1
|
Yousaf MA, Meli M, Colombo G, Savoia A, Pastore A. A computational study of the fold and stability of cytochrome c with implications for disease. Int J Biol Macromol 2025; 308:142336. [PMID: 40120881 DOI: 10.1016/j.ijbiomac.2025.142336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Cytochrome c (Cyt-c), encoded by the CYCS gene, is crucial for electron transport, peroxidase activity, and apoptosis. Mutations in CYCS cause thrombocytopenia 4 (THC4), a disorder with low platelet counts. We have, for instance, recently described six Italian families with five different heterozygous missense CYCS variants. These mutations likely enhance peroxidase and apoptotic activities, yet the mechanisms causing reduced platelet production and increased apoptosis are unclear. This study investigates clinically-related Cyt-c variants using an integrated bioinformatics approach. Our findings reveal that all variants are at evolutionarily conserved sites, potentially disrupting Cyt-c function and contributing to disease phenotypes. Specific variants are predicted to affect phosphorylation (T20I, V21G, Y49H), and ubiquitination (G42S, A52T, A52V, T103I). Molecular dynamics simulations (500 ns) revealed significant structural deviations from the wild-type protein, with mutants showing reduced stability and increased unfolding and flexibility, particularly in the Ω-loops. These changes result in the displacement of the Ω-loops away from the heme iron, weakening critical hydrogen bonds and consequently opening the heme active site. This open conformation may enhance accessibility to small molecules such as H₂O₂, thereby promoting peroxidase activity, which may enhance apoptosis and likely impact megakaryopoiesis and platelet homeostasis in THC4.
Collapse
Affiliation(s)
- Muhammad Abrar Yousaf
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Meli
- Institute of Chemical Sciences and Technologies "Giulio Natta" - SCITEC, National Research Council (CNR), Milan, Italy
| | | | - Anna Savoia
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Annalisa Pastore
- Department of Clinical Neuroscience, King's College London, Denmark Hill Campus, London, United Kingdom; Elettra Sincrotrone Trieste, s.s. 14 km 163,500 in Area Science Park, Basovizza, Trieste, Italy.
| |
Collapse
|
2
|
Štika J, Pešová M, Kozubík KS, Skalníková M, Dostálová L, Loja T, Radová L, Palušová V, Réblová K, Vrzalová Z, Blaháková I, Trizuljak J, Uldrijan S, Blatný J, Šmída M, Pospíšilová Š, Doubek M. A novel thrombocytopenia-4-causing CYCS gene variant decreases caspase activity: Three-generation study. Br J Haematol 2024; 205:2450-2458. [PMID: 39191490 PMCID: PMC11637729 DOI: 10.1111/bjh.19694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The CYCS gene is highly evolutionarily conserved, with only a few pathogenic variants that cause thrombocytopenia-4 (THC4). Here, we report a novel CYCS variant NM_018947.6: c.59C>T [NP_061820.1:p.(Thr20Ile)] segregating with thrombocytopenia in three generations of a Czech family. The phenotype of the patients corresponds to THC4 with platelets of normal size and morphology and dominant inheritance. Intriguingly, a gradual decline in platelet counts was observed across generations. CRISPR/Cas9-mediated gene editing was used to introduce the new CYCS gene variant into a megakaryoblast cell line (MEG-01). Subsequently, the adhesion, shape, size, ploidy, viability, mitochondrial respiration, cytochrome c protein (CYCS) expression, cell surface antigen expression and caspase activity were analysed in cells carrying the studied variant. Interestingly, the variant decreases the expression of CYCS while increasing mitochondrial respiration and the expression of CD9 cell surface antigen. Surprisingly, the variant abates caspase activation, contrasting with previously known effects of other CYCS variants. Some reports indicate that caspases may be involved in thrombopoiesis; thus, the observed dysregulation of caspase activity might contribute to thrombocytopenia. The findings significantly enhance our understanding of the molecular mechanisms underlying inherited thrombocytopenia and may have implications for diagnosis, prognosis and future targeted therapies.
