1
|
Jové-Solavera D, Rámila M, Ferrer-Cortés X, Olivella M, Venturi V, Morado M, Hernández-Rodríguez I, Khan A, Pérez-Montero S, Tornador C, Germing U, Gattermann N, Sanchez M. The role of genetic testing in accurate diagnosis of X-linked sideroblastic anemia: novel ALAS2 mutations and the impact of X-chromosome inactivation. Sci Rep 2025; 15:11843. [PMID: 40195342 PMCID: PMC11977005 DOI: 10.1038/s41598-025-95590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
X-linked sideroblastic anemia (XLSA) is a hereditary disorder affecting heme biosynthesis, caused by mutations in the ALAS2 gene, which encodes the erythroid-specific enzyme 5-aminolevulinate synthase. This enzyme, which requires pyridoxal 5'-phosphate (PLP) as a cofactor, catalyzes the first and rate-limiting step of heme synthesis in erythroid cells. XLSA is characterized by hypochromic microcytic anemia and ring sideroblasts in bone marrow, with most patients showing variable degrees of response to pyridoxine supplementation; however, female carriers of ALAS2 mutations often present a distinct clinical phenotype. A comprehensive review of the literature reveals over 100 distinct ALAS2 mutations linked to XLSA in more than 240 families. Here, we report seven new patients (four female cases) initially diagnosed with various conditions, later confirmed to have X-linked Sideroblastic Anemia due to ALAS2 mutations through genetic analysis. Among these, five represent novel ALAS2 mutations, including the first ever reported stop-loss mutation in ALAS2 associated with XLSA rather than X-linked dominant protoporphyria (XLDPP). Computational modelling of six reported cases revealed that four mutations significantly impact protein structure, conformation and cofactor interaction, consistent with our enzymatic assays demonstrating reduced ALAS2 activity. Furthermore, X-chromosome studies in female probands revealed a pronounced skewing of X-chromosome, which may provide an explanation for their distinct clinical manifestations in females.
Collapse
Affiliation(s)
- Daniel Jové-Solavera
- Iron Metabolism: Regulation and Diseases, Department of Biomedical Sciences, Universitat Internacional de Catalunya (UIC), 08195, Sant Cugat del Vallès, Spain
| | - Marta Rámila
- Iron Metabolism: Regulation and Diseases, Department of Biomedical Sciences, Universitat Internacional de Catalunya (UIC), 08195, Sant Cugat del Vallès, Spain
| | - Xènia Ferrer-Cortés
- Iron Metabolism: Regulation and Diseases, Department of Biomedical Sciences, Universitat Internacional de Catalunya (UIC), 08195, Sant Cugat del Vallès, Spain
- BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, 08950, Esplugues de Llobregat, Spain
| | - Mireia Olivella
- Biosciences Department, Faculty of Sciences and Technology, University of Vic - Central University of Catalonia, Vic, Spain
| | - Veronica Venturi
- Iron Metabolism: Regulation and Diseases, Department of Biomedical Sciences, Universitat Internacional de Catalunya (UIC), 08195, Sant Cugat del Vallès, Spain
| | - Marta Morado
- Service of Hematology, Hospital La Paz, 28046, Madrid, Spain
| | - Ines Hernández-Rodríguez
- Hematology Department, ICO-Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Badalona, Barcelona, Spain
| | - Aneal Khan
- M.A.G.I.C. (Metabolics and Genetics in Canada), Calgary, AB, Canada
| | - Santiago Pérez-Montero
- BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, 08950, Esplugues de Llobregat, Spain
| | - Cristian Tornador
- BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, 08950, Esplugues de Llobregat, Spain
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mayka Sanchez
- Iron Metabolism: Regulation and Diseases, Department of Biomedical Sciences, Universitat Internacional de Catalunya (UIC), 08195, Sant Cugat del Vallès, Spain.
- BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, 08950, Esplugues de Llobregat, Spain.
| |
Collapse
|
2
|
Aarsand AK, To‐Figueras J, Whatley S, Sandberg S, Schmitt C. Practical recommendations for biochemical and genetic diagnosis of the porphyrias. Liver Int 2025; 45:e16012. [PMID: 38940544 PMCID: PMC11815605 DOI: 10.1111/liv.16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
The porphyrias are a group of rare inborn errors of metabolism associated with various clinical presentations and long-term complications, making them relevant differential diagnoses to consider for many clinical specialities, especially hepatologists, gastroenterologists and dermatologists. To diagnose a patient with porphyria requires appropriate biochemical investigations, as clinical features alone are not specific enough. Furthermore, it is important to be aware that abnormalities of porphyrin accumulation and excretion occur in many other disorders that are collectively far more common than the porphyrias. In this review, we provide an overview of porphyria-related tests with their strengths and limitations, give recommendations on requesting and diagnostic approaches in non-expert and expert laboratories for different clinical scenarios and discuss the role of genetic testing in the porphyrias. To diagnose porphyria in a currently symptomatic patient requires analysis of biochemical markers to demonstrate typical patterns of haem precursors in urine, faeces and blood. The use of genomic sequencing in diagnostic pathways for porphyrias requires careful consideration, and the demonstration of increased porphyrin-related markers is necessary prior to genomic testing in symptomatic patients. In the acute porphyrias, genomic testing is presently a useful adjunct for genetic counselling of asymptomatic family members and the most common cutaneous porphyria, porphyria cutanea tarda, is usually a sporadic, non-hereditary disease. Getting a correct and timely porphyria diagnosis is essential for delivering appropriate care and ensuring best patient outcome.
Collapse
Affiliation(s)
- Aasne K. Aarsand
- Norwegian Porphyria Centre and Department of Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
- Norwegian Organization for Quality Improvement of Laboratory Examinations (NOKLUS)Haraldsplass Deaconess HospitalBergenNorway
| | - Jordi To‐Figueras
- Biochemistry and Molecular Genetics UnitHospital Clinic‐University of BarcelonaBarcelonaSpain
| | - Sharon Whatley
- Cardiff Porphyria Service, Department of Medical Biochemistry and ImmunologyUniversity Hospital of Wales Healthcare NHS TrustCardiffUK
| | - Sverre Sandberg
- Norwegian Porphyria Centre and Department of Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
- Norwegian Organization for Quality Improvement of Laboratory Examinations (NOKLUS)Haraldsplass Deaconess HospitalBergenNorway
- Department of Global Public Health and Primary Care, Faculty of MedicineUniversity of BergenBergenNorway
| | - Caroline Schmitt
- Department of Medical BiochemistryUniversité Paris Cité and INSERM U1149, Centre de Recherche sur l'InflammationParisFrance
- French Centre of Porphyrias, Assistance Publique‐Hôpitaux de ParisHôpital Louis MourierColombesFrance
| |
Collapse
|
3
|
Poli A, Schmitt C, Puy H, Talbi N, Lefebvre T, Gouya L. Erythropoietic protoporphyrias: updates and advances. Trends Mol Med 2024; 30:863-874. [PMID: 38890030 DOI: 10.1016/j.molmed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Protoporphyrias are caused by pathogenic variants in genes encoding enzymes involved in heme biosynthesis. They induce the accumulation of a hydrophobic phototoxic compound, protoporphyrin (PPIX), in red blood cells (RBCs). PPIX is responsible for painful cutaneous photosensitivity, which severely impairs quality of life. Hepatic elimination of PPIX increases the risk of cholestatic liver disease, requiring lifelong monitoring. Treatment options are scarce and mainly limited to supportive care such as protection from visible light. Here, we review the pathophysiology of protoporphyrias, their diagnosis, and current recommendations for medical care. We discuss new therapeutic strategies, some of which are currently undergoing clinical trials and are likely to radically alter the severity of the disease in the years to come.
