each stage of the differentiation program is heavily influenced by epigenetic modifiers that alter the epigenome in a dynamic fashion influenced by cytokines/humeral factors and are amicable to target by drugs. The epigenetic modifiers can be classified as DNA modifiers (DNMT, TET), mRNA modifiers (RNA methylases and demethylases) and histone protein modifiers (methyltransferases, acetyltransferases, demethylases, and deacetylases). Here we describe mechanisms by which these epigenetic modifiers influence and guide erythroid-lineage differentiation during normal and malignant erythropoiesis and also benign diseases that arise from their altered structure or function.
Collapse
Affiliation(s)
- Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY; Department of Medicine, Albert Einstein College of Medicine-Montefiore Medical center, Bronx, NY
| | | |
Collapse
|
40
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
41
|
Dong B, Qiu Z, Wu Y. Tackle Epithelial-Mesenchymal Transition With Epigenetic Drugs in Cancer. Front Pharmacol 2020; 11:596239. [PMID: 33343366 PMCID: PMC7746977 DOI: 10.3389/fphar.2020.596239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Epithelial-mesenchymal Transition (EMT) is a de-differentiation process in which epithelial cells lose their epithelial properties to acquire mesenchymal features. EMT is essential for embryogenesis and wound healing but is aberrantly activated in pathological conditions like fibrosis and cancer. Tumor-associated EMT contributes to cancer cell initiation, invasion, metastasis, drug resistance and recurrence. This dynamic and reversible event is governed by EMT-transcription factors (EMT-TFs) with epigenetic complexes. In this review, we discuss recent advances regarding the mechanisms that modulate EMT in the context of epigenetic regulation, with emphasis on epigenetic drugs, such as DNA demethylating reagents, inhibitors of histone modifiers and non-coding RNA medication. Therapeutic contributions that improve epigenetic regulation of EMT will translate the clinical manifestation as treating cancer progression more efficiently.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Zhaoping Qiu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States,*Correspondence: Yadi Wu,
| |
Collapse
|