1
|
Gkiokas A, Papadatou-Gigante M, Gkioka AI, Koudouna A, Tryfou TM, Alexandropoulos A, Bartzi V, Kafasi N, Kyrtsonis MC. Tumor-Associated Macrophage (TAM)-Related Cytokines, sCD163, CCL2, and CCL4, as Novel Biomarkers for Overall Survival and Time to Treatment in Waldenstrom's Macroglobulinemia: Emphasis on Asymptomatic WM. Cells 2025; 14:275. [PMID: 39996747 PMCID: PMC11853255 DOI: 10.3390/cells14040275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Waldenstrom's Macroglobulinemia (WM) is a heterogeneous disease, and the majority of patients tend to have a long course. Nevertheless, it is imperative to detect patients who have a high risk of progression and who benefit from closer follow-up. Many recent studies have displayed the CD163-positive tumor-associated macrophages (TAMs) contribution in the pathogenesis of various hematological neoplasms and solid tumors. Soluble CD163 (sCD163) can be measured in serum, along with other TAM-chemoattractant cytokines, such as CCL2 and CCL4, and their levels are used to determine macrophage activation. In the current study, we investigated the correlation between sCD163, CCL2, and CCL4, with parameters of WM progression and survival. Out of a total of 204 WM patients, serum sCD163, CCL2, and CCL4 were measured in 75, 64, and 65 patients' frozen sera at diagnosis, along with 30 healthy individuals (HIs) using an enzyme-linked immunosorbent assay (ELISA). We achieved to demonstrate that shorter Time to Treatment (TTT) was observed in 2 years and 7 years intervals in all patients with a ratio of CD163/CCL4 above median (p = 0.003 and p = 0.024, respectively) and decreased TTT was observed in all asymptomatic WM (AWM) patients with values of CCL4 above the median (p = 0.018). Moreover, significantly decreased overall survival (OS) (p = 0.033) was observed in all WM patients with CCL2 values above the median. Our results indicate that sCD163, CCL2, and CCL4 could be utilized as prognostic markers in WM.
Collapse
MESH Headings
- Humans
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, CD/metabolism
- Antigens, CD/blood
- Chemokine CCL2/blood
- Chemokine CCL2/metabolism
- Male
- Female
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/metabolism
- Middle Aged
- Aged
- Chemokine CCL4/blood
- Chemokine CCL4/metabolism
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/immunology
- Waldenstrom Macroglobulinemia/blood
- Waldenstrom Macroglobulinemia/pathology
- Waldenstrom Macroglobulinemia/mortality
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Aged, 80 and over
- Adult
- Biomarkers/blood
- Biomarkers/metabolism
- Prognosis
Collapse
Affiliation(s)
- Alexandros Gkiokas
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.-G.); (A.I.G.); (A.K.); (T.M.T.); (A.A.); (V.B.); (M.-C.K.)
| | - Mavra Papadatou-Gigante
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.-G.); (A.I.G.); (A.K.); (T.M.T.); (A.A.); (V.B.); (M.-C.K.)
| | - Annita Ioanna Gkioka
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.-G.); (A.I.G.); (A.K.); (T.M.T.); (A.A.); (V.B.); (M.-C.K.)
| | - Aspasia Koudouna
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.-G.); (A.I.G.); (A.K.); (T.M.T.); (A.A.); (V.B.); (M.-C.K.)
| | - Thomai M. Tryfou
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.-G.); (A.I.G.); (A.K.); (T.M.T.); (A.A.); (V.B.); (M.-C.K.)
| | - Alexandros Alexandropoulos
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.-G.); (A.I.G.); (A.K.); (T.M.T.); (A.A.); (V.B.); (M.-C.K.)
| | - Vassiliki Bartzi
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.-G.); (A.I.G.); (A.K.); (T.M.T.); (A.A.); (V.B.); (M.-C.K.)