Collapse
Affiliation(s)
- Jiří Štika
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Michaela Pešová
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Department of Internal Medicine – Hematology and OncologyFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Kateřina Staňo Kozubík
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
- Department of Internal Medicine – Hematology and OncologyFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Magdalena Skalníková
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
| | - Lenka Dostálová
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Department of BiologyFaculty of Medicine, Masaryk UniversityBrnoCzechia
| | - Tomáš Loja
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
| | - Lenka Radová
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Veronika Palušová
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzechia
| | - Kamila Réblová
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
- Department of Internal Medicine – Hematology and OncologyFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Zuzana Vrzalová
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
- Department of Internal Medicine – Hematology and OncologyFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Ivona Blaháková
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
- Department of Internal Medicine – Hematology and OncologyFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Jakub Trizuljak
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
- Department of Internal Medicine – Hematology and OncologyFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Stjepan Uldrijan
- Department of BiologyFaculty of Medicine, Masaryk UniversityBrnoCzechia
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzechia
| | - Jan Blatný
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
- Department of Pediatric Hematology and BiochemistryUniversity Hospital BrnoBrnoCzechia
| | - Michal Šmída
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
- Department of Internal Medicine – Hematology and OncologyFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Šárka Pospíšilová
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
- Department of Internal Medicine – Hematology and OncologyFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| | - Michael Doubek
- Center of Molecular MedicineCEITEC – Central European Institute of Technology, Masaryk UniversityBrnoCzechia
- Institute of Medical Genetics and GenomicsFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
- Department of Internal Medicine – Hematology and OncologyFaculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzechia
| |
Collapse
|
3
|
Oz-Alcalay L, Steinberg-Shemer O, Elron E, Dvori M, Elitzur S, Dgany O, Noy-Lotan S, Krasnov T, Tamary H, Brik-Simon D, Yacobovich J, Gilad O. Clinical and Laboratory Characteristics of Pediatric Patients With ACKR1/DARC-Associated Neutropenia. Pediatr Blood Cancer 2024:e31430. [PMID: 39506297 DOI: 10.1002/pbc.31430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND ACKR1/DARC-associated neutropenia (ADAN), resulting from homozygosity for a single nucleotide polymorphism (SNP) in the ACKR1/DARC gene (rs2814778), is a common cause of benign neutropenia that primarily affects individuals of African and Jewish Yemenite descent. We aimed to characterize ADAN in pediatric patients in Israel, given its ethnically diverse population. PROCEDURE We assessed children with isolated neutropenia treated during 2018-2023 at one pediatric center, for the ACKR1/DARC polymorphism, using Sanger sequencing or targeted next-generation sequencing. RESULTS Of 115 patients evaluated, 49 (42.6%) were diagnosed with ADAN; of these, 29 (59%) had absolute neutrophil counts in the severe range (0-0.5 × 109/L) at diagnosis. The allele distribution revealed 37% of Muslim Arab and 61% of Jewish origin. Yemenite, Ethiopian, Mediterranean, Asian, and European ancestry were included; 59% had a family history of neutropenia. The median age at the first neutropenia detection was 1.2 years; 91.8% were identified during routine blood counts. The median absolute neutrophil count at diagnosis was 0.5 × 109/L (interquartile range: 0.3). An increased susceptibility to infections was not found either before or during the median follow-up period of 2.5 years (interquartile range: 1.54) after the diagnosis of ADAN. In 34 patients (72.3%), neutrophil counts were in the normal range during febrile illnesses. CONCLUSIONS We identified ADAN in individuals of variable ethnicities, almost half with severe neutropenia. We recommend testing for ADAN in all children with isolated neutropenia without severe infections. Homozygosity for the ACKR1/DARC rs2814778 SNP may obviate the need for further investigation, follow-up, or treatment in specific clinical scenarios.