Collapse
Affiliation(s)
- Antoine Poli
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares Porphyries, Hôpital Louis Mourier, Colombes, France; Laboratory of excellence Gr-Ex, Paris, France.
| | - Caroline Schmitt
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares Porphyries, Hôpital Louis Mourier, Colombes, France; Laboratory of excellence Gr-Ex, Paris, France
| | - Hervé Puy
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares Porphyries, Hôpital Louis Mourier, Colombes, France; Laboratory of excellence Gr-Ex, Paris, France
| | - Neila Talbi
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Thibaud Lefebvre
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Laurent Gouya
- Institut National de la Santé et de la Recherche Médicale U1149, Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladies Rares Porphyries, Hôpital Louis Mourier, Colombes, France; Laboratory of excellence Gr-Ex, Paris, France
| |
Collapse
|
4
|
Tarannum M, Dinh K, Vergara J, Birch G, Abdulhamid YZ, Kaplan IE, Ay O, Maia A, Beaver O, Sheffer M, Shapiro R, Ali AK, Dong H, Ham JD, Bobilev E, James S, Cameron AB, Nguyen QD, Ganapathy S, Chayawatto C, Koreth J, Paweletz CP, Gokhale PC, Barbie DA, Matulonis UA, Soiffer RJ, Ritz J, Porter RL, Chen J, Romee R. CAR memory-like NK cells targeting the membrane proximal domain of mesothelin demonstrate promising activity in ovarian cancer. SCIENCE ADVANCES 2024; 10:eadn0881. [PMID: 38996027 PMCID: PMC11244547 DOI: 10.1126/sciadv.adn0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/immunology
- Carcinoma, Ovarian Epithelial/therapy
- Cell Line, Tumor
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/genetics
- Immunologic Memory
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mesothelin
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/therapy
- Protein Domains
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Khanhlinh Dinh
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Juliana Vergara
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Grace Birch
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yasmin Z. Abdulhamid
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Isabel E. Kaplan
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Oyku Ay
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andreia Maia
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Owen Beaver
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michal Sheffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roman Shapiro
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alaa Kassim Ali
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - James Dongjoo Ham
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eden Bobilev
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sydney James
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Amy B. Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Suthakar Ganapathy
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chayapatou Chayawatto
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John Koreth
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cloud P. Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Prafulla C. Gokhale
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David A. Barbie
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ursula A. Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J. Soiffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jerome Ritz
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rebecca L. Porter
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rizwan Romee
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Key J, Gispert S, Auburger G. Knockout Mouse Studies Show That Mitochondrial CLPP Peptidase and CLPX Unfoldase Act in Matrix Condensates near IMM, as Fast Stress Response in Protein Assemblies for Transcript Processing, Translation, and Heme Production. Genes (Basel) 2024; 15:694. [PMID: 38927630 PMCID: PMC11202940 DOI: 10.3390/genes15060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based on recent proteomic-metabolomic evidence from knockout mice and patient cells, we propose that CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions, separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective, as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.
Collapse
Affiliation(s)
| | | | - Georg Auburger
- Experimental Neurology, Clinic of Neurology, University Hospital, Goethe University Frankfurt, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.)
| |
Collapse
|
6
|
Key J, Gispert S, Kandi AR, Heinz D, Hamann A, Osiewacz HD, Meierhofer D, Auburger G. CLPP-Null Eukaryotes with Excess Heme Biosynthesis Show Reduced L-arginine Levels, Probably via CLPX-Mediated OAT Activation. Biomolecules 2024; 14:241. [PMID: 38397478 PMCID: PMC10886707 DOI: 10.3390/biom14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Daniela Heinz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany;
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| |
Collapse
|
7
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
8
|
Leaf RK, Dickey AK. How I treat erythropoietic protoporphyria and X-linked protoporphyria. Blood 2023; 141:2921-2931. [PMID: 36898083 PMCID: PMC10646811 DOI: 10.1182/blood.2022018688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Erythropoietic protoporphyria (EPP) is an inherited cutaneous porphyria caused by reduced expression of ferrochelatase, the enzyme that catalyzes the final step in heme biosynthesis. The resultant accumulation of protoporphyrin IX leads to severe, painful cutaneous photosensitivity, as well as potentially life-threatening liver disease in a small percentage of patients. X-linked protoporphyria (XLP) is clinically similar to EPP but results from increased activity of δ-aminolevulinic acid synthase 2, the first step in heme biosynthesis in the bone marrow, and also causes protoporphyrin accumulation. Although historically the management of EPP and XLP (collectively termed protoporphyria) centered around avoidance of sunlight, novel therapies have recently been approved or are in development, which will alter the therapeutic landscape for these conditions. We present 3 patient cases, highlighting key treatment considerations in patients with protoporphyria, including (1) approach to photosensitivity, (2) managing iron deficiency in protoporphyria, and (3) understanding hepatic failure in protoporphyria.