| | | | - Marie-Christine Kyrtsonis
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.-G.); (A.I.G.); (A.K.); (T.M.T.); (A.A.); (V.B.); (M.-C.K.)
| |
Collapse
|
2
|
Yeo YY, Chang Y, Qiu H, Yiu SPT, Michel HA, Wu W, Jin X, Kure S, Parmelee L, Luo S, Cramer P, Lee JL, Wang Y, Yeung J, Ahmar NE, Simsek B, Mohanna R, Van Orden M, Lu W, Livak KJ, Li S, Shahryari J, Kingsley L, Al-Humadi RN, Nasr S, Nkosi D, Sadigh S, Rock P, Frauenfeld L, Kaufmann L, Zhu B, Basak A, Dhanikonda N, Chan CN, Krull J, Cho YW, Chen CY, Lee JYJ, Wang H, Zhao B, Loo LH, Kim DM, Boussiotis V, Zhang B, Shalek AK, Howitt B, Signoretti S, Schürch CM, Hodi FS, Burack WR, Rodig SJ, Ma Q, Jiang S. Same-Slide Spatial Multi-Omics Integration Reveals Tumor Virus-Linked Spatial Reorganization of the Tumor Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629650. [PMID: 39764057 PMCID: PMC11702642 DOI: 10.1101/2024.12.20.629650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms. This iterative approach first entails single-cell spatial proteomics and rapid analysis to guide subsequent spatial transcriptomics capture on the same slide without loss in RNA signal. To enable multi-modal insights not possible with current approaches, we introduce k-bandlimited Spectral Graph Cross-Correlation (SGCC) for integrative spatial multi-omics analysis. Application of IN-DEPTH and SGCC on lymphoid tissues demonstrated precise single-cell phenotyping and cell-type specific transcriptome capture, and accurately resolved the local and global transcriptome changes associated with the cellular organization of germinal centers. We then implemented IN-DEPTH and SGCC to dissect the tumor microenvironment (TME) of Epstein-Barr Virus (EBV)-positive and EBV-negative diffuse large B-cell lymphoma (DLBCL). Our results identified a key tumor-macrophage-CD4 T-cell immunomodulatory axis differently regulated between EBV-positive and EBV-negative DLBCL, and its central role in coordinating immune dysfunction and suppression. IN-DEPTH enables scalable, resource-efficient, and comprehensive spatial multi-omics dissection of tissues to advance clinically relevant discoveries.
Collapse
Affiliation(s)
- Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
| | - Yuzhou Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Huaying Qiu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Stephanie Pei Tung Yiu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hendrik A Michel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
| | - Wenrui Wu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xiaojie Jin
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Shoko Kure
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lindsay Parmelee
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shuli Luo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Precious Cramer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jia Le Lee
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yang Wang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nourhan El Ahmar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Berkay Simsek
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Razan Mohanna
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - McKayla Van Orden
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Wesley Lu
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Kenneth J Livak
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Shuqiang Li
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Jahanbanoo Shahryari
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Leandra Kingsley
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Reem N Al-Humadi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sahar Nasr
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dingani Nkosi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Philip Rock
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Leonie Frauenfeld
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Louisa Kaufmann
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Bokai Zhu
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Ankit Basak
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Nagendra Dhanikonda
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chi Ngai Chan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jordan Krull
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Ye Won Cho
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Chia-Yu Chen
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Jia Ying Joey Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hongbo Wang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lit-Hsin Loo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David M Kim
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Vassiliki Boussiotis
