1
|
Grenier JM, Tasian SK, Stieglitz E, Abdullaev Z, Wertheim GB, Li MM, Phillips CA. Azacytidine Monotherapy in an Infant With Mosaic NRAS-Driven Juvenile Myelomonocytic Leukemia. Pediatr Blood Cancer 2025; 72:e31647. [PMID: 40040253 PMCID: PMC11970265 DOI: 10.1002/pbc.31647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Affiliation(s)
- Jeremy M Grenier
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA
- Prinses Máxima Center for Pediatric Oncology; Utrecht, the Netherlands
| | - Elliot Stieglitz
- Division of Hematology-Oncology, Dept. of Pediatrics, University of California, San Francisco Benioff Children’s Hospital, San Francisco, CA
| | - Zied Abdullaev
- National Cancer Institute, Center for Cancer Research, Laboratory of Pathology, Bethesda, MD
| | - Gerald B Wertheim
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Marilyn M Li
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA
- Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Charles A Phillips
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
2
|
Chen X, Patkar N, Tembhare P, Papagudi S, Yeung C, Kanagal Shamanna R, Gujral S, Wood B, Naresh KN. Fifth edition WHO classification: myeloid neoplasms. J Clin Pathol 2025; 78:335-345. [PMID: 39947884 DOI: 10.1136/jcp-2024-210022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 04/19/2025]
Abstract
The fifth edition of the WHO classification of haematolymphoid tumours (WHO-HEM5) introduces significant advancements in the understanding and diagnosis of myeloid neoplasms, emphasising molecular and genetic insights. This review highlights key updates from the revised fourth edition (WHO-HEM4R), particularly the integration of genetic criteria for disease classification. Many entities are now defined by specific genetic abnormalities, enhancing diagnostic precision and prognostic assessment. Notably, the elimination of the 20% blast threshold for acute myeloid leukaemia (AML) with specific defining genetic alterations reflects a shift towards genomic-driven diagnostics. Additional updates include the refined subclassification of myelodysplastic neoplasms (MDS) and MDS/myeloproliferative neoplasms, as well as the recognition of novel entities such as clonal haematopoiesis and MDS with biallelic TP53 inactivation, further expanding the spectrum of myeloid neoplasms. WHO-HEM5 illustrates the diagnostic utility of morphology, flow cytometry, immunohistochemistry and next-generation sequencing in resource-rich settings. However, its implementation in low-income and middle-income countries (LMICs) remains challenging due to limited access to advanced diagnostic tools. This review explores strategies to optimise diagnosis in resource-constrained environments, where morphology and immunophenotyping remain fundamental. By integrating molecular diagnostics with traditional methods, WHO-HEM5 aims to refine classification and facilitate risk stratification in the era of personalised medicine, providing haematopathologists and clinicians with an essential framework to navigate the complexities of myeloid neoplasms. The emphasis on advancing haematopathology practices worldwide, including in LMICs, demonstrates the ongoing commitment to improving global outcomes in haematological malignancies.
Collapse
Affiliation(s)
- Xueyan Chen
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Nikhil Patkar
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Prashant Tembhare
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Subramanian Papagudi
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Cecelia Yeung
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | | | - Sumeet Gujral
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Brent Wood
- Diagnostic Immunology & Flow Cytometry, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Agaoglu NB, Yalcın K, Unal B, Onder G, Celen SS, Zhumatayev S, Ozbek U, Ng OH. Clinical management of three JMML siblings with germline CBL variation. Cancer Genet 2025; 292-293:120-123. [PMID: 40020528 DOI: 10.1016/j.cancergen.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Germline pathogenic variants (PVs) in CBL are found in 15 % of juvenile myelomonocytic leukemia (JMML) cases. Here we report three siblings with CBL(NM_005188):c.1111T>C variation presenting a heterogenous JMML clinic and outcome. The index case was diagnosed at the age of seven, whereas the younger brother was 10 months old and the youngest was one month old. The hematopoietic stem cell transplantation was successful for the index and the youngest brother with event-free survival, but the middle brother showed severe graft versus host disease. This study shows the heterogeneity of JMML and how the outcome might differ even within the family.
Collapse
Affiliation(s)
- Nihat Bugra Agaoglu
- Department of Medical Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey; IKF-The Frankfurt Institute of Clinical Cancer Research, 60488 Frankfurt am Main, Germany
| | - Koray Yalcın
- Department of Pediatric Hematology Oncology, Bahcesehir University Medicalpark Goztepe Hospital, Istanbul, Turkey; Department of Medical Biotechnology, Institute of Health Science, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Busra Unal
- Department of Medical Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gizem Onder
- Department of Biochemistry and Molecular Biology Istanbul, Health Sciences Institute, Acıbadem Mehmet Ali Aydınlar University, Turkey; Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Safiye Suna Celen
- Department of Pediatric Hematology Oncology, Bahcesehir University Medicalpark Goztepe Hospital, Istanbul, Turkey
| | - Suleimen Zhumatayev
- Department of Pediatric Hematology Oncology, Bahcesehir University Medicalpark Goztepe Hospital, Istanbul, Turkey
| | - Ugur Ozbek
- IBG-Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ozden Hatirnaz Ng
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Division of Medical Biology, Department of Basic Sciences, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
4
|
Lim K, Kan WL, Nair PC, Kutyna M, Lopez AF, Hercus T, Ross DM, Lane S, Fong CY, Brown A, Yong A, Yeung D, Hughes T, Hiwase D, Thomas D. CBL mutations in chronic myelomonocytic leukemia often occur in the RING domain with multiple subclones per patient: Implications for targeting. PLoS One 2024; 19:e0310641. [PMID: 39298477 PMCID: PMC11412512 DOI: 10.1371/journal.pone.0310641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare blood cancer of older adults (3 in every 1,000,000 persons) characterized by poor survival and lacking effective mutation-specific therapy. Mutations in the ubiquitin ligase Cbl occur frequently in CMML and share biological and molecular features with a clonal disease occurring in children, juvenile myelomonocytic leukemia (JMML). Here we analyzed the clinical presentations, molecular features and immunophenotype of CMML patients with CBL mutations enrolled in a prospective Phase II clinical trial stratified according to molecular markers. Clinically, CBL mutations were associated with increased bone marrow blasts at diagnosis, leukocytosis and splenomegaly, similar to patients harboring NRAS or KRAS mutations. Interestingly, 64% of patients presented with more than one CBL variant implying a complex subclonal architecture, often with co-occurrence of TET2 mutations. We found CBL mutations in CMML frequently clustered in the RING domain in contrast to JMML, where mutations frequently involve the linker helix region (P<0.0001). According to our comparative alignment of available X-ray structures, mutations in the linker helix region such as Y371E give rise to conformational differences that could be exploited by targeted therapy approaches. Furthermore, we noted an increased percentage of CMML CD34+ stem and progenitor cells expressing CD116 and CD131 in all CBL mutant cases and increased CD116 receptor density compared to healthy controls, similar to CMML overall. In summary, our data demonstrate that CBL mutations are associated with distinct molecular and clinical features in CMML and are potentially targetable with CD116-directed immunotherapy.