Collapse
Affiliation(s)
- Lital Oz-Alcalay
- Department of Internal Pediatrics A, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Steinberg-Shemer
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Hematology/Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Eyal Elron
- The Rina Zaizov Hematology/Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Pediatric Genetic Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Michal Dvori
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Hematology/Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Sarah Elitzur
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Hematology/Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Orly Dgany
- The Rina Zaizov Hematology/Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Hannah Tamary
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Hematology/Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Dafna Brik-Simon
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Hematology/Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Joanne Yacobovich
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Hematology/Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Oded Gilad
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Hematology/Oncology Division, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
4
|
Maese LD, Wlodarski MW, Kim SY, Bertuch AA, Bougeard G, Chang VY, Godley LA, Khincha PP, Kuiper RP, Lesmana H, McGee RB, McReynolds LJ, Meade J, Plon SE, Savage SA, Scollon SR, Scott HS, Walsh MF, Nichols KE, Porter CC. Update on Recommendations for Surveillance for Children with Predisposition to Hematopoietic Malignancy. Clin Cancer Res 2024; 30:4286-4295. [PMID: 39078402 PMCID: PMC11444884 DOI: 10.1158/1078-0432.ccr-24-0685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Children harboring certain germline gene variants have an increased risk of developing myelodysplastic syndrome (MDS) and other hematopoietic malignancies (HM), such as leukemias and lymphomas. Recent studies have identified an expanding number of these predisposition genes, with variants most prevalent in children with MDS but also found in children with other HM. For some hematopoietic malignancy predispositions (HMP), specifically those with a high risk of MDS, early intervention through hematopoietic stem cell transplantation can favorably impact overall survival, providing a rationale for rigorous surveillance. A multidisciplinary panel of experts at the 2023 AACR Childhood Cancer Predisposition Workshop reviewed the latest advances in the field and updated prior 2017 surveillance recommendations for children with HMP. In addition to general guidance for all children with HMP, which includes annual physical examination, education about the signs and symptoms of HM, consultation with experienced providers, and early assessment by a hematopoietic stem cell transplantation specialist, the panel provided specific recommendations for individuals with a higher risk of MDS based on the affected gene. These recommendations include periodic and comprehensive surveillance for individuals with those syndromes associated with higher risk of MDS, including serial bone marrow examinations to monitor for morphologic changes and deep sequencing for somatic changes in genes associated with HM progression. This approach enables close monitoring of disease evolution based on the individual's genetic profile. As more HMP-related genes are discovered and the disorders' natural histories are better defined, these personalized recommendations will serve as a foundation for future guidelines in managing these conditions.
Collapse
Affiliation(s)
- Luke D. Maese
- University of Utah-Huntsman Cancer Institute, Primary Children’s Hospital, Salt Lake City, Utah
| | | | - Sun Young Kim
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Alison A. Bertuch
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Gaelle Bougeard
- Univ Rouen Normandie, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Vivian Y Chang
- University of California Los Angeles, Los Angeles, California
| | - Lucy A. Godley
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, Utrecht University Medical Center, Utrecht University, The Netherlands
| | - Harry Lesmana
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Rose B. McGee
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sharon E. Plon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Hamish S. Scott
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael F. Walsh
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York City, New York
| | - Kim E. Nichols
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
5
|
Lee JM, Kim HS, Yoo J, Lee J, Ahn A, Cho H, Han EH, Jung J, Yoo JW, Kim S, Lee JW, Cho B, Chung NG, Kim M, Kim Y. Genomic insights into inherited bone marrow failure syndromes in a Korean population. Br J Haematol 2024; 205:1581-1589. [PMID: 38735735 DOI: 10.1111/bjh.19509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Inherited bone marrow failure syndromes (IBMFS) pose significant diagnostic challenges due to overlapping symptoms and variable expressivity, despite evolving genomic insights. The study aimed to elucidate the genomic landscape among 130 Korean patients with IBMFS. We conducted targeted next-generation sequencing (NGS) and clinical exome sequencing (CES) across the cohort, complemented by whole genome sequencing (WGS) and chromosomal microarray (CMA) in 12 and 47 cases, respectively, with negative initial results. Notably, 50% (n = 65) of our cohort achieved a genomic diagnosis. Among these, 35 patients exhibited mutations associated with classic IBMFSs (n = 33) and the recently defined IBMFS, aplastic anaemia, mental retardation and dwarfism syndrome (AmeDS, n = 2). Classic IBMFSs were predominantly detected via targeted NGS (85%, n = 28) and CES (88%, n = 29), whereas AMeDS was exclusively identified through CES. Both CMA and WGS aided in identifying copy number variations (n = 2) and mutations in previously unexplored regions (n = 2). Additionally, 30 patients were diagnosed with other congenital diseases, encompassing 13 distinct entities including inherited thrombocytopenia (n = 12), myeloid neoplasms with germline predisposition (n = 8), congenital immune disorders (n = 7) and miscellaneous genomic conditions (n = 3). CES was particularly effective in revealing these diverse diagnoses. Our findings underscore the significance of comprehensive genomic analysis in IBMFS, highlighting the need for ongoing exploration in this complex field.