Collapse
Affiliation(s)
- Rebecca Karp Leaf
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Amy K. Dickey
- Harvard Medical School, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
9
|
Ricci A, Di Betto G, Bergamini E, Buzzetti E, Corradini E, Ventura P. Iron Metabolism in the Disorders of Heme Biosynthesis. Metabolites 2022; 12:819. [PMID: 36144223 PMCID: PMC9505951 DOI: 10.3390/metabo12090819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Given its remarkable property to easily switch between different oxidative states, iron is essential in countless cellular functions which involve redox reactions. At the same time, uncontrolled interactions between iron and its surrounding milieu may be damaging to cells and tissues. Heme-the iron-chelated form of protoporphyrin IX-is a macrocyclic tetrapyrrole and a coordination complex for diatomic gases, accurately engineered by evolution to exploit the catalytic, oxygen-binding, and oxidoreductive properties of iron while minimizing its damaging effects on tissues. The majority of the body production of heme is ultimately incorporated into hemoglobin within mature erythrocytes; thus, regulation of heme biosynthesis by iron is central in erythropoiesis. Additionally, heme is a cofactor in several metabolic pathways, which can be modulated by iron-dependent signals as well. Impairment in some steps of the pathway of heme biosynthesis is the main pathogenetic mechanism of two groups of diseases collectively known as porphyrias and congenital sideroblastic anemias. In porphyrias, according to the specific enzyme involved, heme precursors accumulate up to the enzyme stop in disease-specific patterns and organs. Therefore, different porphyrias manifest themselves under strikingly different clinical pictures. In congenital sideroblastic anemias, instead, an altered utilization of mitochondrial iron by erythroid precursors leads to mitochondrial iron overload and an accumulation of ring sideroblasts in the bone marrow. In line with the complexity of the processes involved, the role of iron in these conditions is then multifarious. This review aims to summarise the most important lines of evidence concerning the interplay between iron and heme metabolism, as well as the clinical and experimental aspects of the role of iron in inherited conditions of altered heme biosynthesis.
Collapse
Affiliation(s)
- Andrea Ricci
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giada Di Betto
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elisa Bergamini
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elena Buzzetti
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elena Corradini
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Paolo Ventura
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
10
|
A Bioinformatics Study of Ropivacaine plus Dexamethasone Prolonging the Duration of Nerve Block. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5869103. [PMID: 35990127 PMCID: PMC9388245 DOI: 10.1155/2022/5869103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
The study focuses on the potential function of dexamethasone on ropivacaine in sciatic nerve blocks. Nine Sprague–Dawley (SD) rats were randomly divided into three groups: normal group (NG), control group (CG), and experimental group (EG), with three rats in each group. The CG was injected with diluted ropivacaine (0.5% concentration); the EG was injected with a diluted ropivacaine+dexamethasone mixture, and the NG was injected with an equal amount of saline. The sciatic nerve in the thigh was collected for sequencing two days after injection in each group. Differential analysis was performed for NG-vs-CG, NG-vs-EG, and CG-vs-EG based on the sequencing dataset. The modular genes associated with ropivacaine and ropivacaine+ dexamethasone were screened by weighted coexpression network analysis (WGCNA), differentially expressed modules among them were enriched for analysis, and protein-protein interaction (PPI) networks were constructed to observe high and low expression among key genes in immune cells. Twenty-two and three differential genes associated with ropivacaine (green-yellow module) and ropivacaine+dexamethasone (palevioletred3 module) were acquired, respectively, which played important roles in biological processes such as erythrocyte homeostasis, erythroid differentiation, and hemoglobin metabolic processes. PPI revealed that AHSP, ALAS2, EPB42, HBB, and SLC4A1 were interacting and the expression of these five genes was upregulated in the CG compared with the NG, while the expression of them was downregulated in the EG compared with the CG. The immunological analysis also showed significant differences in the expression of various immune cells in the 3 groups. AHSP, ALAS2, EPB42, HBB, and SLC4A1 are genes associated with hemoglobin, and dexamethasone combined with ropivacaine may prolong anesthesia by affecting local vasoconstriction to some extent.