Collapse
Affiliation(s)
- Kelly Lim
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Winnie L Kan
- Cytokine Receptor Laboratory, SA Pathology, Adelaide, SA, Australia
| | - Pramod C Nair
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Monika Kutyna
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Angel F Lopez
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Cytokine Receptor Laboratory, SA Pathology, Adelaide, SA, Australia
| | - Timothy Hercus
- Cytokine Receptor Laboratory, SA Pathology, Adelaide, SA, Australia
| | - David M Ross
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- SA Pathology, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Steven Lane
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | - Agnes Yong
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Royal Perth Hospital, Perth, WA, Australia
- The University of Western Australia Medical School, Perth, WA, Australia
| | - David Yeung
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Timothy Hughes
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Devendra Hiwase
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- SA Pathology, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Daniel Thomas
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- SA Pathology, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
5
|
Lucas BJ, Connors JS, Wang H, Conneely S, Cuglievan B, Garcia MB, Rau RE. Observation and Management of Juvenile Myelomonocytic Leukemia and Noonan Syndrome-Associated Myeloproliferative Disorder: A Real-World Experience. Cancers (Basel) 2024; 16:2749. [PMID: 39123476 PMCID: PMC11311611 DOI: 10.3390/cancers16152749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Juvenile Myelomonocytic Leukemia (JMML) is a rare and clonal hematopoietic disorder of infancy and early childhood with myeloproliferative/myelodysplastic features resulting from germline or somatic mutations in the RAS pathway. Treatment is not uniform, with management varying from observation to stem cell transplant. The aim of our retrospective review is to describe the treatment and outcomes of a cohort of patients with JMML or Noonan Syndrome-associated Myeloproliferative Disorder (NS-MPD) to provide management guidance for this rare and heterogeneous disease. We report on 22 patients with JMML or NS-MPD managed at three institutions in the Texas Medical Center. Of patients with known genetic mutations and cytogenetics, 6 harbored germline mutations, 12 had somatic mutations, and 9 showed cytogenetic abnormalities. Overall, 14/22 patients are alive. Spontaneous clinical remission occurred in one patient with somatic NRAS mutation, as well as two with germline PTPN11 mutations with NS-MPD, and two others with germline PTPN11 mutations and NS-MPD remain under surveillance. Patients with NS-MPD were excluded from treatment analysis as none required chemotherapeutic intervention. All patients (5/5) treated with 5-azacitidine alone and one of the four treated with 6-mercaptopurine monotherapy had a reduction in mutant variant allele frequency. Transformation to acute myeloid leukemia was seen in two patients who both died. Among patients who received transplants, 7/13 are alive, and relapse post-transplant occurred in 3/13 with a median time to relapse of 3.55 months. This report provides insight into therapy responses and long-term outcomes across different genetic subsets of JMML and lends insight into the expected time to spontaneous resolution in patients with NS-MPD with germline PTPN11 mutations.
Collapse
Affiliation(s)
- Bryony J. Lucas
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
| | - Jeremy S. Connors
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heping Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon Conneely
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pediatric Oncology, Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pediatric Oncology, Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Rachel E. Rau
- Department of Pediatrics, Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
6
|
Stellacci E, Carter JN, Pannone L, Stevenson D, Moslehi D, Venanzi S, Bernstein JA, Tartaglia M, Martinelli S. Immunological and hematological findings as major features in a patient with a new germline pathogenic CBL variant. Am J Med Genet A 2024; 194:e63627. [PMID: 38613168 PMCID: PMC11223960 DOI: 10.1002/ajmg.a.63627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Casitas B-lineage lymphoma (CBL) encodes an adaptor protein with E3-ligase activity negatively controlling intracellular signaling downstream of receptor tyrosine kinases. Somatic CBL mutations play a driver role in a variety of cancers, particularly myeloid malignancies, whereas germline defects in the same gene underlie a RASopathy having clinical overlap with Noonan syndrome (NS) and predisposing to juvenile myelomonocytic leukemia and vasculitis. Other features of the disorder include cardiac defects, postnatal growth delay, cryptorchidism, facial dysmorphisms, and predisposition to develop autoimmune disorders. Here we report a novel CBL variant (c.1202G>T; p.Cys401Phe) occurring de novo in a subject with café-au-lait macules, feeding difficulties, mild dysmorphic features, psychomotor delay, autism spectrum disorder, thrombocytopenia, hepatosplenomegaly, and recurrent hypertransaminasemia. The identified variant affects an evolutionarily conserved residue located in the RING finger domain, a known mutational hot spot of both germline and somatic mutations. Functional studies documented enhanced EGF-induced ERK phosphorylation in transiently transfected COS1 cells. The present findings further support the association of pathogenic CBL variants with immunological and hematological manifestations in the context of a presentation with only minor findings reminiscent of NS or a clinically related RASopathy.
Collapse
Affiliation(s)
- Emilia Stellacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| | - Jennefer N. Carter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- These authors equally contributed to this work
| | - Luca Pannone
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - David Stevenson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dorsa Moslehi
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
| | - Serenella Venanzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Jonathan A. Bernstein
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- These authors equally contributed to this work
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| |
Collapse
|
7
|
Estrella J, George S, Hariri D, Zaccarini DJ, Sura A. Cutaneous Vasculitis as the Initial Presentation of Juvenile Myelomonocytic Leukemia. Clin Pediatr (Phila) 2024; 63:1013-1016. [PMID: 37776241 DOI: 10.1177/00099228231202908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
MESH Headings
- Humans
- Diagnosis, Differential
- Leukemia, Myelomonocytic, Juvenile/diagnosis
- Leukemia, Myelomonocytic, Juvenile/complications
- Vasculitis, Leukocytoclastic, Cutaneous/diagnosis
- Vasculitis, Leukocytoclastic, Cutaneous/drug therapy
- Vasculitis, Leukocytoclastic, Cutaneous/etiology
Collapse
Affiliation(s)
- Jewel Estrella
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Simi George
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dana Hariri
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daniel J Zaccarini
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anjali Sura
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
8
|
Kansal R. The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies. Genes (Basel) 2024; 15:863. [PMID: 39062641 PMCID: PMC11276294 DOI: 10.3390/genes15070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing has begun to transform the treatment landscape of genetic diseases. The history of the discovery of CRISPR/CRISPR-associated (Cas) proteins/single-guide RNA (sgRNA)-based gene editing since the first report of repetitive sequences of unknown significance in 1987 is fascinating, highly instructive, and inspiring for future advances in medicine. The recent approval of CRISPR-Cas9-based gene therapy to treat patients with severe sickle cell anemia and transfusion-dependent β-thalassemia has renewed hope for treating other hematologic diseases, including patients with a germline predisposition to hematologic malignancies, who would benefit greatly from the development of CRISPR-inspired gene therapies. The purpose of this paper is three-fold: first, a chronological description of the history of CRISPR-Cas9-sgRNA-based gene editing; second, a brief description of the current state of clinical research in hematologic diseases, including selected applications in treating hematologic diseases with CRISPR-based gene therapy, preceded by a brief description of the current tools being used in clinical genome editing; and third, a presentation of the current progress in gene therapies in inherited hematologic diseases and bone marrow failure syndromes, to hopefully stimulate efforts towards developing these therapies for patients with inherited bone marrow failure syndromes and other inherited conditions with a germline predisposition to hematologic malignancies.