- Department of Hematology Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Baochun Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Alex K Shalek
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Brooke Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - F Stephan Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - W Richard Burack
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Qin Ma
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
3
|
Mokni Baizig N, Ben ElHadj M, Hsairi M, Fourati A, Kamoun S, Houcine Y, Gritli S, Driss M. Circulating levels of FoxP3, M2 (sCD163) and IGF-1 as potential biomarkers associated with Laryngeal Squamous Cell Carcinoma in Tunisian patients. J Immunoassay Immunochem 2024; 45:79-92. [PMID: 37936281 DOI: 10.1080/15321819.2023.2275802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We aim to assess the clinical impact of circulating levels of sCD163, FoxP3, IGF-1 in LSCC patients (Laryngeal Squamous Cell Carcinoma). The concentrations of sCD163, FoxP3, and IGF-1 were measured using ELISA test in the serum samples collected from 70 pretreatment LSCC patients and 70 age and sex-matched healthy controls. Statistical analysis was performed using ANOVA to compare the two groups, and the correlation between markers and clinical parameters. Receiver-Operator Characteristic (ROC) curve analysis was conducted to determine the optimal cutoff values and evaluate the diagnostic impact of these markers. Significant differences in the levels of sCD163, FoxP3, and IGF-1 were observed between LSCC patients and the control group, with respective p-values of 0.01, 0.022, <0.0001. The determined cutoff values for sCD163, FoxP3, IGF-1 concentrations were 314.55 ng/mL, 1.69 ng/mL, and 1.69 ng/mL, respectively. The corresponding area under the curve (AUC) values were 0.67 (95% CI: 0.57-0.76), 0.70 (95% CI: 0.61-0.80), 0.84 (95% CI: 0.76-0.92), respectively. Furthermore, it was found that IGF-1 concentrations exceeding 125.20 ng/mL were positively correlated with lymph node metastasis. Elevated serum levels of sCD163, FoxP3 and IGF-1 are associated with the diagnosis of LSCC. IGF-1 appears to be the most promising indicator for the LSCC progression.
Collapse
Affiliation(s)
- Nehla Mokni Baizig
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Mariem Ben ElHadj
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Hsairi
- Department of Epidemiology, Salah Azaiez Cancer Institute, Tunis, Tunisia
| | - Asma Fourati
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Salma Kamoun
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
| | - Yoldz Houcine
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
| | - Said Gritli
- Department of ORL, Salah Azaiez Cancer Institute, Tunis, Tunisia
| | - Maha Driss
- Department of Immuno-Histo-Cytology, Salah Azaiez Cancer Institute, Tunis, Tunisia
| |
Collapse
|
4
|
Nikkarinen A, Lokhande L, Amini RM, Jerkeman M, Porwit A, Molin D, Enblad G, Kolstad A, Räty R, Hutchings M, Weibull CE, Hollander P, Ek S, Glimelius I. Soluble CD163 predicts outcome in both chemoimmunotherapy and targeted therapy-treated mantle cell lymphoma. Blood Adv 2023; 7:5304-5313. [PMID: 37389827 PMCID: PMC10506048 DOI: 10.1182/bloodadvances.2023010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
The outcome for patients with mantle cell lymphoma (MCL) has drastically improved with new treatments directed toward the tumor immune microenvironment, where macrophages play an important role. In MCL, the presence of M2 macrophages defined by CD163 expression in diagnostic biopsies has been associated with a worse prognosis. An alternative way to assess the abundance of M2 macrophages is by measuring the level of soluble CD163 in serum (sCD163). We aimed to investigate the prognostic value of sCD163 in 131 patients with MCL. We found that high sCD163 at diagnosis was associated with shorter progression-free survival (PFS) and shorter overall survival (OS) in 81 patients who were newly diagnosed and subsequently treated with chemoimmunotherapy. The same was seen in a cohort of 50 patients with relapsed MCL that were mainly treated within the phase 2 Philemon-trial with rituximab, ibrutinib, and lenalidomide. In patients who were newly diagnosed and had low levels of sCD163, 5-year survival was 97%. There was a moderate correlation between sCD163 and tissue CD163. The association with a poor prognosis was independent of MCL international prognostic index, Ki67, p53 status, and blastoid morphology, as assessed in a multivariable Cox proportional hazards model. In this study, high sCD163 was associated with both shorter PFS and shorter OS, showing that high levels of the M2 macrophage marker sCD163 is an independent negative prognostic factor in MCL, both in the chemoimmunotherapy and ibrutinib/lenalidomide era. In addition, low sCD163 levels identify patients with MCL with a very good prognosis.