Collapse
Affiliation(s)
- Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hoon Seok Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ari Ahn
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hanwool Cho
- Department of Laboratory Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Hee Han
- Department of Laboratory Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Jung
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Won Yoo
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seongkoo Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Wook Lee
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bin Cho
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Yeshareem L, Yacobovich J, Lebel A, Noy-Lotan S, Dgany O, Krasnov T, Berger Pinto G, Oniashvili N, Mardoukh J, Bielorai B, Laor R, Mandel-Shorer N, Ben Barak A, Levin C, Asleh M, Miskin H, Revel-Vilk S, Levin D, Benish M, Zuckerman T, Wolach O, Pazgal I, Brik Simon D, Gilad O, Yanir AD, Goldberg TA, Izraeli S, Tamary H, Steinberg-Shemer O. Genetic backgrounds and clinical characteristics of congenital neutropenias in Israel. Eur J Haematol 2024; 113:146-162. [PMID: 38600884 DOI: 10.1111/ejh.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Congenital neutropenias are characterized by severe infections and a high risk of myeloid transformation; the causative genes vary across ethnicities. The Israeli population is characterized by an ethnically diverse population with a high rate of consanguinity. OBJECTIVE To evaluate the clinical and genetic spectrum of congenital neutropenias in Israel. METHODS We included individuals with congenital neutropenias listed in the Israeli Inherited Bone Marrow Failure Registry. Sanger sequencing was performed for ELANE or G6PC3, and patients with wild-type ELANE/G6PC3 were referred for next-generation sequencing. RESULTS Sixty-five patients with neutropenia were included. Of 51 patients with severe congenital neutropenia, 34 were genetically diagnosed, most commonly with variants in ELANE (15 patients). Nine patients had biallelic variants in G6PC3, all of consanguineous Muslim Arab origin. Other genes involved were SRP54, JAGN1, TAZ, and SLC37A4. Seven patients had cyclic neutropenia, all with pathogenic variants in ELANE, and seven had Shwachman-Diamond syndrome caused by biallelic SBDS variants. Eight patients (12%) developed myeloid transformation, including six patients with an unknown underlying genetic cause. Nineteen (29%) patients underwent hematopoietic stem cell transplantation, mostly due to insufficient response to treatment with granulocyte-colony stimulating factor or due to myeloid transformation. CONCLUSIONS The genetic spectrum of congenital neutropenias in Israel is characterized by a high prevalence of G6PC3 variants and an absence of HAX1 mutations. Similar to other registries, for 26% of the patients, a molecular diagnosis was not achieved. However, myeloid transformation was common in this group, emphasizing the need for close follow-up.