Collapse
Affiliation(s)
- Rina Kansal
- Molecular Oncology and Genetics, Diagnostic Laboratories, Versiti Blood Center of Wisconsin, Milwaukee, WI 53233, USA;
- Department of Pathology and Anatomical Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
9
|
Liu L, Xiang Y, Shao L, Yuan C, Song X, Sun M, Liu Y, Zhang X, Du S, Hou M, Peng J, Shi Y. E3 ubiquitin ligase casitas B-lineage lymphoma-b modulates T-cell anergic resistance via phosphoinositide 3-kinase signaling in patients with immune thrombocytopenia. J Thromb Haemost 2024; 22:1202-1214. [PMID: 38184203 DOI: 10.1016/j.jtha.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The E3 ubiquitin ligase casitas B-lineage lymphoma-b (CBLB) is a newly identified component of the ubiquitin-dependent protein degradation system and is considered an important negative regulator of immune cells. CBLB is essential for establishing a threshold of T-cell activation and regulating peripheral T-cell tolerance through various mechanisms. However, the involvement of CBLB in the pathogenesis of immune thrombocytopenia (ITP) is unknown. OBJECTIVES We aimed to investigate the expression and role of CBLB in CD4+ T cells obtained from patients with ITP through quantitative proteomics analyses. METHODS CD4+ T cells were transfected with adenoviral vectors overexpressing CBLB to clarify the effect of CBLB on anergic induction of T cells in patients with ITP. DNA methylation levels of the CBLB promoter and 5' untranslated region (UTR) in patient-derived CD4+ T cells were detected via MassARRAY EpiTYPER assay (Agena Bioscience). RESULTS CD4+ T cells from patients with ITP showed resistance to anergic induction, highly activated phosphoinositide 3-kinase-protein kinase B (AKT) signaling, decreased CBLB expression, and 5' UTR hypermethylation of CBLB. CBLB overexpression in T cells effectively attenuated the elevated phosphorylated protein kinase B level and resistance to anergy. Low-dose decitabine treatment led to significantly elevated levels of CBLB expression in CD4+ T cells from 7 patients showing a partial or complete response. CONCLUSION These results indicate that the 5' UTR hypermethylation of CBLB in CD4+ T cells induces resistance to T-cell anergy in ITP. Thus, the upregulation of CBLB expression by low-dose decitabine treatment may represent a potential therapeutic approach to ITP.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Yujiao Xiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linlin Shao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chenglu Yuan
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Xiaofeng Song
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Meng Sun
- Jinan Vocational College of Nursing, Jinan, Shandong, China
| | - Yanfeng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xianlei Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shenghong Du
- Department of Hematology, Taian Central Hospital, Taian, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, Shandong, China; Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Munoz-Osores E, Piñones M, Barriga F, Wietstruck MA, Pérez-Mateluna G, Mellado C, Aracena M, Parra R, García C, Borzutzky A. Long-term remission of infantile Takayasu arteritis associated with germline CBL syndrome after allogeneic hematopoietic stem cell transplantation: A case report and literature review. Transpl Immunol 2024; 83:102013. [PMID: 38395087 DOI: 10.1016/j.trim.2024.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Takayasu arteritis (TA) is a large-vessel vasculitis that rarely presents in infancy. Casitas B-lineage lymphoma (CBL) syndrome is a rare genetic disorder due to heterozygous CBL gene germline pathogenic variants that is characterized by a predisposition to develop juvenile myelomonocytic leukemia (JMML). Vasculitis, including TA, has been reported in several patients. Herein, we describe a patient with CBL syndrome, JMML, and TA, developing long-term remission of this vasculitis after allogeneic hematopoietic stem cell transplant (HSCT), and perform a literature review of CBL syndrome with vasculitis or vasculopathy. We report a female patient with growth delay, developmental issues, and congenital heart disease who was admitted at 14 months of age with massive splenomegaly, lymphadenopathy, fever, and hypertension. Body imaging studies revealed arterial stenosis and wall inflammation of the aorta and multiple thoracic and abdominal branches. Whole exome sequencing revealed a pathogenic variant in CBL with loss of heterozygosity in blood cells, diagnosing CBL syndrome, complicated by JMML and TA. Allogeneic HSCT induced remission of JMML and TA, permitting discontinuation of immunosuppression after 12 months. Six years later, her TA is in complete remission off therapy. A literature review identified 18 additional cases of CBL syndrome with vasculitis or vasculopathy. The pathogenesis of vasculitis in CBL syndrome appears to involve dysregulated T cell function and possibly increased angiogenesis. This case advances the understanding of vascular involvement in CBL syndrome and of the genetic, immune, and vascular interplay in TA, offering insights for treating CBL syndrome and broader TA.
Collapse
Affiliation(s)
- Elizabeth Munoz-Osores
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mervin Piñones
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Barriga
- Section of Hematology and Oncology, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Angélica Wietstruck
- Section of Hematology and Oncology, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Pérez-Mateluna
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Mellado
- Section of Genetics, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Aracena
- Section of Genetics, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Parra
- Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián García
- Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arturo Borzutzky
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Mason G, Aghajani R, Dance B, Othman J, Goodwin L, Stevenson W, Mackinlay N. Chronic myeloproliferative neoplasm in adulthood in CBL syndrome harboring a splice-site CBL variant alongside a novel constitutional CSF3R variant. EJHAEM 2024; 5:397-402. [PMID: 38633130 PMCID: PMC11020124 DOI: 10.1002/jha2.864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/19/2024]
Abstract
Casitas B-cell lineage (CBL) syndrome is a rare RASopathy known to predispose to CBL-mutated juvenile myelomonocytic leukemia (JMML) in childhood. Adulthood acute myeloid leukemia arising out of a genetic aberrancies consistent with prior CBL-mutated JMML has been twice previously described, but chronic myeloproliferative neoplasia has not. We present a case of progressive myeloproliferative neoplasm in adulthood in the context of CBL syndrome alongside a novel CSF3R variant. We also review pathogenic splice-site mutations in CBL-mutated JMML.