Collapse
|
11
|
The Bacterial ClpXP-ClpB Family Is Enriched with RNA-Binding Protein Complexes. Cells 2022; 11:cells11152370. [PMID: 35954215 PMCID: PMC9368063 DOI: 10.3390/cells11152370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
In the matrix of bacteria/mitochondria/chloroplasts, Lon acts as the degradation machine for soluble proteins. In stress periods, however, proteostasis and survival depend on the strongly conserved Clp/Hsp100 family. Currently, the targets of ATP-powered unfoldases/disaggregases ClpB and ClpX and of peptidase ClpP heptameric rings are still unclear. Trapping experiments and proteome profiling in multiple organisms triggered confusion, so we analyzed the consistency of ClpP-trap targets in bacteria. We also provide meta-analyses of protein interactions in humans, to elucidate where Clp family members are enriched. Furthermore, meta-analyses of mouse complexomics are provided. Genotype–phenotype correlations confirmed our concept. Trapping, proteome, and complexome data retrieved consistent coaccumulation of CLPXP with GFM1 and TUFM orthologs. CLPX shows broad interaction selectivity encompassing mitochondrial translation elongation, RNA granules, and nucleoids. CLPB preferentially attaches to mitochondrial RNA granules and translation initiation components; CLPP is enriched with them all and associates with release/recycling factors. Mutations in CLPP cause Perrault syndrome, with phenotypes similar to defects in mtDNA/mtRNA. Thus, we propose that CLPB and CLPXP are crucial to counteract misfolded insoluble protein assemblies that contain nucleotides. This insight is relevant to improve ClpP-modulating drugs that block bacterial growth and for the treatment of human infertility, deafness, and neurodegeneration.
Collapse
|
12
|
Granata F, Brancaleoni V, Barman-Aksözen J, Scopetti M, De Luca G, Fustinoni S, Motta I, Di Pierro E, Graziadei G. Heme Biosynthetic Gene Expression Analysis With dPCR in Erythropoietic Protoporphyria Patients. Front Physiol 2022; 13:886194. [PMID: 35923227 PMCID: PMC9340544 DOI: 10.3389/fphys.2022.886194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The heme biosynthesis (HB) involves eight subsequent enzymatic steps. Erythropoietic protoporphyria (EPP) is caused by loss-of-function mutations in the ferrochelatase (FECH) gene, which in the last HB step inserts ferrous iron into protoporphyrin IX (PPIX) to form heme.Aim and method: The aim of this work was to for the first time analyze the mRNA expression of all HB genes in peripheral blood samples of patients with EPP having the same genotype FECH c.[215dupT]; [315-48T > C] as compared to healthy controls by highly sensitive and specific digital PCR assays (dPCR).Results: We confirmed a decreased FECH mRNA expression in patients with EPP. Further, we found increased ALAS2 and decreased ALAS1, CPOX, PPOX and HMBS mRNA expression in patients with EPP compared to healthy controls. ALAS2 correlated with FECH mRNA expression (EPP: r = 0.63, p = 0.03 and controls: r = 0.68, p = 0.02) and blood parameters like PPIX (EPP: r = 0.58 p = 0.06).Conclusion: Our method is the first that accurately quantifies HB mRNA from blood samples with potential applications in the monitoring of treatment effects of mRNA modifying therapies in vivo, or investigation of the HB pathway and its regulation. However, our findings should be studied in separated blood cell fractions and on the enzymatic level.