Collapse
Affiliation(s)
- Anna Nikkarinen
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | | | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Cancer Immunotherapy, Uppsala University, Uppsala, Sweden
| | - Mats Jerkeman
- Department of Clinical Sciences, Oncology and Pathology, Lund University, Lund, Sweden
| | - Anna Porwit
- Department of Clinical Sciences, Oncology and Pathology, Lund University, Lund, Sweden
| | - Daniel Molin
- Department of Immunology, Genetics and Pathology, Cancer Immunotherapy, Uppsala University, Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Cancer Immunotherapy, Uppsala University, Uppsala, Sweden
| | - Arne Kolstad
- Department of Oncology, Innlandet Hospital Trust Division Gjøvik, Lillehammer, Norway
| | - Riikka Räty
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | - Caroline E. Weibull
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Peter Hollander
- Department of Immunology, Genetics and Pathology, Cancer Immunotherapy, Uppsala University, Uppsala, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Sun X, Cao J, Sun P, Yang H, Li H, Ma W, Wu X, He X, Li J, Li Z, Huang J. Pretreatment soluble Siglec-5 protein predicts early progression and R-CHOP efficacy in diffuse large B-cell lymphoma. Biomark Med 2023; 17:143-158. [PMID: 37097021 DOI: 10.2217/bmm-2022-0764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Aims: To explore the clinical association between soluble Siglec-5/CD163 and clinical feature and prognosis in peripheral blood samples of patients with diffuse large B-cell lymphoma. Method: Significantly elevated cytokines in peripheral blood were characterized by cytokines array and validated by ELISA. Results: Compared with CD163, Siglec-5 exhibited superiority in discriminating patients into low- and high-risk subgroups based on overall survival and progression-free survival. In addition, Siglec-5 was an indicator of rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) treatment efficacy. Conclusion: Siglec-5 may be applied as a reliable independent immune indicator for overall survival and progression-free survival. It may also predict R-CHOP efficacy in diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Department of Intensive Care Unit(ICU), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jianghua Cao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Peng Sun
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Hang Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Huan Li
- Department of Intensive Care Unit(ICU), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Wenjuan Ma
- Department of Intensive Care Unit(ICU), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xianqiu Wu
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohua He
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jing Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zhiming Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jiajia Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
6
|
Lauridsen KM, Hokland M, Al-Karradi S, Møller HJ, Donskov F, Andersen MN. Soluble CD163: a novel independent prognostic biomarker in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2023; 72:461-473. [PMID: 35953682 PMCID: PMC10992473 DOI: 10.1007/s00262-022-03266-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/28/2022] [Indexed: 01/26/2023]
Abstract
The hemoglobin-haptoglobin scavenger receptor CD163 is present in both a membrane-bound form on monocytes and macrophages (mCD163) and a shed soluble circulating form (sCD163). CD163 is a well-described marker of M2-like tumor-associated macrophages, but in patients with metastatic renal cell carcinoma (mRCC), monocyte mCD163 and serum sCD163 levels have not previously been investigated and associated with patient overall survival (OS). Here, we report mCD163 expression on peripheral blood monocytes, as well as sCD163 serum levels, in samples from 89 patients newly diagnosed with mRCC and 20 healthy controls. We found that in mRCC patients, compared to healthy controls, monocyte mCD163 levels were reduced (P < 0.001) whereas serum sCD163 levels were increased (P = 0.004). Moreover, an inverse correlation between mCD163 and sCD163 levels (P = 0.04) was shown. In survival analyses, intermediary levels of monocyte mCD163 were associated with longest OS, compared to both lower and higher mCD163 levels, which were both associated with worse outcomes (P < 0.01). Further, higher levels of sCD163 at diagnosis were associated with poor OS in both univariate (P < 0.001) and multivariate analysis (HR = 1.28; 95%CI 1.09-1.50, P = 0.002). Importantly, stratification by low vs. high sCD163 was able to separate patients with International Metastatic RCC Database Consortium (IMDC) intermediate risk (IMDCINT) into two subgroups with different OS (P = 0.03): IMDCINT-sCD163LOW showed survival similar to IMDCFAV patients, and IMDCINT-sCD163HIGH showed survival similar to IMDCPOOR patients. Thus, baseline sCD163 is a novel independent biomarker of OS in mRCC, and using sCD163 as an add-on biomarker may improve prognostic value for patients in the heterogenous IMDC intermediate group.