Collapse
Affiliation(s)
- George Mason
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
- Northern Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Rhian Aghajani
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
- Northern Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Brieanna Dance
- Department of Clinical GeneticsChildren's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Jad Othman
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
- Northern Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Linda Goodwin
- Department of Clinical GeneticsRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - William Stevenson
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
- Northern Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Naomi Mackinlay
- Department of Transfusion and HaematologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| |
Collapse
|
12
|
Wang X, Wu J, Pang M, Liu Y, Zhai J. Genotype-phenotype correlations in a fetus with Kleefstra syndrome. Taiwan J Obstet Gynecol 2024; 63:238-241. [PMID: 38485322 DOI: 10.1016/j.tjog.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE Kleefstra syndrome (KS), formerly known as 9q subtelomeric deletion syndrome, is characterized by multiple structural abnormalities. However, most fetuses do not have obvious abnormal phenotypes. In this study, the fetus with KS presented with multiple system structural anomalies, and we aimed to explore the genotype-phenotype correlations of KS fetuses. CASE REPORT Multiple systematic structural anomalies, including severe intrauterine growth restriction (IUGR) and cardiac defects, were detected by ultrasound in the fetus at 33 + 5 weeks' gestation. These abnormalities may be caused by the pathogenic deleted fragment at 9q34.3, including the euchromatic histone methyltransferase 1 (EHMT1) and collagen type V alpha 1 chain (COL5A1) genes, detected by copy number variation sequencing (CNV-seq). CONCLUSIONS It is essential for clinicians to perform CNV-seq combined with multidisciplinary consultation for suspected KS fetuses, especially those with multiple systematic structural anomalies.
Collapse
Affiliation(s)
- Xuezhen Wang
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China; Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiebin Wu
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Min Pang
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Liu
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingfang Zhai
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China; Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
13
|
Bugarin C, Antolini L, Buracchi C, Matarraz S, Coliva TA, Van der Velden VH, Szczepanski T, Da Costa ES, Van der Sluijs A, Novakova M, Mejstrikova E, Nierkens S, De Mello FV, Fernandez P, Aanei C, Sędek Ł, Strocchio L, Masetti R, Sainati L, Philippé J, Valsecchi MG, Locatelli F, Van Dongen JJM, Biondi A, Orfao A, Gaipa G. Phenotypic profiling of CD34 + cells by advanced flow cytometry improves diagnosis of juvenile myelomonocytic leukemia. Haematologica 2024; 109:521-532. [PMID: 37534527 PMCID: PMC10828789 DOI: 10.3324/haematol.2023.282805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Diagnostic criteria for juvenile myelomonocytic leukemia (JMML) are currently well defined, however in some patients diagnosis still remains a challenge. Flow cytometry is a well established tool for diagnosis and follow-up of hematological malignancies, nevertheless it is not routinely used for JMML diagnosis. Herewith, we characterized the CD34+ hematopoietic precursor cells collected from 31 children with JMML using a combination of standardized EuroFlow antibody panels to assess the ability to discriminate JMML cells from normal/reactive bone marrow cell as controls (n=29) or from cells of children with other hematological diseases mimicking JMML (n=9). CD34+ precursors in JMML showed markedly reduced B-cell and erythroid-committed precursors compared to controls, whereas monocytic and CD7+ lymphoid precursors were significantly expanded. Moreover, aberrant immunophenotypes were consistently present in CD34+ precursors in JMML, while they were virtually absent in controls. Multivariate logistic regression analysis showed that combined assessment of the number of CD34+CD7+ lymphoid precursors and CD34+ aberrant precursors or erythroid precursors had a great potential in discriminating JMMLs versus controls. Importantly our scoring model allowed highly efficient discrimination of truly JMML versus patients with JMML-like diseases. In conclusion, we show for the first time that CD34+ precursors from JMML patients display a unique immunophenotypic profile which might contribute to a fast and accurate diagnosis of JMML worldwide by applying an easy to standardize single eight-color antibody combination.
Collapse
Affiliation(s)
- Cristina Bugarin
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB)
| | - Laura Antolini
- Center of Biostatistics for Clinical Epidemiology, Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza (MB)
| | - Chiara Buracchi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB)
| | - Sergio Matarraz
- Cancer Research Center (IBMCC-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, CIBERONC and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca
| | | | | | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), Zabrze
| | | | - Alita Van der Sluijs
- Department of Immunohematology and Blood Transfusion (IHB) Leiden University Medical Center (LUMC), Leiden
| | - Michaela Novakova
- CLIP-Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ester Mejstrikova
- CLIP-Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Paula Fernandez
- Institute for Laboratory Medicine, Kantonsspital Aarau AG, Aarau
| | - Carmen Aanei
- Hematology Laboratory CHU de Saint-Etienne, Saint-Etienne, Cedex 2
| | - Łukasz Sędek
- Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), Zabrze
| | - Luisa Strocchio
- Department of Pediatric Hematology and Oncology IRCCS Ospedale Pediatrico Bambino Gesu', Sapienza University of Rome
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit 'Lalla Seràgnoli', IRCCS Azienda Ospedaliero- Universitaria di Bologna, Bologna
| | - Laura Sainati
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Azienda Ospedale Università di Padova, Padua
| | - Jan Philippé
- Department of Laboratory Medicine, Ghent University Hospital, Ghent
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza (MB).
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology IRCCS Ospedale Pediatrico Bambino Gesu', Sapienza University of Rome
| | - Jacques J M Van Dongen
- Cancer Research Center (IBMCC-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, CIBERONC and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Immunohematology and Blood Transfusion (IHB) Leiden University Medical Center (LUMC), Leiden
| | - Andrea Biondi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB), Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza (MB).
| | - Alberto Orfao
- Cancer Research Center (IBMCC-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, CIBERONC and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca
| | - Giuseppe Gaipa
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB)
| |
Collapse
|
14
|
Satty A, Stieglitz E, Kucine N. Too many white cells-TAM, JMML, or something else? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:37-42. [PMID: 38066851 PMCID: PMC10727065 DOI: 10.1182/hematology.2023000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Leukocytosis is a common finding in pediatric patients, and the differential diagnosis can be broad, including benign reactive leukocytosis and malignant myeloproliferative disorders. Transient abnormal myelopoiesis is a myeloproliferative disorder that occurs in young infants with constitutional trisomy 21 and somatic GATA1 mutations. Most patients are observed, but outcomes span the spectrum from spontaneous resolution to life-threatening complications. Juvenile myelomonocytic leukemia is a highly aggressive myeloproliferative disorder associated with altered RAS-pathway signaling that occurs in infants and young children. Treatment typically involves hematopoietic stem cell transplantation, but certain patients can be observed. Early recognition of these and other myeloproliferative disorders is important and requires a clinician to be aware of these diagnoses and have a clear understanding of their presentations. This paper discusses the presentation and evaluation of leukocytosis when myeloproliferative disorders are part of the differential and reviews different concepts regarding treatment strategies.