Collapse
Affiliation(s)
- Francesca Granata
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
- *Correspondence: Francesca Granata,
| | - Valentina Brancaleoni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Jasmin Barman-Aksözen
- Department of Medical Institutes, Institute of Laboratory Medicine, Stadtspital Zürich, Zürich, Switzerland
| | | | - Giacomo De Luca
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Silvia Fustinoni
- EPIGET—Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.S Tossicologia, Università degli Studi di Milano, Milan, Italy
| | - Irene Motta
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Elena Di Pierro
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Giovanna Graziadei
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| |
Collapse
|
13
|
Yien YY, Perfetto M. Regulation of Heme Synthesis by Mitochondrial Homeostasis Proteins. Front Cell Dev Biol 2022; 10:895521. [PMID: 35832791 PMCID: PMC9272004 DOI: 10.3389/fcell.2022.895521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Heme plays a central role in diverse, life-essential processes that range from ubiquitous, housekeeping pathways such as respiration, to highly cell-specific ones such as oxygen transport by hemoglobin. The regulation of heme synthesis and its utilization is highly regulated and cell-specific. In this review, we have attempted to describe how the heme synthesis machinery is regulated by mitochondrial homeostasis as a means of coupling heme synthesis to its utilization and to the metabolic requirements of the cell. We have focused on discussing the regulation of mitochondrial heme synthesis enzymes by housekeeping proteins, transport of heme intermediates, and regulation of heme synthesis by macromolecular complex formation and mitochondrial metabolism. Recently discovered mechanisms are discussed in the context of the model organisms in which they were identified, while more established work is discussed in light of technological advancements.
Collapse
|
14
|
Iron, Heme Synthesis and Erythropoietic Porphyrias: A Complex Interplay. Metabolites 2021; 11:metabo11120798. [PMID: 34940556 PMCID: PMC8705723 DOI: 10.3390/metabo11120798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Erythropoietic porphyrias are caused by enzymatic dysfunctions in the heme biosynthetic pathway, resulting in porphyrins accumulation in red blood cells. The porphyrins deposition in tissues, including the skin, leads to photosensitivity that is present in all erythropoietic porphyrias. In the bone marrow, heme synthesis is mainly controlled by intracellular labile iron by post-transcriptional regulation: translation of ALAS2 mRNA, the first and rate-limiting enzyme of the pathway, is inhibited when iron availability is low. Moreover, it has been shown that the expression of ferrochelatase (FECH, an iron-sulfur cluster enzyme that inserts iron into protoporphyrin IX to form heme), is regulated by intracellular iron level. Accordingly, there is accumulating evidence that iron status can mitigate disease expression in patients with erythropoietic porphyrias. This article will review the available clinical data on how iron status can modify the symptoms of erythropoietic porphyrias. We will then review the modulation of heme biosynthesis pathway by iron availability in the erythron and its role in erythropoietic porphyrias physiopathology. Finally, we will summarize what is known of FECH interactions with other proteins involved in iron metabolism in the mitochondria.
Collapse
|
15
|
Maio N, Zhang DL, Ghosh MC, Jain A, SantaMaria AM, Rouault TA. Mechanisms of cellular iron sensing, regulation of erythropoiesis and mitochondrial iron utilization. Semin Hematol 2021; 58:161-174. [PMID: 34389108 DOI: 10.1053/j.seminhematol.2021.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
To maintain an adequate iron supply for hemoglobin synthesis and essential metabolic functions while counteracting iron toxicity, humans and other vertebrates have evolved effective mechanisms to conserve and finely regulate iron concentration, storage, and distribution to tissues. At the systemic level, the iron-regulatory hormone hepcidin is secreted by the liver in response to serum iron levels and inflammation. Hepcidin regulates the expression of the sole known mammalian iron exporter, ferroportin, to control dietary absorption, storage and tissue distribution of iron. At the cellular level, iron regulatory proteins 1 and 2 (IRP1 and IRP2) register cytosolic iron concentrations and post-transcriptionally regulate the expression of iron metabolism genes to optimize iron availability for essential cellular processes, including heme biosynthesis and iron-sulfur cluster biogenesis. Genetic malfunctions affecting the iron sensing mechanisms or the main pathways that utilize iron in the cell cause a broad range of human diseases, some of which are characterized by mitochondrial iron accumulation. This review will discuss the mechanisms of systemic and cellular iron sensing with a focus on the main iron utilization pathways in the cell, and on human conditions that arise from compromised function of the regulatory axes that control iron homeostasis.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - De-Liang Zhang
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Manik C Ghosh
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Anshika Jain
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Anna M SantaMaria
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| |
Collapse
|