Collapse
Affiliation(s)
- Lital Yeshareem
- Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Lebel
- Pediatric Nephrology Unit, HaEmek Medical Center, Afula, Israel
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Galit Berger Pinto
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Nino Oniashvili
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Jacques Mardoukh
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Bella Bielorai
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ruth Laor
- Hematology Service, Bnei Zion Medical Center, Haifa, Israel
| | - Noa Mandel-Shorer
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
| | - Ayelet Ben Barak
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
| | - Carina Levin
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
- Pediatric Hematology Unit and Research Laboratory, Emek Medical Center, Afula, Israel
| | - Mahdi Asleh
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Hagit Miskin
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Shoshana Revel-Vilk
- Pediatric Hematology/Oncology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Dror Levin
- Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Marganit Benish
- Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Tsila Zuckerman
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
- Hematology and Bone Marrow Transplantation Institute, Rambam Healthcare Campus, Haifa, Israel
| | - Ofir Wolach
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Idit Pazgal
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Comprehensive Center of Thalassemia, Hemoglobinopathies & Rare Anemias, Institute of Hematology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Dafna Brik Simon
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf David Yanir
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Tracie Alison Goldberg
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Shai Izraeli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| |
Collapse
|
7
|
Bandini P, Borràs N, Berrueco R, Gassiot S, Martin-Fernandez L, Sarrate E, Comes N, Ramírez L, Hobeich C, Vidal F, Corrales I. Gaining Insights into Inherited Bleeding Disorders of Complex Etiology in Pediatric Patients: Whole-Exome Sequencing as First-Line Investigation Tool. Thromb Haemost 2024; 124:628-640. [PMID: 38158197 DOI: 10.1055/s-0043-1778070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Investigation of the molecular basis of inherited bleeding disorders (IBD) is mostly performed with gene panel sequencing. However, the continuous discovery of new related genes underlies the limitation of this approach. This study aimed to identify genetic variants responsible for IBD in pediatric patients using whole-exome sequencing (WES), and to provide a detailed description and reclassification of candidate variants. MATERIAL AND METHODS WES was performed for 18 pediatric patients, and variants were filtered using a first-line list of 290 genes. Variant prioritization was discussed in a multidisciplinary team based on genotype-phenotype correlation, and segregation studies were performed with available family members. RESULTS The study identified 22 candidate variants in 17 out of 18 patients (94%). Eleven patients had complete genotype-phenotype correlation, resulting in a diagnostic yield of 61%, 5 (28%) were classified as partially solved, and 2 (11%) remained unsolved. Variants were identified in platelet (ACTN1, ANKRD26, CYCS, GATA1, GFI1B, ITGA2, NBEAL2, RUNX1, SRC, TUBB1), bleeding (APOLD1), and coagulation (F7, F8, F11, VWF) genes. Notably, 9 out of 22 (41%) variants were previously unreported. Variant pathogenicity was assessed according to the American College of Medical Genetics and Genomics guidelines and reclassification of three variants based on family segregation evidence, resulting in the identification of 10 pathogenic or likely pathogenic variants, 6 variants of uncertain significance, and 6 benign or likely benign variants. CONCLUSION This study demonstrated the high potential of WES in identifying rare molecular defects causing IBD in pediatric patients, improving their management, prognosis, and treatment, particularly for patients at risk of malignancy and/or bleeding due to invasive procedures.