Collapse
Affiliation(s)
- Alexandra Satty
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospitals, University of California San Francisco, San Francisco, CA
| | - Nicole Kucine
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
15
|
Yoshida T, Muramatsu H, Wakamatsu M, Sajiki D, Murakami N, Kitazawa H, Okamoto Y, Taniguchi R, Kataoka S, Narita A, Hama A, Okuno Y, Takahashi Y. Clinical and molecular features of CBL-mutated juvenile myelomonocytic leukemia. Haematologica 2023; 108:3115-3119. [PMID: 37226702 PMCID: PMC10620587 DOI: 10.3324/haematol.2022.282385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Affiliation(s)
- Taro Yoshida
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya.
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Daichi Sajiki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Norihiro Murakami
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Hironobu Kitazawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Yasuhiro Okamoto
- Department of Pediatrics, Kagoshima University Graduate school of Medical and Dental Sciences, Kagoshima
| | - Rieko Taniguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya.
| |
Collapse
|
16
|
Kanagal-Shamanna R, Schafernak KT, Calvo KR. Diagnostic work-up of hematological malignancies with underlying germline predisposition disorders (GPD). Semin Diagn Pathol 2023; 40:443-456. [PMID: 37977953 DOI: 10.1053/j.semdp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Hematological malignancies with underlying germline predisposition disorders have been recognized by the World Health Organization 5th edition and International Consensus Classification (ICC) classification systems. The list of genes and the associated phenotypes are expanding and involve both pediatric and adult populations. While the clinical presentation and underlying molecular pathogenesis are relatively well described, the knowledge regarding the bone marrow morphologic features, the landscape of somatic aberrations associated with progression to hematological malignancies is limited. These pose challenges in the diagnosis of low-grade myelodysplastic syndrome (MDS) to hematopathologists which carries direct implication for various aspects of clinical management of the patient, donor selection for transplantation, and family members. Here in, we provide a focused review on the diagnostic work-up of hematological malignancies with underlying germline predisposition disorders with emphasis on the spectrum of hematological malignancies associated with each entity, and characteristic bone marrow morphologic, somatic cytogenetic and molecular alterations at the time of diagnosis of hematological malignancies. We also review the key clinical, morphologic, and molecular features, that should initiate screening for these entities.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristian T Schafernak
- Division of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States.
| |
Collapse
|
17
|
Volchkov EV, Khozyainova AA, Gurzhikhanova MK, Larionova IV, Matveev VE, Evseev DA, Ignatova AK, Menyailo ME, Venyov DA, Vorobev RS, Semchenkova AA, Olshanskaya YV, Denisov EV, Maschan MA. Potential value of high-throughput single-cell DNA sequencing of Juvenile myelomonocytic leukemia: report of two cases. NPJ Syst Biol Appl 2023; 9:41. [PMID: 37684264 PMCID: PMC10491583 DOI: 10.1038/s41540-023-00303-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative disease of early childhood that develops due to mutations in the genes of the RAS-signaling pathway. Next-generation high throughput sequencing (NGS) enables identification of various secondary molecular genetic events that can facilitate JMML progression and transformation into secondary acute myeloid leukemia (sAML). The methods of single-cell DNA sequencing (scDNA-seq) enable overcoming limitations of bulk NGS and exploring genetic heterogeneity at the level of individual cells, which can help in a better understanding of the mechanisms leading to JMML progression and provide an opportunity to evaluate the response of leukemia to therapy. In the present work, we applied a two-step droplet microfluidics approach to detect DNA alterations among thousands of single cells and to analyze clonal dynamics in two JMML patients with sAML transformation before and after hematopoietic stem cell transplantation (HSCT). At the time of diagnosis both of our patients harbored only "canonical" mutations in the RAS signaling pathway genes detected by targeted DNA sequencing. Analysis of samples from the time of transformation JMML to sAML revealed additional genetic events that are potential drivers for disease progression in both patients. ScDNA-seq was able to measure of chimerism level and detect a residual tumor clone in the second patient after HSCT (sensitivity of less than 0.1% tumor cells). The data obtained demonstrate the value of scDNA-seq to assess the clonal evolution of JMML to sAML, response to therapy and engraftment monitoring.
Collapse
Affiliation(s)
- E V Volchkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia.
- Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, 117198, Russia.
| | - A A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - M Kh Gurzhikhanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - I V Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - V E Matveev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - D A Evseev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - A K Ignatova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - M E Menyailo
- Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, 117198, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - D A Venyov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - R S Vorobev
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - A A Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - Yu V Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - E V Denisov
- Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, 117198, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - M A Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia.
| |
Collapse
|
18
|
Liu YC, Geyer JT. Pediatric Hematopathology in the Era of Advanced Molecular Diagnostics: What We Know and How We Can Apply the Updated Classifications. Pathobiology 2023; 91:30-44. [PMID: 37311434 PMCID: PMC10857803 DOI: 10.1159/000531480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Pediatric hematologic malignancies often show genetic features distinct from their adult counterparts, which reflect the differences in their pathogenesis. Advances in the molecular diagnostics including the widespread use of next-generation sequencing technology have revolutionized the diagnostic workup for hematologic disorders and led to the identification of new disease subgroups as well as prognostic information that impacts the clinical treatment. The increasing recognition of the importance of germline predisposition in various hematologic malignancies also shapes the disease models and management. Although germline predisposition variants can occur in patients with myelodysplastic syndrome/neoplasm (MDS) of all ages, the frequency is highest in the pediatric patient population. Therefore, evaluation for germline predisposition in the pediatric group can have significant clinical impact. This review discusses the recent advances in juvenile myelomonocytic leukemia, pediatric acute myeloid leukemia, B-lymphoblastic leukemia/lymphoma, and pediatric MDS. This review also includes a brief discussion of the updated classifications from the International Consensus Classification (ICC) and the 5th edition World Health Organization (WHO) classification regarding these disease entities.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
19
|
Hinze A, Rinke J, Crodel CC, Möbius S, Schäfer V, Heidel FH, Hochhaus A, Ernst T. Molecular-defined clonal evolution in patients with classical myeloproliferative neoplasms. Br J Haematol 2023. [PMID: 37139709 DOI: 10.1111/bjh.18834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/05/2023]
Abstract
Classical myeloproliferative neoplasms (MPNs) are characterized by distinct clinical phenotypes. The discovery of driver mutations in JAK2, CALR and MPL genes provided new insights into their pathogenesis. Next-generation sequencing (NGS) identified additional somatic mutations, most frequently in epigenetic modulator genes. In this study, a cohort of 95 MPN patients was genetically characterized using targeted NGS. Clonal hierarchies of detected mutations were subsequently analysed using colony forming progenitor assays derived from single cells to study mutation acquisition. Further, the hierarchy of mutations within distinct cell lineages was evaluated. NGS revealed mutations in three epigenetic modulator genes (TET2, DNMT3A, ASXL1) as most common co-mutations to the classical driver mutations. JAK2V617F as well as DNMT3A and TET2 mutations were detected as primary events in disease formation and most cases presented with a linear mutation pattern. Mutations appear mostly in the myeloid lineages but can also appear in lymphoid subpopulations. In one case with a double mutant MPL gene, mutations exclusively appeared in the monocyte lineage. Overall, this study confirms the mutational heterogeneity of classical MPNs and highlights the role of JAK2V617F and epigenetic modifier genes as early events in hematologic disease formation.