Collapse
Affiliation(s)
- Kasper Munch Lauridsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10. Building 1115, 224, 8000, Aarhus C, Denmark
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Marianne Hokland
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10. Building 1115, 224, 8000, Aarhus C, Denmark.
| | - Sinan Al-Karradi
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10. Building 1115, 224, 8000, Aarhus C, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Frede Donskov
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Morten Nørgaard Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10. Building 1115, 224, 8000, Aarhus C, Denmark
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Stuhr LK, Madsen K, Johansen AZ, Chen IM, Hansen CP, Jensen LH, Hansen TF, Kløve-Mogensen K, Nielsen KR, Johansen JS. Combining sCD163 with CA 19-9 Increases the Predictiveness of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15030897. [PMID: 36765852 PMCID: PMC9913074 DOI: 10.3390/cancers15030897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate the diagnostic and prognostic potential of soluble CD163 (sCD163) in patients with pancreatic ductal adenocarcinoma (PDAC). Preoperative serum samples from 255 patients with PDAC were analyzed for sCD163 using a commercially available enzyme-linked immunosorbent assay. The diagnostic value of sCD163 was evaluated using receiver operating characteristic (ROC) curves. The prognostic significance of sCD163 was evaluated by Cox regression analysis and Kaplan-Meier survival curves. sCD163 was significantly increased in patients with PDAC, across all stages, compared to healthy subjects (stage 1: p value = 0.033; stage 2-4: p value ≤ 0.0001). ROC curves showed that sCD163 combined with CA 19-9 had the highest diagnostic potential compared to sCD163 and CA 19-9 alone both in patients with local PDAC and patients with advanced PDAC. Univariate and multivariate analysis showed no association between sCD163 and overall survival. This study found elevated levels of circulating sCD163 in patients with PDAC, regardless of stage, compared to healthy subjects. This suggests that sCD163 may have a clinical value as a novel diagnostic biomarker in PDAC.
Collapse
Affiliation(s)
- Liva K. Stuhr
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Kasper Madsen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Astrid Z. Johansen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital-Rigshospitalet, DK-2200 Copenhagen, Denmark
| | - Lars H. Jensen
- Department of Oncology, University Hospital of Southern Denmark, DK-7100 Vejle, Denmark
| | - Torben F. Hansen
- Department of Oncology, University Hospital of Southern Denmark, DK-7100 Vejle, Denmark
| | | | - Kaspar R. Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, DK-2730 Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-38689241
| |
Collapse
|
8
|
Vajavaara H, Leivonen S, Jørgensen J, Holte H, Leppä S. Low lymphocyte-to-monocyte ratio predicts poor outcome in high-risk aggressive large B-cell lymphoma. EJHAEM 2022; 3:681-687. [PMID: 36051040 PMCID: PMC9421995 DOI: 10.1002/jha2.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/12/2022]
Abstract
Low lymphocyte-to-monocyte-ratio (LMR) has been associated with unfavorable survival in patients with diffuse large B-cell lymphoma (DLBCL). To date, however, the impact of LMR on survival has not been examined in a uniformly treated cohort of patients with high-risk aggressive large B-cell lymphoma. We collected peripheral blood absolute lymphocyte counts (ALCs) and absolute monocyte counts (AMC) prior to treatment and calculated LMR from 112 adult patients, who were less than 65 years of age, had age-adjusted International Prognostic Index 2-3, or site-specific risk factors for central nervous system (CNS) recurrence, and were treated in a Nordic Lymphoma Group LBC-05 trial with dose-dense immunochemotherapy and early systemic CNS prophylaxis (www.ClinicalTrials.gov, number NCT01325194). Median pretreatment