Collapse
Affiliation(s)
- Perla Bandini
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain
- Medicina Transfusional, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Nina Borràs
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain
- Medicina Transfusional, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Ruben Berrueco
- Servei d'Hematologia Pediàtrica, Hospital Sant Joan de Déu Barcelona, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Universitat de Barcelona, Barcelona, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBER ER), Instituto de Salud Carlos III, Madrid, Spain
| | - Susanna Gassiot
- Servei de Diagnòstic de Laboratori, Hospital Sant Joan de Déu Barcelona, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Universitat de Barcelona, Barcelona, Spain
| | - Laura Martin-Fernandez
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain
- Medicina Transfusional, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Edurne Sarrate
- Servei de Diagnòstic de Laboratori, Hospital Sant Joan de Déu Barcelona, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Universitat de Barcelona, Barcelona, Spain
| | - Natàlia Comes
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain
- Medicina Transfusional, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Lorena Ramírez
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain
- Medicina Transfusional, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Carlos Hobeich
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain
- Medicina Transfusional, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Francisco Vidal
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain
- Medicina Transfusional, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Irene Corrales
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain
- Medicina Transfusional, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
8
|
Marzollo A, Zampieri S, Barozzi S, Yousaf MA, Quartararo J, De Rocco D, Faleschini M, Marconi C, Ceccatelli Berti C, Bozzi V, Russo G, Giordano P, Goffrini P, Bresolin S, Pastore A, Savoia A, Pecci A. Thrombocytopenia 4 (THC4): Six novel families with mutations of the cytochrome c gene. Br J Haematol 2024; 205:306-315. [PMID: 38815995 DOI: 10.1111/bjh.19567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Thrombocytopenia 4 (THC4) is an autosomal-dominant thrombocytopenia caused by mutations in CYCS, the gene encoding cytochrome c (CYCS), a small haeme protein essential for electron transport in mitochondria and cell apoptosis. THC4 is considered an extremely rare condition since only a few patients have been reported so far. These subjects presented mild thrombocytopenia and no or mild bleeding tendency. In this study, we describe six Italian families with five different heterozygous missense CYCS variants: p.Gly42Ser and p.Tyr49His previously associated with THC4, and three novel variants (p.Ala52Thr, p.Arg92Gly, and p.Leu99Val), which have been classified as pathogenic by bioinformatics and segregation analyses. Moreover, we supported functional effects of p.Ala52Thr and p.Arg92Gly on oxidative growth and respiratory activity in a yeast model. The clinical characterization of the 22 affected individuals, the largest series of THC4 patients ever reported, showed that this disorder is characterized by mild-to-moderate thrombocytopenia, normal platelet size, and function, low risk of bleeding, and no additional clinical phenotypes associated with reduced platelet count. Finally, we describe a significant correlation between the region of CYCS affected by mutations and the extent of thrombocytopenia, which could reflect different degrees of impairment of CYCS functions caused by different pathogenetic variants.
Collapse
Affiliation(s)
- Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Stefania Zampieri
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Serena Barozzi
- Medicina Generale 1, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Muhammad Abrar Yousaf
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jade Quartararo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniela De Rocco
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Caterina Marconi
- Departement of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Ceccatelli Berti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Valeria Bozzi
- Medicina Generale 1, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Giovanna Russo
- Pediatric Hematology Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Silvia Bresolin
- Maternal and Child Health Department, Padua University, Padua, Italy
- Pediatric Hematology, Oncology, and Hematopoietic Cell and Gene Therapy, Pediatric Research Institute "Città Della Speranza", Padua, Italy
| | - Annalisa Pastore
- Department of Clinical Neuroscience, King's College London, Denmark Hill Campus, London, UK
- European Synchrotron Radiation Facility 71, Grenoble, France
| | - Anna Savoia
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Alessandro Pecci
- Medicina Generale 1, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Wakamatsu M, Muramatsu H, Sato H, Ishikawa M, Konno R, Nakajima D, Hamada M, Okuno Y, Kawashima Y, Hama A, Ito M, Iwafuchi H, Takahashi Y, Ohara O. Integrated proteogenomic analysis for inherited bone marrow failure syndrome. Leukemia 2024; 38:1256-1265. [PMID: 38740980 PMCID: PMC11147772 DOI: 10.1038/s41375-024-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Recent advances in in-depth data-independent acquisition proteomic analysis have enabled comprehensive quantitative analysis of >10,000 proteins. Herein, an integrated proteogenomic analysis for inherited bone marrow failure syndrome (IBMFS) was performed to reveal their biological features and to develop a proteomic-based diagnostic assay in the discovery cohort; dyskeratosis congenita (n = 12), Fanconi anemia (n = 11), Diamond-Blackfan anemia (DBA, n = 9), Shwachman-Diamond syndrome (SDS, n = 6), ADH5/ALDH2 deficiency (n = 4), and other IBMFS (n = 18). Unsupervised proteomic clustering identified eight independent clusters (C1-C8), with the ribosomal pathway specifically downregulated in C1 and C2, enriched for DBA and SDS, respectively. Six patients with SDS had significantly decreased SBDS protein expression, with two of these not diagnosed by DNA sequencing alone. Four patients with ADH5/ALDH2 deficiency showed significantly reduced ADH5 protein expression. To perform a large-scale rapid IBMFS screening, targeted proteomic analysis was performed on 417 samples from patients with IBMFS-related hematological disorders (n = 390) and healthy controls (n = 27). SBDS and ADH5 protein expressions were significantly reduced in SDS and ADH5/ALDH2 deficiency, respectively. The clinical application of this first integrated proteogenomic analysis would be useful for the diagnosis and screening of IBMFS, where appropriate clinical screening tests are lacking.