Collapse
Affiliation(s)
- Anna Hinze
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Jenny Rinke
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Carl C Crodel
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Susanne Möbius
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Vivien Schäfer
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Florian H Heidel
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Thomas Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
20
|
Pasupuleti SK, Chao K, Ramdas B, Kanumuri R, Palam LR, Liu S, Wan J, Annesley C, Loh ML, Stieglitz E, Burke MJ, Kapur R. Potential clinical use of azacitidine and MEK inhibitor combination therapy in PTPN11-mutated juvenile myelomonocytic leukemia. Mol Ther 2023; 31:986-1001. [PMID: 36739480 PMCID: PMC10124140 DOI: 10.1016/j.ymthe.2023.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm of childhood. The molecular hallmark of JMML is hyperactivation of the Ras/MAPK pathway with the most common cause being mutations in the gene PTPN11, encoding the protein tyrosine phosphatase SHP2. Current strategies for treating JMML include using the hypomethylating agent, 5-azacitidine (5-Aza) or MEK inhibitors trametinib and PD0325901 (PD-901), but none of these are curative as monotherapy. Utilizing an Shp2E76K/+ murine model of JMML, we show that the combination of 5-Aza and PD-901 modulates several hematologic abnormalities often seen in JMML patients, in part by reducing the burden of leukemic hematopoietic stem and progenitor cells (HSC/Ps). The reduced JMML features in drug-treated mice were associated with a decrease in p-MEK and p-ERK levels in Shp2E76K/+ mice treated with the combination of 5-Aza and PD-901. RNA-sequencing analysis revealed a reduction in several RAS and MAPK signaling-related genes. Additionally, a decrease in the expression of genes associated with inflammation and myeloid leukemia was also observed in Shp2E76K/+ mice treated with the combination of the two drugs. Finally, we report two patients with JMML and PTPN11 mutations treated with 5-Aza, trametinib, and chemotherapy who experienced a clinical response because of the combination treatment.
Collapse
Affiliation(s)
- Santhosh Kumar Pasupuleti
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Karen Chao
- Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Stanford University School of Medicine, Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Baskar Ramdas
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Rahul Kanumuri
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Lakshmi Reddy Palam
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Burke
- Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Microbiology & Immunology, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
Elghetany MT, Cavé H, De Vito R, Patnaik MM, Solary E, Khoury JD. Juvenile myelomonocytic leukemia; moving forward. Leukemia 2023; 37:720-722. [PMID: 36670234 DOI: 10.1038/s41375-023-01818-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Affiliation(s)
- M Tarek Elghetany
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Hélène Cavé
- Université Paris Cité, Institut de recherche Saint-Louis and the Department of Genetics, Robert Debré Hospital, Paris, France
| | - Rita De Vito
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric Solary
- Department of Hematology, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
| | - Joseph D Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
22
|
Mishra V, Krishnan VP, Desai M, Manek H, Pandrowala A, Bodhanwala M, Hiwarkar P. Somatic CBL mutation presenting as juvenile myelomonocytic leukemia with vasculitis. Pediatr Blood Cancer 2023; 70:e30252. [PMID: 36786373 DOI: 10.1002/pbc.30252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Affiliation(s)
- Varsha Mishra
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - V P Krishnan
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Mukesh Desai
- Department of Inborn errors of Immunity, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Hirva Manek
- Department of Radiology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ambreen Pandrowala
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Minnie Bodhanwala
- Department of Pediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Prashant Hiwarkar
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| |
Collapse
|
23
|
Fabozzi F, Mastronuzzi A. Genetic Predisposition to Hematologic Malignancies in Childhood and Adolescence. Mediterr J Hematol Infect Dis 2023; 15:e2023032. [PMID: 37180200 PMCID: PMC10171214 DOI: 10.4084/mjhid.2023.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Advances in molecular biology and genetic testing have greatly improved our understanding of the genetic basis of hematologic malignancies and have enabled the identification of new cancer predisposition syndromes. Recognizing a germline mutation in a patient affected by a hematologic malignancy allows for a tailored treatment approach to minimize toxicities. It informs the donor selection, the timing, and the conditioning strategy for hematopoietic stem cell transplantation, as well as the comorbidities evaluation and surveillance strategies. This review provides an overview of germline mutations that predispose to hematologic malignancies, focusing on those most common during childhood and adolescence, based on the new International Consensus Classification of Myeloid and Lymphoid Neoplasms.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| |
Collapse
|
24
|
The International Consensus Classification (ICC) of hematologic neoplasms with germline predisposition, pediatric myelodysplastic syndrome, and juvenile myelomonocytic leukemia. Virchows Arch 2023; 482:113-130. [PMID: 36445482 DOI: 10.1007/s00428-022-03447-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
Updating the classification of hematologic neoplasia with germline predisposition, pediatric myelodysplastic syndrome (MDS), and juvenile myelomonocytic leukemia (JMML) is critical for diagnosis, therapy, research, and clinical trials. Advances in next-generation sequencing technology have led to the identification of an expanding group of genes that predispose to the development of hematolymphoid neoplasia when mutated in germline configuration and inherited. This review encompasses recent advances in the classification of myeloid and lymphoblastic neoplasia with germline predisposition summarizing important genetic and phenotypic information, relevant laboratory testing, and pathologic bone marrow features. Genes are organized into three major categories including (1) those that are not associated with constitutional disorder and include CEBPA, DDX41, and TP53; (2) those associated with thrombocytopenia or platelet dysfunction including RUNX1, ANKRD26, and ETV6; and (3) those associated with constitutional disorders affecting multiple organ systems including GATA2, SAMD9, and SAMD9L, inherited genetic mutations associated with classic bone marrow failure syndromes and JMML, and Down syndrome. A provisional category of germline predisposition genes is created to recognize genes with growing evidence that may be formally included in future revised classifications as substantial supporting data emerges. We also detail advances in the classification of pediatric myelodysplastic syndrome (MDS), expanding the definition of refractory cytopenia of childhood (RCC) to include early manifestation of MDS in patients with germline predisposition. Finally, updates in the classification of juvenile myelomonocytic leukemia are presented which genetically define JMML as a myeloproliferative/myelodysplastic disease harboring canonical RAS pathway mutations. Diseases with features overlapping with JMML that do not carry RAS pathway mutations are classified as JMML-like. The review is based on the International Consensus Classification (ICC) of Myeloid and Lymphoid Neoplasms as reported by Arber et al. (Blood 140(11):1200-1228, 2022).