ALC was 1.40 × 109/l (range, 0.20-4.95), AMC 0.68 × 109/l (range, 0.10-2.62), and LMR 2.08 (range, 0.10-12.00). ALC did not correlate with tumor-infiltrating lymphocytes, AMC did not correlate with tumor-associated macrophages, and neither ALC nor AMC correlated with survival. However, low LMR (<1.72) translated to unfavourable progression-free survival (PFS) (5-year PFS 70% vs. 92%, p = 0.002) and overall survival (OS) (5-year OS, 77% vs. 92%, p = 0.020). In the patients with low LMR, relative risk of progression was 4.4-fold (95% confidence interval [CI] 1.60-12.14, p = 0.004), and relative risk of death was 3.3-fold (95% CI 1.18-9.50, p = 0.024) in comparison to the patients with high LMR. We conclude that low LMR is an adverse prognostic factor in uniformly treated young patients with high-risk aggressive large B-cell lymphoma.
Collapse
Affiliation(s)
- Heli Vajavaara
- Research Program UnitApplied Tumor GenomicsFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of OncologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Suvi‐Katri Leivonen
- Research Program UnitApplied Tumor GenomicsFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of OncologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Judit Jørgensen
- Department of HematologyAarhus University HospitalAarhusDenmark
| | - Harald Holte
- Department of OncologyKG Jebsen Center for B‐Cell MalignanciesOslo University HospitalOsloNorway
| | - Sirpa Leppä
- Research Program UnitApplied Tumor GenomicsFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of OncologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| |
Collapse
|
9
|
Sun H, Zhang X, Ma J, Liu Z, Qi Y, Fang L, Zheng Y, Cai Z. Circulating Soluble CD163: A Potential Predictor for the Functional Outcome of Acute Ischemic Stroke. Front Neurol 2022; 12:740420. [PMID: 34970202 PMCID: PMC8712690 DOI: 10.3389/fneur.2021.740420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background: CD163 is a transmembrane glycoprotein receptor expressed on innate immune cells that sheds from the cell membrane and circulates as a soluble form (sCD163). This study aimed to investigate the circulating levels and clinical relevance of soluble CD163 (sCD163) in acute ischemic stroke (AIS). Methods: This study recruited 300 patients with AIS and 78 healthy controls. The patients were followed up for 1 month to observe the functional outcomes. The neurological functions of the patients were assessed using the NIH Stroke Scale (NIHSS) and the modified Rankin Scale (mRS). The plasma concentrations of sCD163 at the baseline (patient admission) were determined by ELISA. Results: We found that patients with AIS had significantly higher plasma sCD163 concentrations than the healthy control. Patients with high sCD163 concentrations had better functional outcomes than patients with low sCD163 concentrations. The plasma sCD163 concentrations were positively associated with the NIHSS scores and infarction volume at the baseline. The plasma sCD163 was positively associated with the improvement of the NIHSS scores but was negatively associated with the risk of poor functional outcomes during follow-up. Conclusions: These findings indicate that circulating sCD163 is a potential biomarker that is associated with disease severity and the functional outcome of AIS.
Collapse
Affiliation(s)
- Houchao Sun
- Department of Neurology, Chongqing Medical University, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Xiaogang Zhang
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Chongqing Key Laboratory of Neurology, Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingxi Ma
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Zhao Liu
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Yunwen Qi
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Li Fang
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Yongling Zheng
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing Medical University, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| |
Collapse
|