Collapse
Affiliation(s)
- Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8560, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8560, Japan.
| | - Hironori Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8560, Japan
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, 464-0083, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, 464-0083, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan.
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Hideto Iwafuchi
- Department of Pathology, Shizuoka Children's Hospital, Aoi-ku, Shizuoka, 420-095, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8560, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| |
Collapse
|
10
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Reinig EF, Rubinstein JD, Patil AT, Schussman AL, Horner VL, Kanagal-Shamanna R, Churpek JE, Matson DR. Needle in a haystack or elephant in the room? Identifying germline predisposition syndromes in the setting of a new myeloid malignancy diagnosis. Leukemia 2023; 37:1589-1599. [PMID: 37393344 PMCID: PMC10529926 DOI: 10.1038/s41375-023-01955-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Myeloid malignancies associated with germline predisposition syndromes account for up to 10% of myeloid neoplasms. They are classified into three categories by the proposed 5th Edition of the World Health Organization Classification of Hematolymphoid Tumors: (1) neoplasms with germline predisposition without a pre-existing platelet disorder or organ dysfunction, (2) neoplasms with germline predisposition and pre-existing platelet disorder, or (3) neoplasms with germline predisposition and potential organ dysfunction. Recognizing these entities is critical because patients and affected family members benefit from interfacing with hematologists who specialize in these disorders and can facilitate tailored treatment strategies. However, identification of these syndromes in routine pathology practice is often challenging, as characteristic findings associated with these diagnoses at baseline are frequently absent, nonspecific, or impossible to evaluate in the setting of a myeloid malignancy. Here we review the formally classified germline predisposition syndromes associated with myeloid malignancies and summarize practical recommendations for pathologists evaluating a new myeloid malignancy diagnosis. Our intent is to empower clinicians to better screen for germline disorders in this common clinical setting. Recognizing when to suspect a germline predisposition syndrome, pursue additional ancillary testing, and ultimately recommend referral to a cancer predisposition clinic or hematology specialist, will ensure optimal patient care and expedite research to improve outcomes for these individuals.
Collapse
Affiliation(s)
- Erica F Reinig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy D Rubinstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Apoorva T Patil
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda L Schussman
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Vanessa L Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jane E Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Blood Cancer Research Institute, Madison, WI, USA
| | - Daniel R Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Blood Cancer Research Institute, Madison, WI, USA.
| |
Collapse
|
12
|
Gener-Ricos G, Gerstein YS, Hammond D, DiNardo CD. Germline Predisposition to Myelodysplastic Syndromes. Cancer J 2023; 29:143-151. [PMID: 37195770 DOI: 10.1097/ppo.0000000000000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT While germline predisposition to myelodysplastic syndromes is well-established, knowledge has advanced rapidly resulting in more cases of inherited hematologic malignancies being identified. Understanding the biological features and main clinical manifestations of hereditary hematologic malignancies is essential to recognizing and referring patients with myelodysplastic syndrome, who may underlie inherited predisposition, for appropriate genetic evaluation. Importance lies in individualized genetic counseling along with informed treatment decisions, especially with regard to hematopoietic stem cell transplant-related donor selection. Future studies will improve comprehension of these disorders, enabling better management of affected patients and their families.
Collapse
Affiliation(s)
| | - Yoheved S Gerstein
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
13
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|