Collapse
|
25
|
Ney G, Gross A, Livinski A, Kratz CP, Stewart DR. Cancer incidence and surveillance strategies in individuals with RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:530-540. [PMID: 36533693 PMCID: PMC9825668 DOI: 10.1002/ajmg.c.32018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022]
Abstract
RASopathies are a set of clinical syndromes that have molecular and clinical overlap. Genetically, these syndromes are defined by germline pathogenic variants in RAS/MAPK pathway genes resulting in activation of this pathway. Clinically, their common molecular signature leads to comparable phenotypes, including cardiac anomalies, neurologic disorders and notably, elevated cancer risk. Cancer risk in individuals with RASopathies has been estimated from retrospective reviews and cohort studies. For example, in Costello syndrome, cancer incidence is significantly elevated over the general population, largely due to solid tumors. In some forms of Noonan syndrome, cancer risk is also elevated over the general population and is enriched for hematologic malignancies. Thus, cancer surveillance guidelines have been developed to monitor for the occurrence of such cancers in individuals with some RASopathies. These include abdominal ultrasound and urinalyses for individuals with Costello syndrome, while complete blood counts and splenic examination are recommended in Noonan syndrome. Improved cancer risk estimates and refinement of surveillance recommendations will improve the care of individuals with RASopathies.
Collapse
Affiliation(s)
- Gina Ney
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland, USA
| | - Andrea Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Alicia Livinski
- National Institutes of Health Library, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland, USA
| |
Collapse
|
26
|
Carli D, Resta N, Ferrero GB, Ruggieri M, Mussa A. Mosaic RASopathies: A review of disorders caused by somatic pathogenic variants in the genes of the RAS/MAPK pathway. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:520-529. [PMID: 36461154 DOI: 10.1002/ajmg.c.32021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Mosaic RASopathies are a heterogeneous group of diseases characterized by the presence at birth or early onset of congenital anomalies, cutaneous and vascular anomalies, segmental overgrowth, and increased cancer risk. They are caused by somatic pathogenic variants of the genes belonging the RAt Sarcoma Mitogen-activated protein kinase (RAS/MAPK) pathway causing its hyperactivation. Here, we review the clinical and molecular characteristics of this heterogeneous group of diseases, including the possibilities of molecular diagnosis and new therapeutic perspectives.
Collapse
Affiliation(s)
- Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Nicoletta Resta
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari "Aldo Moro", Bari, Italy
| | | | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,Pediatric Clinical Genetics Unit, Regina Margherita Children's Hospital, Città della Salute e della Scienza, Torino, Italy
| |
Collapse
|
27
|
EAHP 2020 workshop proceedings, pediatric myeloid neoplasms. Virchows Arch 2022; 481:621-646. [PMID: 35819517 PMCID: PMC9534825 DOI: 10.1007/s00428-022-03375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022]
Abstract
The first section of the bone marrow workshop of the European Association of Haematopathology (EAHP) 2020 Virtual Meeting was dedicated to pediatric myeloid neoplasms. The section covered the whole spectrum of myeloid neoplasms, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), and acute myeloid leukemia (AML). The workshop cases are hereby presented, preceded by an introduction on these overall rare diseases in this age group. Very rare entities such as primary myelofibrosis, pediatric MDS with fibrosis, and MDS/MPN with JMML-like features and t(4;17)(q12;q21); FIP1L1::RARA fusion, are described in more detail.
Collapse
|
28
|
Genomic and Epigenomic Landscape of Juvenile Myelomonocytic Leukemia. Cancers (Basel) 2022; 14:cancers14051335. [PMID: 35267643 PMCID: PMC8909150 DOI: 10.3390/cancers14051335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Juvenile myelomonocytic leukemia (JMML) is a rare pediatric myelodysplastic/myeloproliferative neoplasm characterized by the constitutive activation of the RAS pathway. In spite of the recent progresses in the molecular characterization of JMML, this disease is still a clinical challenge due to its heterogeneity, difficult diagnosis, poor prognosis, and the lack of curative treatment options other than hematopoietic stem cell transplantation (HSCT). In this review, we will provide a detailed overview of the genetic and epigenetic alterations occurring in JMML, and discuss their clinical relevance in terms of disease prognosis and risk of relapse after HSCT. We will also present the most recent advances on novel preclinical and clinical therapeutic approaches directed against JMML molecular targets. Finally, we will outline future research perspectives to further explore the oncogenic mechanism driving JMML leukemogenesis and progression, with special attention to the application of single-cell next-generation sequencing technologies. Abstract Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm of early childhood. Most of JMML patients experience an aggressive clinical course of the disease and require hematopoietic stem cell transplantation, which is currently the only curative treatment. JMML is characterized by RAS signaling hyperactivation, which is mainly driven by mutations in one of five genes of the RAS pathway, including PTPN11, KRAS, NRAS, NF1, and CBL. These driving mutations define different disease subtypes with specific clinico-biological features. Secondary mutations affecting other genes inside and outside the RAS pathway contribute to JMML pathogenesis and are associated with a poorer prognosis. In addition to these genetic alterations, JMML commonly presents aberrant epigenetic profiles that strongly correlate with the clinical outcome of the patients. This observation led to the recent publication of an international JMML stratification consensus, which defines three JMML clinical groups based on DNA methylation status. Although the characterization of the genomic and epigenomic landscapes in JMML has significantly contributed to better understand the molecular mechanisms driving the disease, our knowledge on JMML origin, cell identity, and intratumor and interpatient heterogeneity is still scarce. The application of new single-cell sequencing technologies will be critical to address these questions in the future.
Collapse
|
29
|
Role of CBL Mutations in Cancer and Non-Malignant Phenotype. Cancers (Basel) 2022; 14:cancers14030839. [PMID: 35159106 PMCID: PMC8833995 DOI: 10.3390/cancers14030839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary CBL mutations are progressively being described as involved in different clinical manifestations. Somatic CBL mutations can be found in different type of cancer. The clinical spectrum of germline mutations configures the so-called CBL syndrome, a cancer-predisposing condition that includes multisystemic involvement characterized by variable phenotypic expression and expressivity. In this review we provide an up-to-date review of the clinical manifestation of CBL mutations and of the molecular mechanisms in which CBL exerts its pathogenic role. Abstract CBL plays a key role in different cell pathways, mainly related to cancer onset and progression, hematopoietic development and T cell receptor regulation. Somatic CBL mutations have been reported in a variety of malignancies, ranging from acute myeloid leukemia to lung cancer. Growing evidence have defined the clinical spectrum of germline CBL mutations configuring the so-called CBL syndrome; a cancer-predisposing condition that also includes multisystemic involvement characterized by variable phenotypic expression and expressivity. This review provides a comprehensive overview of the molecular mechanisms in which CBL exerts its function and describes the clinical manifestation of CBL mutations in humans.
Collapse
|
30
|
Wintering A, Dvorak CC, Stieglitz E, Loh ML. Juvenile myelomonocytic leukemia in the molecular era: a clinician's guide to diagnosis, risk stratification, and treatment. Blood Adv 2021; 5:4783-4793. [PMID: 34525182 PMCID: PMC8759142 DOI: 10.1182/bloodadvances.2021005117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/03/2021] [Indexed: 12/03/2022] Open
Abstract
Juvenile myelomonocytic leukemia is an overlapping myeloproliferative and myelodysplastic disorder of early childhood . It is associated with a spectrum of diverse outcomes ranging from spontaneous resolution in rare patients to transformation to acute myeloid leukemia in others that is generally fatal. This unpredictable clinical course, along with initially descriptive diagnostic criteria, led to decades of productive international research. Next-generation sequencing now permits more accurate molecular diagnoses in nearly all patients. However, curative treatment is still reliant on allogeneic hematopoietic cell transplantation for most patients, and additional advances will be required to improve risk stratification algorithms that distinguish those that can be observed expectantly from others who require swift hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Astrid Wintering
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
| | - Christopher C. Dvorak
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
31
|
Melas M, Mathew MT, Mori M, Jayaraman V, Wilson SA, Martin C, Jacobson-Kelly AE, Kelly BJ, Magrini V, Mardis ER, Cottrell CE, Lee K. Somatic Variation as an Incidental Finding in the Pediatric Next Generation Sequencing Era. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006135. [PMID: 34716204 PMCID: PMC8751410 DOI: 10.1101/mcs.a006135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
The methodologic approach used in next-generation sequencing (NGS) affords a high depth of coverage in genomic analysis. Inherent in the nature of genomic testing, there exists potential for identifying genomic findings that are incidental or secondary to the indication for clinical testing, with the frequency dependent on the breadth of analysis and the tissue sample under study. The interpretation and management of clinically meaningful incidental genomic findings is a pressing issue particularly in the pediatric population. Our study describes a 16-mo-old male who presented with profound global delays, brain abnormality, progressive microcephaly, and growth deficiency, as well as metopic craniosynostosis. Clinical exome sequencing (ES) trio analysis revealed the presence of two variants in the proband. The first was a de novo variant in the PPP2R1A gene (c.773G > A, p.Arg258His), which is associated with autosomal dominant (AD) intellectual disability, accounting for the proband's clinical phenotype. The second was a recurrent hotspot variant in the CBL gene (c.1111T > C, p.Tyr371His), which was present at a variant allele fraction of 11%, consistent with somatic variation in the peripheral blood sample. Germline pathogenic variants in CBL are associated with AD Noonan syndrome–like disorder with or without juvenile myelomonocytic leukemia. Molecular analyses using a different tissue source, buccal epithelial cells, suggest that the CBL alteration may represent a clonal population of cells restricted to leukocytes. This report highlights the laboratory methodologic and interpretative processes and clinical considerations in the setting of acquired variation detected during clinical ES in a pediatric patient.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State Univ; Dept of Pediatrics, The Ohio State University
| | - Mari Mori
- Dept of Pediatrics, The Ohio State University; Genetic and Genomic Medicine, Nationwide Children's Hospital
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Sarah A Wilson
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | | | - Amanda E Jacobson-Kelly
- Dept of Pediatrics, The Ohio State University; Division of Hematology/Oncology/BMT, Nationwide Children's Hospital
| | - Ben J Kelly
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pediatrics, The Ohio State University
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pediatrics, The Ohio State University
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State University; Dept of Pediatrics, The Ohio State University
| | - Kristy Lee
- The Steve and Cindy Rasmussen Inst for Genomic Medicine, Nationwide Children's Hospital; Dept of Pathology, The Ohio State University; Dept of Pediatrics, The Ohio State University
| |
Collapse
|
32
|
Kim HS, Lee JW, Kang D, Yu H, Kim Y, Kang H, Lee JM, Ahn A, Cho B, Kim S, Chung NG, Kim Y, Kim M. Characteristics of RAS pathway mutations in juvenile myelomonocytic leukaemia: a single-institution study from Korea. Br J Haematol 2021; 195:748-756. [PMID: 34590720 DOI: 10.1111/bjh.17861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
Juvenile myelomonocytic leukaemia (JMML), a rare clonal haematopoietic disorder of childhood, is characterised as a myelodysplastic/myeloproliferative neoplasm. Despite ground-breaking genetic discoveries, JMML remains difficult to diagnose given its diverse clinical features and disease course. A total of 24 patients with JMML were diagnosed and treated at a single institution, and their genetic profiles and association with clinical and laboratory characteristics were analysed. In all, 22 of the patients received allogeneic haematopoietic stem cell transplantation after myeloablative conditioning, mostly from a haploidentical family donor. RAS pathway mutations were identified in 88% of patients: PTPN11 [nine (38%)], NRAS [nine (38%)], KRAS [two (8%)], NF1 [five (21%)] and CBL [one (4%)]. Secondary mutations were found in 25% of patients: SETBP1, JAK3, ASXL1, GATA2, KIT, KDM6A, and BCOR. Six patients showed cytogenetic abnormalities, including three with monosomy 7. The estimated 5-year event-free survival (EFS) and overall survival (± standard error) of the entire cohort were 58·9 (10·9)% and 73·5 (10·8)% respectively. NRAS (+) patients had a higher 5-year EFS than NRAS (-) patients [72·9 (16·5)% vs. 52·5 (13·1)%, P = 0·127]. NRAS (+) patients had a better 5-year EFS than PTPN11 (+) patients [41·7 (17·3)%, P = 0·071]. Our study revealed the genetic characteristics of Korean JMML patients with RAS pathway and secondary mutations.
Collapse
Affiliation(s)
- Hoon Seok Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Wook Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Haein Yu
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeojae Kim
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunhye Kang
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Mi Lee
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ari Ahn
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bin Cho
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seongkoo Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
33
|
Mayerhofer C, Niemeyer CM, Flotho C. Current Treatment of Juvenile Myelomonocytic Leukemia. J Clin Med 2021; 10:3084. [PMID: 34300250 PMCID: PMC8305558 DOI: 10.3390/jcm10143084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare pediatric leukemia characterized by mutations in five canonical RAS pathway genes. The diagnosis is made by typical clinical and hematological findings associated with a compatible mutation. Although this is sufficient for clinical decision-making in most JMML cases, more in-depth analysis can include DNA methylation class and panel sequencing analysis for secondary mutations. NRAS-initiated JMML is heterogeneous and adequate management ranges from watchful waiting to allogeneic hematopoietic stem cell transplantation (HSCT). Upfront azacitidine in KRAS patients can achieve long-term remissions without HSCT; if HSCT is required, a less toxic preparative regimen is recommended. Germline CBL patients often experience spontaneous resolution of the leukemia or exhibit stable mixed chimerism after HSCT. JMML driven by PTPN11 or NF1 is often rapidly progressive, requires swift HSCT and may benefit from pretransplant therapy with azacitidine. Because graft-versus-leukemia alloimmunity is central to cure high risk patients, the immunosuppressive regimen should be discontinued early after HSCT.
Collapse
Affiliation(s)
- Christina Mayerhofer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.M.); (C.M.N.)
| | - Charlotte M. Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.M.); (C.M.N.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.M.); (C.M.N.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
| |
Collapse
|